prog8/compiler/res/prog8lib/cx16/syslib.p8

1813 lines
63 KiB
Lua

; Prog8 definitions for the CommanderX16
; Including memory registers, I/O registers, Basic and Kernal subroutines.
%option no_symbol_prefixing, ignore_unused
cbm {
; Commodore (CBM) common variables, vectors and kernal routines
; STROUT --> use txt.print
; CLEARSCR -> use txt.clear_screen
; HOMECRSR -> use txt.home or txt.plot
romsub $FF81 = CINT() clobbers(A,X,Y) ; (alias: SCINIT) initialize screen editor and video chip, including resetting to the default color palette. Note: also sets the video mode back to VGA
romsub $FF84 = IOINIT() clobbers(A, X) ; initialize I/O devices (CIA, IRQ, ...)
romsub $FF87 = RAMTAS() clobbers(A,X,Y) ; initialize RAM, screen
romsub $FF8A = RESTOR() clobbers(A,X,Y) ; restore default I/O vectors
romsub $FF8D = VECTOR(uword userptr @ XY, bool dir @ Pc) clobbers(A,Y) ; read/set I/O vector table
romsub $FF90 = SETMSG(ubyte value @ A) ; set Kernal message control flag
romsub $FF93 = SECOND(ubyte address @ A) clobbers(A) ; (alias: LSTNSA) send secondary address after LISTEN
romsub $FF96 = TKSA(ubyte address @ A) clobbers(A) ; (alias: TALKSA) send secondary address after TALK
romsub $FF99 = MEMTOP(uword address @ XY, bool dir @ Pc) -> uword @ XY ; read/set top of memory pointer. NOTE: as a Cx16 extension, also returns the number of RAM memory banks in register A ! See cx16.numbanks()
romsub $FF9C = MEMBOT(uword address @ XY, bool dir @ Pc) -> uword @ XY ; read/set bottom of memory pointer
romsub $FF9F = SCNKEY() clobbers(A,X,Y) ; scan the keyboard, also called kbd_scan
romsub $FFA2 = SETTMO(ubyte timeout @ A) ; set time-out flag for IEEE bus
romsub $FFA5 = ACPTR() -> ubyte @ A ; (alias: IECIN) input byte from serial bus
romsub $FFA8 = CIOUT(ubyte databyte @ A) ; (alias: IECOUT) output byte to serial bus
romsub $FFAB = UNTLK() clobbers(A) ; command serial bus device to UNTALK
romsub $FFAE = UNLSN() clobbers(A) ; command serial bus device to UNLISTEN
romsub $FFB1 = LISTEN(ubyte device @ A) clobbers(A) ; command serial bus device to LISTEN
romsub $FFB4 = TALK(ubyte device @ A) clobbers(A) ; command serial bus device to TALK
romsub $FFB7 = READST() -> ubyte @ A ; read I/O status word (use CLEARST to reset it to 0)
romsub $FFBA = SETLFS(ubyte logical @ A, ubyte device @ X, ubyte secondary @ Y) ; set logical file parameters
romsub $FFBD = SETNAM(ubyte namelen @ A, str filename @ XY) ; set filename parameters
romsub $FFC0 = OPEN() clobbers(X,Y) -> bool @Pc, ubyte @A ; (via 794 ($31A)) open a logical file
romsub $FFC3 = CLOSE(ubyte logical @ A) clobbers(A,X,Y) ; (via 796 ($31C)) close a logical file
romsub $FFC6 = CHKIN(ubyte logical @ X) clobbers(A,X) -> bool @Pc ; (via 798 ($31E)) define an input channel
romsub $FFC9 = CHKOUT(ubyte logical @ X) clobbers(A,X) ; (via 800 ($320)) define an output channel
romsub $FFCC = CLRCHN() clobbers(A,X) ; (via 802 ($322)) restore default devices
romsub $FFCF = CHRIN() clobbers(X, Y) -> ubyte @ A ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read.
romsub $FFD2 = CHROUT(ubyte character @ A) ; (via 806 ($326)) output a character
romsub $FFD5 = LOAD(ubyte verify @ A, uword address @ XY) -> bool @Pc, ubyte @ A, uword @ XY ; (via 816 ($330)) load from device
romsub $FFD8 = SAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) clobbers (X, Y) -> bool @ Pc, ubyte @ A ; (via 818 ($332)) save to a device. See also BSAVE
romsub $FFDB = SETTIM(ubyte low @ A, ubyte middle @ X, ubyte high @ Y) ; set the software clock
romsub $FFDE = RDTIM() -> ubyte @ A, ubyte @ X, ubyte @ Y ; read the software clock (A=lo,X=mid,Y=high)
romsub $FFE1 = STOP() clobbers(X) -> bool @ Pz, ubyte @ A ; (via 808 ($328)) check the STOP key (and some others in A)
romsub $FFE4 = GETIN() clobbers(X,Y) -> bool @Pc, ubyte @ A ; (via 810 ($32A)) get a character
romsub $FFE7 = CLALL() clobbers(A,X) ; (via 812 ($32C)) close all files
romsub $FFEA = UDTIM() clobbers(A,X) ; update the software clock
romsub $FFED = SCREEN() -> ubyte @ X, ubyte @ Y ; read number of screen rows and columns
romsub $FFF0 = PLOT(ubyte col @ Y, ubyte row @ X, bool dir @ Pc) clobbers(A) -> ubyte @ X, ubyte @ Y ; read/set position of cursor on screen. Use txt.plot for a 'safe' wrapper that preserves X.
romsub $FFF3 = IOBASE() -> uword @ XY ; read base address of I/O devices
; ---- utility
asmsub STOP2() clobbers(X) -> bool @A {
; -- check if STOP key was pressed, returns true if so. More convenient to use than STOP() because that only sets the zero status flag.
%asm {{
jsr cbm.STOP
beq +
lda #0
rts
+ lda #1
rts
}}
}
asmsub RDTIM16() clobbers(X) -> uword @AY {
; -- like RDTIM() but only returning the lower 16 bits in AY for convenience. Also avoids ram bank issue for irqs.
%asm {{
php
sei
jsr cbm.RDTIM
plp
cli
pha
txa
tay
pla
rts
}}
}
sub CLEARST() {
; -- Set the ST status variable back to 0. (there's no direct kernal call for this)
; Note: a drive error state (blinking led) isn't cleared! You can use diskio.status() to clear that.
SETNAM(0, $0000)
SETLFS(15, 3, 15)
void OPEN()
CLOSE(15)
}
asmsub kbdbuf_clear() {
; -- convenience helper routine to clear the keyboard buffer
%asm {{
- jsr GETIN
cmp #0
bne -
rts
}}
}
}
cx16 {
; irq, system and hardware vectors:
&uword IERROR = $0300
&uword IMAIN = $0302
&uword ICRNCH = $0304
&uword IQPLOP = $0306
&uword IGONE = $0308
&uword IEVAL = $030a
&ubyte SAREG = $030c ; register storage for A for SYS calls
&ubyte SXREG = $030d ; register storage for X for SYS calls
&ubyte SYREG = $030e ; register storage for Y for SYS calls
&ubyte SPREG = $030f ; register storage for P (status register) for SYS calls
&uword USRADD = $0311 ; vector for the USR() basic command
; $0313 is unused.
&uword CINV = $0314 ; IRQ vector (in ram)
&uword CBINV = $0316 ; BRK vector (in ram)
&uword NMINV = $0318 ; NMI vector (in ram)
&uword IOPEN = $031a
&uword ICLOSE = $031c
&uword ICHKIN = $031e
&uword ICKOUT = $0320
&uword ICLRCH = $0322
&uword IBASIN = $0324
&uword IBSOUT = $0326
&uword ISTOP = $0328
&uword IGETIN = $032a
&uword ICLALL = $032c
&uword KEYHDL = $032e ; keyboard scan code handler see examples/cx16/keyboardhandler.p8
&uword ILOAD = $0330
&uword ISAVE = $0332
&uword NMI_VEC = $FFFA ; 65c02 nmi vector, determined by the kernal if banked in
&uword RESET_VEC = $FFFC ; 65c02 reset vector, determined by the kernal if banked in
&uword IRQ_VEC = $FFFE ; 65c02 interrupt vector, determined by the kernal if banked in
&uword edkeyvec = $ac03 ; (ram bank 0): for intercepting BASIN/CHRIN key strokes. See set_chrin_keyhandler()
&ubyte edkeybk = $ac05 ; ...the RAM bank of the handler routine, if not in low ram
; the sixteen virtual 16-bit registers in both normal unsigned mode and signed mode (s)
&uword r0 = $0002
&uword r1 = $0004
&uword r2 = $0006
&uword r3 = $0008
&uword r4 = $000a
&uword r5 = $000c
&uword r6 = $000e
&uword r7 = $0010
&uword r8 = $0012
&uword r9 = $0014
&uword r10 = $0016
&uword r11 = $0018
&uword r12 = $001a
&uword r13 = $001c
&uword r14 = $001e
&uword r15 = $0020
&word r0s = $0002
&word r1s = $0004
&word r2s = $0006
&word r3s = $0008
&word r4s = $000a
&word r5s = $000c
&word r6s = $000e
&word r7s = $0010
&word r8s = $0012
&word r9s = $0014
&word r10s = $0016
&word r11s = $0018
&word r12s = $001a
&word r13s = $001c
&word r14s = $001e
&word r15s = $0020
&ubyte r0L = $0002
&ubyte r1L = $0004
&ubyte r2L = $0006
&ubyte r3L = $0008
&ubyte r4L = $000a
&ubyte r5L = $000c
&ubyte r6L = $000e
&ubyte r7L = $0010
&ubyte r8L = $0012
&ubyte r9L = $0014
&ubyte r10L = $0016
&ubyte r11L = $0018
&ubyte r12L = $001a
&ubyte r13L = $001c
&ubyte r14L = $001e
&ubyte r15L = $0020
&ubyte r0H = $0003
&ubyte r1H = $0005
&ubyte r2H = $0007
&ubyte r3H = $0009
&ubyte r4H = $000b
&ubyte r5H = $000d
&ubyte r6H = $000f
&ubyte r7H = $0011
&ubyte r8H = $0013
&ubyte r9H = $0015
&ubyte r10H = $0017
&ubyte r11H = $0019
&ubyte r12H = $001b
&ubyte r13H = $001d
&ubyte r14H = $001f
&ubyte r15H = $0021
&byte r0sL = $0002
&byte r1sL = $0004
&byte r2sL = $0006
&byte r3sL = $0008
&byte r4sL = $000a
&byte r5sL = $000c
&byte r6sL = $000e
&byte r7sL = $0010
&byte r8sL = $0012
&byte r9sL = $0014
&byte r10sL = $0016
&byte r11sL = $0018
&byte r12sL = $001a
&byte r13sL = $001c
&byte r14sL = $001e
&byte r15sL = $0020
&byte r0sH = $0003
&byte r1sH = $0005
&byte r2sH = $0007
&byte r3sH = $0009
&byte r4sH = $000b
&byte r5sH = $000d
&byte r6sH = $000f
&byte r7sH = $0011
&byte r8sH = $0013
&byte r9sH = $0015
&byte r10sH = $0017
&byte r11sH = $0019
&byte r12sH = $001b
&byte r13sH = $001d
&byte r14sH = $001f
&byte r15sH = $0021
; VERA registers
const uword VERA_BASE = $9F20
&ubyte VERA_ADDR_L = VERA_BASE + $0000
&ubyte VERA_ADDR_M = VERA_BASE + $0001
&uword VERA_ADDR = VERA_BASE + $0000 ; still need to do the _H separately
&ubyte VERA_ADDR_H = VERA_BASE + $0002
&ubyte VERA_DATA0 = VERA_BASE + $0003
&ubyte VERA_DATA1 = VERA_BASE + $0004
&ubyte VERA_CTRL = VERA_BASE + $0005
&ubyte VERA_IEN = VERA_BASE + $0006
&ubyte VERA_ISR = VERA_BASE + $0007
&ubyte VERA_IRQLINE_L = VERA_BASE + $0008 ; write only
&ubyte VERA_SCANLINE_L = VERA_BASE + $0008 ; read only
&ubyte VERA_DC_VIDEO = VERA_BASE + $0009 ; DCSEL= 0
&ubyte VERA_DC_HSCALE = VERA_BASE + $000A ; DCSEL= 0
&ubyte VERA_DC_VSCALE = VERA_BASE + $000B ; DCSEL= 0
&ubyte VERA_DC_BORDER = VERA_BASE + $000C ; DCSEL= 0
&ubyte VERA_DC_HSTART = VERA_BASE + $0009 ; DCSEL= 1
&ubyte VERA_DC_HSTOP = VERA_BASE + $000A ; DCSEL= 1
&ubyte VERA_DC_VSTART = VERA_BASE + $000B ; DCSEL= 1
&ubyte VERA_DC_VSTOP = VERA_BASE + $000C ; DCSEL= 1
&ubyte VERA_DC_VER0 = VERA_BASE + $0009 ; DCSEL=63
&ubyte VERA_DC_VER1 = VERA_BASE + $000A ; DCSEL=63
&ubyte VERA_DC_VER2 = VERA_BASE + $000B ; DCSEL=63
&ubyte VERA_DC_VER3 = VERA_BASE + $000C ; DCSEL=63
&ubyte VERA_L0_CONFIG = VERA_BASE + $000D
&ubyte VERA_L0_MAPBASE = VERA_BASE + $000E
&ubyte VERA_L0_TILEBASE = VERA_BASE + $000F
&ubyte VERA_L0_HSCROLL_L = VERA_BASE + $0010
&ubyte VERA_L0_HSCROLL_H = VERA_BASE + $0011
&uword VERA_L0_HSCROLL = VERA_BASE + $0010
&ubyte VERA_L0_VSCROLL_L = VERA_BASE + $0012
&ubyte VERA_L0_VSCROLL_H = VERA_BASE + $0013
&uword VERA_L0_VSCROLL = VERA_BASE + $0012
&ubyte VERA_L1_CONFIG = VERA_BASE + $0014
&ubyte VERA_L1_MAPBASE = VERA_BASE + $0015
&ubyte VERA_L1_TILEBASE = VERA_BASE + $0016
&ubyte VERA_L1_HSCROLL_L = VERA_BASE + $0017
&ubyte VERA_L1_HSCROLL_H = VERA_BASE + $0018
&uword VERA_L1_HSCROLL = VERA_BASE + $0017
&ubyte VERA_L1_VSCROLL_L = VERA_BASE + $0019
&ubyte VERA_L1_VSCROLL_H = VERA_BASE + $001A
&uword VERA_L1_VSCROLL = VERA_BASE + $0019
&ubyte VERA_AUDIO_CTRL = VERA_BASE + $001B
&ubyte VERA_AUDIO_RATE = VERA_BASE + $001C
&ubyte VERA_AUDIO_DATA = VERA_BASE + $001D
&ubyte VERA_SPI_DATA = VERA_BASE + $001E
&ubyte VERA_SPI_CTRL = VERA_BASE + $001F
; Vera FX registers: (accessing depends on particular DCSEL value set in VERA_CTRL!)
&ubyte VERA_FX_CTRL = VERA_BASE + $0009
&ubyte VERA_FX_TILEBASE = VERA_BASE + $000a
&ubyte VERA_FX_MAPBASE = VERA_BASE + $000b
&ubyte VERA_FX_MULT = VERA_BASE + $000c
&ubyte VERA_FX_X_INCR_L = VERA_BASE + $0009
&ubyte VERA_FX_X_INCR_H = VERA_BASE + $000a
&uword VERA_FX_X_INCR = VERA_BASE + $0009
&ubyte VERA_FX_Y_INCR_L = VERA_BASE + $000b
&ubyte VERA_FX_Y_INCR_H = VERA_BASE + $000c
&uword VERA_FX_Y_INCR = VERA_BASE + $000b
&ubyte VERA_FX_X_POS_L = VERA_BASE + $0009
&ubyte VERA_FX_X_POS_H = VERA_BASE + $000a
&uword VERA_FX_X_POS = VERA_BASE + $0009
&ubyte VERA_FX_Y_POS_L = VERA_BASE + $000b
&ubyte VERA_FX_Y_POS_H = VERA_BASE + $000c
&uword VERA_FX_Y_POS = VERA_BASE + $000b
&ubyte VERA_FX_X_POS_S = VERA_BASE + $0009
&ubyte VERA_FX_Y_POS_S = VERA_BASE + $000a
&ubyte VERA_FX_POLY_FILL_L = VERA_BASE + $000b
&ubyte VERA_FX_POLY_FILL_H = VERA_BASE + $000c
&uword VERA_FX_POLY_FILL = VERA_BASE + $000b
&ubyte VERA_FX_CACHE_L = VERA_BASE + $0009
&ubyte VERA_FX_CACHE_M = VERA_BASE + $000a
&ubyte VERA_FX_CACHE_H = VERA_BASE + $000b
&ubyte VERA_FX_CACHE_U = VERA_BASE + $000c
&ubyte VERA_FX_ACCUM = VERA_BASE + $000a
&ubyte VERA_FX_ACCUM_RESET = VERA_BASE + $0009
; VERA_PSG_BASE = $1F9C0
; VERA_PALETTE_BASE = $1FA00
; VERA_SPRITES_BASE = $1FC00
; I/O
const uword VIA1_BASE = $9f00 ;VIA 6522 #1
&ubyte via1prb = VIA1_BASE + 0
&ubyte via1pra = VIA1_BASE + 1
&ubyte via1ddrb = VIA1_BASE + 2
&ubyte via1ddra = VIA1_BASE + 3
&ubyte via1t1l = VIA1_BASE + 4
&ubyte via1t1h = VIA1_BASE + 5
&ubyte via1t1ll = VIA1_BASE + 6
&ubyte via1t1lh = VIA1_BASE + 7
&ubyte via1t2l = VIA1_BASE + 8
&ubyte via1t2h = VIA1_BASE + 9
&ubyte via1sr = VIA1_BASE + 10
&ubyte via1acr = VIA1_BASE + 11
&ubyte via1pcr = VIA1_BASE + 12
&ubyte via1ifr = VIA1_BASE + 13
&ubyte via1ier = VIA1_BASE + 14
&ubyte via1ora = VIA1_BASE + 15
const uword VIA2_BASE = $9f10 ;VIA 6522 #2
&ubyte via2prb = VIA2_BASE + 0
&ubyte via2pra = VIA2_BASE + 1
&ubyte via2ddrb = VIA2_BASE + 2
&ubyte via2ddra = VIA2_BASE + 3
&ubyte via2t1l = VIA2_BASE + 4
&ubyte via2t1h = VIA2_BASE + 5
&ubyte via2t1ll = VIA2_BASE + 6
&ubyte via2t1lh = VIA2_BASE + 7
&ubyte via2t2l = VIA2_BASE + 8
&ubyte via2t2h = VIA2_BASE + 9
&ubyte via2sr = VIA2_BASE + 10
&ubyte via2acr = VIA2_BASE + 11
&ubyte via2pcr = VIA2_BASE + 12
&ubyte via2ifr = VIA2_BASE + 13
&ubyte via2ier = VIA2_BASE + 14
&ubyte via2ora = VIA2_BASE + 15
; YM-2151 sound chip
&ubyte YM_ADDRESS = $9f40
&ubyte YM_DATA = $9f41
const uword extdev = $9f60
; ---- Commander X-16 additions on top of C64 kernal routines ----
; spelling of the names is taken from the Commander X-16 rom sources
; supported C128 additions
romsub $ff4a = CLOSE_ALL(ubyte device @A) clobbers(A,X,Y)
romsub $ff59 = LKUPLA(ubyte la @A) clobbers(A,X,Y)
romsub $ff5c = LKUPSA(ubyte sa @Y) clobbers(A,X,Y)
romsub $ff5f = screen_mode(ubyte mode @A, bool getCurrent @Pc) clobbers(X, Y) -> ubyte @A, bool @Pc ; note: X,Y size result is not supported, use SCREEN or get_screen_mode routine for that
romsub $ff62 = screen_set_charset(ubyte charset @A, uword charsetptr @XY) clobbers(A,X,Y) ; incompatible with C128 dlchr()
; not yet supported: romsub $ff65 = pfkey() clobbers(A,X,Y)
romsub $ff6e = JSRFAR() ; following word = address to call, byte after that=rom/ram bank it is in
romsub $ff74 = fetch(ubyte bank @X, ubyte index @Y) clobbers(X) -> ubyte @A
romsub $ff77 = stash(ubyte data @A, ubyte bank @X, ubyte index @Y) clobbers(X)
romsub $ff7d = PRIMM()
; It's not documented what registers are clobbered, so we assume the worst for all following kernal routines...:
; high level graphics & fonts
romsub $ff20 = GRAPH_init(uword vectors @R0) clobbers(A,X,Y)
romsub $ff23 = GRAPH_clear() clobbers(A,X,Y)
romsub $ff26 = GRAPH_set_window(uword x @R0, uword y @R1, uword width @R2, uword height @R3) clobbers(A,X,Y)
romsub $ff29 = GRAPH_set_colors(ubyte stroke @A, ubyte fill @X, ubyte background @Y) clobbers (A,X,Y)
romsub $ff2c = GRAPH_draw_line(uword x1 @R0, uword y1 @R1, uword x2 @R2, uword y2 @R3) clobbers(A,X,Y)
romsub $ff2f = GRAPH_draw_rect(uword x @R0, uword y @R1, uword width @R2, uword height @R3, uword cornerradius @R4, bool fill @Pc) clobbers(A,X,Y)
romsub $ff32 = GRAPH_move_rect(uword sx @R0, uword sy @R1, uword tx @R2, uword ty @R3, uword width @R4, uword height @R5) clobbers(A,X,Y)
romsub $ff35 = GRAPH_draw_oval(uword x @R0, uword y @R1, uword width @R2, uword height @R3, bool fill @Pc) clobbers(A,X,Y)
romsub $ff38 = GRAPH_draw_image(uword x @R0, uword y @R1, uword ptr @R2, uword width @R3, uword height @R4) clobbers(A,X,Y)
romsub $ff3b = GRAPH_set_font(uword fontptr @R0) clobbers(A,X,Y)
romsub $ff3e = GRAPH_get_char_size(ubyte baseline @A, ubyte width @X, ubyte height_or_style @Y, bool is_control @Pc) clobbers(A,X,Y)
romsub $ff41 = GRAPH_put_char(uword x @R0, uword y @R1, ubyte character @A) clobbers(A,X,Y)
romsub $ff41 = GRAPH_put_next_char(ubyte character @A) clobbers(A,X,Y) ; alias for the routine above that doesn't reset the position of the initial character
; framebuffer
romsub $fef6 = FB_init() clobbers(A,X,Y)
romsub $fef9 = FB_get_info() clobbers(X,Y) -> byte @A, uword @R0, uword @R1 ; width=r0, height=r1
romsub $fefc = FB_set_palette(uword pointer @R0, ubyte index @A, ubyte colorcount @X) clobbers(A,X,Y)
romsub $feff = FB_cursor_position(uword x @R0, uword y @R1) clobbers(A,X,Y)
romsub $ff02 = FB_cursor_next_line(uword x @R0) clobbers(A,X,Y)
romsub $ff05 = FB_get_pixel() clobbers(X,Y) -> ubyte @A
romsub $ff08 = FB_get_pixels(uword pointer @R0, uword count @R1) clobbers(A,X,Y)
romsub $ff0b = FB_set_pixel(ubyte color @A) clobbers(A,X,Y)
romsub $ff0e = FB_set_pixels(uword pointer @R0, uword count @R1) clobbers(A,X,Y)
romsub $ff11 = FB_set_8_pixels(ubyte pattern @A, ubyte color @X) clobbers(A,X,Y)
romsub $ff14 = FB_set_8_pixels_opaque(ubyte pattern @R0, ubyte mask @A, ubyte color1 @X, ubyte color2 @Y) clobbers(A,X,Y)
romsub $ff17 = FB_fill_pixels(uword count @R0, uword pstep @R1, ubyte color @A) clobbers(A,X,Y)
romsub $ff1a = FB_filter_pixels(uword pointer @ R0, uword count @R1) clobbers(A,X,Y)
romsub $ff1d = FB_move_pixels(uword sx @R0, uword sy @R1, uword tx @R2, uword ty @R3, uword count @R4) clobbers(A,X,Y)
; misc
romsub $FEBA = BSAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) clobbers (X, Y) -> bool @ Pc, ubyte @ A ; like cbm.SAVE, but omits the 2-byte prg header
romsub $fec6 = i2c_read_byte(ubyte device @X, ubyte offset @Y) clobbers (X,Y) -> ubyte @A, bool @Pc
romsub $fec9 = i2c_write_byte(ubyte device @X, ubyte offset @Y, ubyte data @A) clobbers (A,X,Y) -> bool @Pc
romsub $feb4 = i2c_batch_read(ubyte device @X, uword buffer @R0, uword length @R1, bool advance @Pc) clobbers(A,Y) -> bool @Pc
romsub $feb7 = i2c_batch_write(ubyte device @X, uword buffer @R0, uword length @R1, bool advance @Pc) clobbers(A,Y) -> bool @Pc
romsub $fef0 = sprite_set_image(uword pixels @R0, uword mask @R1, ubyte bpp @R2, ubyte number @A, ubyte width @X, ubyte height @Y, bool apply_mask @Pc) clobbers(A,X,Y) -> bool @Pc
romsub $fef3 = sprite_set_position(uword x @R0, uword y @R1, ubyte number @A) clobbers(A,X,Y)
romsub $fee4 = memory_fill(uword address @R0, uword num_bytes @R1, ubyte value @A) clobbers(A,X,Y)
romsub $fee7 = memory_copy(uword source @R0, uword target @R1, uword num_bytes @R2) clobbers(A,X,Y)
romsub $feea = memory_crc(uword address @R0, uword num_bytes @R1) clobbers(A,X,Y) -> uword @R2
romsub $feed = memory_decompress(uword input @R0, uword output @R1) clobbers(A,X,Y) -> uword @R1 ; last address +1 is result in R1
romsub $fedb = console_init(uword x @R0, uword y @R1, uword width @R2, uword height @R3) clobbers(A,X,Y)
romsub $fede = console_put_char(ubyte character @A, bool wrapping @Pc) clobbers(A,X,Y)
romsub $fee1 = console_get_char() clobbers(X,Y) -> ubyte @A
romsub $fed8 = console_put_image(uword pointer @R0, uword width @R1, uword height @R2) clobbers(A,X,Y)
romsub $fed5 = console_set_paging_message(uword msgptr @R0) clobbers(A,X,Y)
romsub $fecf = entropy_get() -> ubyte @A, ubyte @X, ubyte @Y
;; romsub $fea8 = extapi16(ubyte callnumber @A) clobbers (A,X,Y) ; not useful yet because is for 65816 cpu
romsub $feab = extapi(ubyte callnumber @A) clobbers (A,X,Y)
romsub $fecc = monitor() clobbers(A,X,Y)
romsub $ff44 = MACPTR(ubyte length @A, uword buffer @XY, bool dontAdvance @Pc) clobbers(A) -> bool @Pc, uword @XY
romsub $feb1 = MCIOUT(ubyte length @A, uword buffer @XY, bool dontAdvance @Pc) clobbers(A) -> bool @Pc, uword @XY
romsub $ff47 = enter_basic(bool cold_or_warm @Pc) clobbers(A,X,Y)
romsub $ff4d = clock_set_date_time(uword yearmonth @R0, uword dayhours @R1, uword minsecs @R2, uword jiffiesweekday @R3) clobbers(A, X, Y)
romsub $ff50 = clock_get_date_time() clobbers(A, X, Y) -> uword @R0, uword @R1, uword @R2, uword @R3 ; result registers see clock_set_date_time()
; keyboard, mouse, joystick
; note: also see the cbm.kbdbuf_clear() helper routine
romsub $febd = kbdbuf_peek() -> ubyte @A, ubyte @X ; key in A, queue length in X
romsub $febd = kbdbuf_peek2() -> uword @AX ; alternative to above to not have the hassle to deal with multiple return values
romsub $fec0 = kbdbuf_get_modifiers() -> ubyte @A
romsub $fec3 = kbdbuf_put(ubyte key @A) clobbers(X)
romsub $fed2 = keymap(uword identifier @XY, bool read @Pc) -> bool @Pc
romsub $ff68 = mouse_config(byte shape @A, ubyte resX @X, ubyte resY @Y) clobbers (A, X, Y)
romsub $ff6b = mouse_get(ubyte zpdataptr @X) -> ubyte @A
romsub $ff71 = mouse_scan() clobbers(A, X, Y)
romsub $ff53 = joystick_scan() clobbers(A, X, Y)
romsub $ff56 = joystick_get(ubyte joynr @A) -> ubyte @A, ubyte @X, ubyte @Y
romsub $ff56 = joystick_get2(ubyte joynr @A) clobbers(Y) -> uword @AX ; alternative to above to not have the hassle to deal with multiple return values
; X16Edit (rom bank 13/14 but you ideally should use the routine search_x16edit() to search for the correct bank)
romsub $C000 = x16edit_default() clobbers(A,X,Y)
romsub $C003 = x16edit_loadfile(ubyte firstbank @X, ubyte lastbank @Y, str filename @R0, ubyte filenameLength @R1) clobbers(A,X,Y)
romsub $C006 = x16edit_loadfile_options(ubyte firstbank @X, ubyte lastbank @Y, str filename @R0,
uword filenameLengthAndOptions @R1, uword tabstopAndWordwrap @R2,
uword disknumberAndColors @R3, uword headerAndStatusColors @R4) clobbers(A,X,Y)
; Audio (rom bank 10 - you have to activate this bank manually first! Or use callfar/JSRFAR.)
romsub $C09F = audio_init() clobbers(A,X,Y) -> bool @Pc ; (re)initialize both vera PSG and YM audio chips
romsub $C000 = bas_fmfreq(ubyte channel @A, uword freq @XY, bool noretrigger @Pc) clobbers(A,X,Y) -> bool @Pc
romsub $C003 = bas_fmnote(ubyte channel @A, ubyte note @X, ubyte fracsemitone @Y, bool noretrigger @Pc) clobbers(A,X,Y) -> bool @Pc
romsub $C006 = bas_fmplaystring(ubyte length @A, str string @XY) clobbers(A,X,Y)
romsub $C009 = bas_fmvib(ubyte speed @A, ubyte depth @X) clobbers(A,X,Y) -> bool @Pc
romsub $C00C = bas_playstringvoice(ubyte channel @A) clobbers(Y)
romsub $C00F = bas_psgfreq(ubyte voice @A, uword freq @XY) clobbers(A,X,Y) -> bool @Pc
romsub $C012 = bas_psgnote(ubyte voice @A, ubyte note @X, ubyte fracsemitone @Y) clobbers(A,X,Y) -> bool @Pc
romsub $C015 = bas_psgwav(ubyte voice @A, ubyte waveform @X) clobbers(A,X,Y) -> bool @Pc
romsub $C018 = bas_psgplaystring(ubyte length @A, str string @XY) clobbers(A,X,Y)
romsub $C08D = bas_fmchordstring(ubyte length @A, str string @XY) clobbers(A,X,Y)
romsub $C090 = bas_psgchordstring(ubyte length @A, str string @XY) clobbers(A,X,Y)
romsub $C01B = notecon_bas2fm(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc
romsub $C01E = notecon_bas2midi(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc
romsub $C021 = notecon_bas2psg(ubyte note @X, ubyte fracsemitone @Y) clobbers(A) -> uword @XY, bool @Pc
romsub $C024 = notecon_fm2bas(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc
romsub $C027 = notecon_fm2midi(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc
romsub $C02A = notecon_fm2psg(ubyte note @X, ubyte fracsemitone @Y) clobbers(A) -> uword @XY, bool @Pc
romsub $C02D = notecon_freq2bas(uword freqHz @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc
romsub $C030 = notecon_freq2fm(uword freqHz @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc
romsub $C033 = notecon_freq2midi(uword freqHz @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc
romsub $C036 = notecon_freq2psg(uword freqHz @XY) clobbers(A) -> uword @XY, bool @Pc
romsub $C039 = notecon_midi2bas(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc
romsub $C03C = notecon_midi2fm(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc
romsub $C03F = notecon_midi2psg(ubyte note @X, ubyte fracsemitone @Y) clobbers(A) -> uword @XY, bool @Pc
romsub $C042 = notecon_psg2bas(uword freq @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc
romsub $C045 = notecon_psg2fm(uword freq @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc
romsub $C048 = notecon_psg2midi(uword freq @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc
romsub $C04B = psg_init() clobbers(A,X,Y) ; (re)init Vera PSG
romsub $C04E = psg_playfreq(ubyte voice @A, uword freq @XY) clobbers(A,X,Y)
romsub $C051 = psg_read(ubyte offset @X, bool cookedVol @Pc) clobbers(Y) -> ubyte @A
romsub $C054 = psg_setatten(ubyte voice @A, ubyte attenuation @X) clobbers(A,X,Y)
romsub $C057 = psg_setfreq(ubyte voice @A, uword freq @XY) clobbers(A,X,Y)
romsub $C05A = psg_setpan(ubyte voice @A, ubyte panning @X) clobbers(A,X,Y)
romsub $C05D = psg_setvol(ubyte voice @A, ubyte volume @X) clobbers(A,X,Y)
romsub $C060 = psg_write(ubyte value @A, ubyte offset @X) clobbers(Y)
romsub $C0A2 = psg_write_fast(ubyte value @A, ubyte offset @X) clobbers(Y)
romsub $C093 = psg_getatten(ubyte voice @A) clobbers(Y) -> ubyte @X
romsub $C096 = psg_getpan(ubyte voice @A) clobbers(Y) -> ubyte @X
romsub $C063 = ym_init() clobbers(A,X,Y) -> bool @Pc ; (re)init YM chip
romsub $C066 = ym_loaddefpatches() clobbers(A,X,Y) -> bool @Pc ; load default YM patches
romsub $C069 = ym_loadpatch(ubyte channel @A, uword patchOrAddress @XY, bool what @Pc) clobbers(A,X,Y)
romsub $C06C = ym_loadpatchlfn(ubyte channel @A, ubyte lfn @X) clobbers(X,Y) -> ubyte @A, bool @Pc
romsub $C06F = ym_playdrum(ubyte channel @A, ubyte note @X) clobbers(A,X,Y) -> bool @Pc
romsub $C072 = ym_playnote(ubyte channel @A, ubyte kc @X, ubyte kf @Y, bool notrigger @Pc) clobbers(A,X,Y) -> bool @Pc
romsub $C075 = ym_setatten(ubyte channel @A, ubyte attenuation @X) clobbers(Y) -> bool @Pc
romsub $C078 = ym_setdrum(ubyte channel @A, ubyte note @X) clobbers(A,X,Y) -> bool @Pc
romsub $C07B = ym_setnote(ubyte channel @A, ubyte kc @X, ubyte kf @Y) clobbers(A,X,Y) -> bool @Pc
romsub $C07E = ym_setpan(ubyte channel @A, ubyte panning @X) clobbers(A,X,Y) -> bool @Pc
romsub $C081 = ym_read(ubyte register @X, bool cooked @Pc) clobbers(Y) -> ubyte @A, bool @Pc
romsub $C084 = ym_release(ubyte channel @A) clobbers(A,X,Y) -> bool @Pc
romsub $C087 = ym_trigger(ubyte channel @A, bool noRelease @Pc) clobbers(A,X,Y) -> bool @Pc
romsub $C08A = ym_write(ubyte value @A, ubyte register @X) clobbers(Y) -> bool @Pc
romsub $C099 = ym_getatten(ubyte channel @A) clobbers(Y) -> ubyte @X
romsub $C09C = ym_getpan(ubyte channel @A) clobbers(Y) -> ubyte @X
romsub $C0A5 = ym_get_chip_type() clobbers(X) -> ubyte @A
; extapi call numbers
const ubyte EXTAPI_clear_status = $01
const ubyte EXTAPI_getlfs = $02
const ubyte EXTAPI_mouse_sprite_offset = $03
const ubyte EXTAPI_joystick_ps2_keycodes = $04
const ubyte EXTAPI_iso_cursor_char = $05
const ubyte EXTAPI_ps2kbd_typematic = $06
const ubyte EXTAPI_pfkey = $07
const ubyte EXTAPI_ps2data_fetch = $08
const ubyte EXTAPI_ps2data_raw = $09
const ubyte EXTAPI_cursor_blink = $0A
const ubyte EXTAPI_led_update = $0B
const ubyte EXTAPI_mouse_set_position = $0C
; extapi16 call numbers
const ubyte EXTAPI16_test = $00
const ubyte EXTAPI16_stack_push = $01
const ubyte EXTAPI16_stack_pop = $02
const ubyte EXTAPI16_stack_enter_kernal_stack = $03
const ubyte EXTAPI16_stack_leave_kernal_stack = $04
asmsub set_screen_mode(ubyte mode @A) clobbers(A,X,Y) -> bool @Pc {
; -- convenience wrapper for screen_mode() to just set a new mode (and return success)
%asm {{
clc
jmp screen_mode
}}
}
asmsub get_screen_mode() -> byte @A, byte @X, byte @Y {
; -- convenience wrapper for screen_mode() to just get the current mode in A, and size in characters in X+Y
; this does need a piece of inlined asm to call it ans store the result values if you call this from prog8 code
; Note: you can also just do the SEC yourself and simply call screen_mode() directly,
; or use the existing SCREEN kernal routine for just getting the size in characters.
%asm {{
sec
jmp screen_mode
}}
}
asmsub mouse_config2(byte shape @A) clobbers (A, X, Y) {
; -- convenience wrapper function that handles the screen resolution for mouse_config() for you
%asm {{
pha ; save shape
sec
jsr cx16.screen_mode ; set current screen mode and res in A, X, Y
pla ; get shape back
jmp cx16.mouse_config
}}
}
asmsub mouse_pos() clobbers(X) -> ubyte @A {
; -- short wrapper around mouse_get() kernal routine:
; -- gets the position of the mouse cursor in cx16.r0 and cx16.r1 (x/y coordinate), returns mouse button status in A.
%asm {{
ldx #cx16.r0
jmp cx16.mouse_get
}}
}
; shims for the kernal routines called via the extapi call:
asmsub mouse_set_pos(uword xpos @R0, uword ypos @R1) clobbers(X) {
; -- sets the mouse sprite position
%asm {{
ldx #cx16.r0L
lda #EXTAPI_mouse_set_position
jmp cx16.extapi
}}
}
asmsub mouse_set_sprite_offset(word xoffset @R0, word yoffset @R1) clobbers(A,X,Y) {
%asm {{
clc
lda #EXTAPI_mouse_sprite_offset
jmp cx16.extapi
}}
}
asmsub mouse_get_sprite_offset() clobbers(A,X,Y) -> word @R0, word @R1 {
%asm {{
sec
lda #EXTAPI_mouse_sprite_offset
jmp cx16.extapi
}}
}
asmsub getlfs() -> ubyte @X, ubyte @A, ubyte @Y {
; -- return the result of the last call to SETLFS: A=logical, X=device, Y=secondary.
%asm {{
lda #EXTAPI_mouse_set_position
jmp cx16.extapi
}}
}
asmsub iso_cursor_char(ubyte character @X) clobbers(A,X,Y) {
; -- set the screen code for the cursor character in ISO mode (the default is $9f).
%asm {{
clc
lda #EXTAPI_iso_cursor_char
jmp cx16.extapi
}}
}
; TODO : implement shims for the remaining extapi calls.
; ---- end of kernal routines ----
; ---- utilities -----
inline asmsub rombank(ubyte bank @A) {
; -- set the rom banks
%asm {{
sta $01
}}
}
inline asmsub rambank(ubyte bank @A) {
; -- set the ram bank
%asm {{
sta $00
}}
}
inline asmsub getrombank() -> ubyte @A {
; -- get the current rom bank
%asm {{
lda $01
}}
}
inline asmsub getrambank() -> ubyte @A {
; -- get the current RAM bank
%asm {{
lda $00
}}
}
asmsub numbanks() clobbers(X) -> uword @AY {
; -- Returns the number of available RAM banks according to the kernal (each bank is 8 Kb).
; Note that the number of such banks can be 256 so a word is returned.
; But just looking at the A register (the LSB of the result word) could suffice if you know that A=0 means 256 banks:
; The maximum number of RAM banks in the X16 is currently 256 (2 Megabytes of banked RAM).
; Kernal's MEMTOP routine reports 0 in this case but that doesn't mean 'zero banks', instead it means 256 banks,
; as there is no X16 without at least 1 page of banked RAM. So this routine returns 256 instead of 0.
%asm {{
sec
jsr cbm.MEMTOP
ldy #0
cmp #0
bne +
iny
+ rts
}}
}
asmsub vpeek(ubyte bank @A, uword address @XY) -> ubyte @A {
; -- get a byte from VERA's video memory
; note: inefficient when reading multiple sequential bytes!
%asm {{
stz cx16.VERA_CTRL
sta cx16.VERA_ADDR_H
sty cx16.VERA_ADDR_M
stx cx16.VERA_ADDR_L
lda cx16.VERA_DATA0
rts
}}
}
asmsub vaddr(ubyte bank @A, uword address @R0, ubyte addrsel @R1, byte autoIncrOrDecrByOne @Y) clobbers(A) {
; -- setup the VERA's data address register 0 or 1
; with optional auto increment or decrement of 1.
; Note that the vaddr_autoincr() and vaddr_autodecr() routines allow to set all possible strides, not just 1.
%asm {{
pha
lda cx16.r1
and #1
sta cx16.VERA_CTRL
lda cx16.r0
sta cx16.VERA_ADDR_L
lda cx16.r0+1
sta cx16.VERA_ADDR_M
pla
cpy #0
bmi ++
beq +
ora #%00010000
+ sta cx16.VERA_ADDR_H
rts
+ ora #%00011000
sta cx16.VERA_ADDR_H
rts
}}
}
asmsub vaddr_clone(ubyte port @A) clobbers (A,X,Y) {
; -- clones Vera addresses from the given source port to the other one.
%asm {{
sta VERA_CTRL
ldx VERA_ADDR_L
ldy VERA_ADDR_H
phy
ldy VERA_ADDR_M
eor #1
sta VERA_CTRL
stx VERA_ADDR_L
sty VERA_ADDR_M
ply
sty VERA_ADDR_H
eor #1
sta VERA_CTRL
rts
}}
}
asmsub vaddr_autoincr(ubyte bank @A, uword address @R0, ubyte addrsel @R1, uword autoIncrAmount @R2) clobbers(A,Y) {
; -- setup the VERA's data address register 0 or 1
; including setting up optional auto increment amount.
; Specifiying an unsupported amount results in amount of zero. See the Vera docs about what amounts are possible.
%asm {{
jsr _setup
lda cx16.r2H
ora cx16.r2L
beq +
jsr _determine_incr_bits
+ ora P8ZP_SCRATCH_REG
sta cx16.VERA_ADDR_H
rts
_setup sta P8ZP_SCRATCH_REG
lda cx16.r1
and #1
sta cx16.VERA_CTRL
lda cx16.r0
sta cx16.VERA_ADDR_L
lda cx16.r0+1
sta cx16.VERA_ADDR_M
rts
_determine_incr_bits
lda cx16.r2H
bne _large
lda cx16.r2L
ldy #13
- cmp _strides_lsb,y
beq +
dey
bpl -
+ tya
asl a
asl a
asl a
asl a
rts
_large ora cx16.r2L
cmp #1 ; 256
bne +
lda #9<<4
rts
+ cmp #2 ; 512
bne +
lda #10<<4
rts
+ cmp #65 ; 320
bne +
lda #14<<4
rts
+ cmp #130 ; 640
bne +
lda #15<<4
rts
+ lda #0
rts
_strides_lsb .byte 0,1,2,4,8,16,32,64,128,255,255,40,80,160,255,255
}}
}
asmsub vaddr_autodecr(ubyte bank @A, uword address @R0, ubyte addrsel @R1, uword autoDecrAmount @R2) clobbers(A,Y) {
; -- setup the VERA's data address register 0 or 1
; including setting up optional auto decrement amount.
; Specifiying an unsupported amount results in amount of zero. See the Vera docs about what amounts are possible.
%asm {{
jsr vaddr_autoincr._setup
lda cx16.r2H
ora cx16.r2L
beq +
jsr vaddr_autoincr._determine_incr_bits
ora #%00001000 ; autodecrement
+ ora P8ZP_SCRATCH_REG
sta cx16.VERA_ADDR_H
rts
}}
}
asmsub vpoke(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers(A) {
; -- write a single byte to VERA's video memory
; note: inefficient when writing multiple sequential bytes!
%asm {{
stz cx16.VERA_CTRL
sta cx16.VERA_ADDR_H
lda cx16.r0
sta cx16.VERA_ADDR_L
lda cx16.r0+1
sta cx16.VERA_ADDR_M
sty cx16.VERA_DATA0
rts
}}
}
asmsub vpoke_or(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers (A) {
; -- or a single byte to the value already in the VERA's video memory at that location
; note: inefficient when writing multiple sequential bytes!
%asm {{
stz cx16.VERA_CTRL
sta cx16.VERA_ADDR_H
lda cx16.r0
sta cx16.VERA_ADDR_L
lda cx16.r0+1
sta cx16.VERA_ADDR_M
tya
ora cx16.VERA_DATA0
sta cx16.VERA_DATA0
rts
}}
}
asmsub vpoke_and(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers(A) {
; -- and a single byte to the value already in the VERA's video memory at that location
; note: inefficient when writing multiple sequential bytes!
%asm {{
stz cx16.VERA_CTRL
sta cx16.VERA_ADDR_H
lda cx16.r0
sta cx16.VERA_ADDR_L
lda cx16.r0+1
sta cx16.VERA_ADDR_M
tya
and cx16.VERA_DATA0
sta cx16.VERA_DATA0
rts
}}
}
asmsub vpoke_xor(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers (A) {
; -- xor a single byte to the value already in the VERA's video memory at that location
; note: inefficient when writing multiple sequential bytes!
%asm {{
stz cx16.VERA_CTRL
sta cx16.VERA_ADDR_H
lda cx16.r0
sta cx16.VERA_ADDR_L
lda cx16.r0+1
sta cx16.VERA_ADDR_M
tya
eor cx16.VERA_DATA0
sta cx16.VERA_DATA0
rts
}}
}
asmsub vpoke_mask(ubyte bank @A, uword address @R0, ubyte mask @X, ubyte value @Y) clobbers (A) {
; -- bitwise or a single byte to the value already in the VERA's video memory at that location
; after applying the and-mask. Note: inefficient when writing multiple sequential bytes!
%asm {{
sty P8ZP_SCRATCH_B1
stz cx16.VERA_CTRL
sta cx16.VERA_ADDR_H
lda cx16.r0
sta cx16.VERA_ADDR_L
lda cx16.r0+1
sta cx16.VERA_ADDR_M
txa
and cx16.VERA_DATA0
ora P8ZP_SCRATCH_B1
sta cx16.VERA_DATA0
rts
}}
}
asmsub save_virtual_registers() clobbers(A,Y) {
%asm {{
ldy #31
- lda cx16.r0,y
sta _cx16_vreg_storage,y
dey
bpl -
rts
_cx16_vreg_storage
.word 0,0,0,0,0,0,0,0
.word 0,0,0,0,0,0,0,0
}}
}
asmsub restore_virtual_registers() clobbers(A,Y) {
%asm {{
ldy #31
- lda save_virtual_registers._cx16_vreg_storage,y
sta cx16.r0,y
dey
bpl -
rts
}}
}
asmsub save_vera_context() clobbers(A) {
; -- use this at the start of your IRQ handler if it uses Vera registers, to save the state
%asm {{
; note cannot store this on cpu hardware stack because this gets called as a subroutine
lda cx16.VERA_ADDR_L
sta _vera_storage
lda cx16.VERA_ADDR_M
sta _vera_storage+1
lda cx16.VERA_ADDR_H
sta _vera_storage+2
lda cx16.VERA_CTRL
sta _vera_storage+3
eor #1
sta _vera_storage+7
sta cx16.VERA_CTRL
lda cx16.VERA_ADDR_L
sta _vera_storage+4
lda cx16.VERA_ADDR_M
sta _vera_storage+5
lda cx16.VERA_ADDR_H
sta _vera_storage+6
rts
_vera_storage: .byte 0,0,0,0,0,0,0,0
}}
}
asmsub restore_vera_context() clobbers(A) {
; -- use this at the end of your IRQ handler if it uses Vera registers, to restore the state
%asm {{
lda cx16.save_vera_context._vera_storage+7
sta cx16.VERA_CTRL
lda cx16.save_vera_context._vera_storage+6
sta cx16.VERA_ADDR_H
lda cx16.save_vera_context._vera_storage+5
sta cx16.VERA_ADDR_M
lda cx16.save_vera_context._vera_storage+4
sta cx16.VERA_ADDR_L
lda cx16.save_vera_context._vera_storage+3
sta cx16.VERA_CTRL
lda cx16.save_vera_context._vera_storage+2
sta cx16.VERA_ADDR_H
lda cx16.save_vera_context._vera_storage+1
sta cx16.VERA_ADDR_M
lda cx16.save_vera_context._vera_storage+0
sta cx16.VERA_ADDR_L
rts
}}
}
asmsub set_chrin_keyhandler(ubyte handlerbank @A, uword handler @XY) clobbers(A) {
; Install a custom CHRIN (BASIN) key handler in a safe manner. Call this before each line you want to read.
; See https://github.com/X16Community/x16-docs/blob/master/X16%20Reference%20-%2002%20-%20Editor.md#custom-basin-petscii-code-override-handler
%asm {{
sei
sta P8ZP_SCRATCH_REG
lda $00
pha
stz $00
lda P8ZP_SCRATCH_REG
sta cx16.edkeybk
stx cx16.edkeyvec
sty cx16.edkeyvec+1
pla
sta $00
cli
rts
}}
}
asmsub get_chrin_keyhandler() -> ubyte @R0, uword @R1 {
; --- retrieve the currently set CHRIN keyhandler in a safe manner, bank in r0L, handler address in R1.
%asm {{
sei
lda $00
pha
stz $00
lda cx16.edkeybk
sta cx16.r0L
lda cx16.edkeyvec
ldy cx16.edkeyvec+1
sta cx16.r1
sty cx16.r1+1
pla
sta $00
cli
rts
}}
}
; Commander X16 IRQ dispatcher routines
inline asmsub disable_irqs() clobbers(A) {
; Disable all Vera IRQ sources. Note that it does NOT set the CPU IRQ disabled status bit!
%asm {{
lda #%00001111
trb cx16.VERA_IEN
}}
}
asmsub enable_irq_handlers(bool disable_all_irq_sources @Pc) clobbers(A,Y) {
; Install the "master IRQ handler" that will dispatch IRQs
; to the registered handler for each type. (Only Vera IRQs supported for now).
; The handlers don't need to clear its ISR bit, but have to return 0 or 1 in A,
; where 1 means: continue with the system IRQ handler, 0 means: don't call that.
%asm {{
php
sei
bcc +
lda #%00001111
trb cx16.VERA_IEN ; disable all IRQ sources
+ lda #<_irq_dispatcher
ldy #>_irq_dispatcher
sta cx16.CINV
sty cx16.CINV+1
plp
rts
_irq_dispatcher
; order of handling: LINE, SPRCOL, AFLOW, VSYNC.
jsr sys.save_prog8_internals
cld
lda cx16.VERA_ISR
and cx16.VERA_IEN ; only consider the bits for sources that can actually raise the IRQ
bit #2
beq +
_mod_line_jump
jsr _default_line_handler ; modified
ldy #2
sty cx16.VERA_ISR
bra _dispatch_end
+
bit #4
beq +
_mod_sprcol_jump
jsr _default_sprcol_handler ; modified
ldy #4
sty cx16.VERA_ISR
bra _dispatch_end
+
bit #8
beq +
_mod_aflow_jump
jsr _default_aflow_handler ; modified
; note: AFLOW can only be cleared by filling the audio FIFO for at least 1/4. Not via the ISR bit.
bra _dispatch_end
+
bit #1
beq +
_mod_vsync_jump
jsr _default_vsync_handler ; modified
cmp #0
bne _dispatch_end
ldy #1
sty cx16.VERA_ISR
bra _return_irq
+
lda #0
_dispatch_end
cmp #0
beq _return_irq
jsr sys.restore_prog8_internals
jmp (sys.restore_irq._orig_irqvec) ; continue with normal kernal irq routine
_return_irq
jsr sys.restore_prog8_internals
ply
plx
pla
rti
_default_vsync_handler
lda #1
rts
_default_line_handler
lda #0
rts
_default_sprcol_handler
lda #0
rts
_default_aflow_handler
lda #0
rts
}}
}
asmsub set_vsync_irq_handler(uword address @AY) clobbers(A) {
; Sets the VSYNC irq handler to use with enable_irq_handlers(). Also enables VSYNC irqs.
; NOTE: unless a proper irq handler is already running, you should enclose this call in set_irqd() / clear_irqd() to avoid system crashes.
%asm {{
php
sei
sta enable_irq_handlers._mod_vsync_jump+1
sty enable_irq_handlers._mod_vsync_jump+2
lda #1
tsb cx16.VERA_IEN
plp
rts
}}
}
asmsub set_line_irq_handler(uword rasterline @R0, uword address @AY) clobbers(A,Y) {
; Sets the LINE irq handler to use with enable_irq_handlers(), for the given rasterline. Also enables LINE irqs.
; You can use sys.set_rasterline() later to adjust the rasterline on which to trigger.
; NOTE: unless a proper irq handler is already running, you should enclose this call in set_irqd() / clear_irqd() to avoid system crashes.
%asm {{
php
sei
sta enable_irq_handlers._mod_line_jump+1
sty enable_irq_handlers._mod_line_jump+2
lda cx16.r0
ldy cx16.r0+1
jsr sys.set_rasterline
lda #2
tsb cx16.VERA_IEN
plp
rts
}}
}
asmsub set_sprcol_irq_handler(uword address @AY) clobbers(A) {
; Sets the SPRCOL irq handler to use with enable_irq_handlers(). Also enables SPRCOL irqs.
; NOTE: unless a proper irq handler is already running, you should enclose this call in set_irqd() / clear_irqd() to avoid system crashes.
%asm {{
php
sei
sta enable_irq_handlers._mod_sprcol_jump+1
sty enable_irq_handlers._mod_sprcol_jump+2
lda #4
tsb cx16.VERA_IEN
plp
rts
}}
}
asmsub set_aflow_irq_handler(uword address @AY) clobbers(A) {
; Sets the AFLOW irq handler to use with enable_irq_handlers(). Also enables AFLOW irqs.
; NOTE: unless a proper irq handler is already running, you should enclose this call in set_irqd() / clear_irqd() to avoid system crashes.
%asm {{
php
sei
sta enable_irq_handlers._mod_aflow_jump+1
sty enable_irq_handlers._mod_aflow_jump+2
lda #8
tsb cx16.VERA_IEN
plp
rts
}}
}
inline asmsub disable_irq_handlers() {
; back to the system default IRQ handler.
%asm {{
jsr sys.restore_irq
}}
}
sub search_x16edit() -> ubyte {
; -- Search the rom bank that contains x16edit. Returns bank number, or 255 if not found.
cx16.r0L = cx16.getrombank()
sys.set_irqd()
str @shared signature = petscii:"x16edit"
for cx16.r1L in 31 downto 0 {
cx16.rombank(cx16.r1L)
cx16.r2 = $fff0
%asm {{
ldy #0
- lda signature,y
cmp (cx16.r2),y
bne +
iny
cpy #7
bne -
sec
bcs ++
+ clc
+
}}
if_cs {
cx16.rombank(cx16.r0L)
sys.clear_irqd()
return cx16.r1L
}
}
sys.clear_irqd()
return 255
}
asmsub cpu_is_65816() -> bool @A {
; Returns true when you have a 65816 cpu, false when it's a 6502.
%asm {{
php
clv
.byte $e2, $ea ; SEP #$ea, should be interpreted as 2 NOPs by 6502. 65c816 will set the Overflow flag.
bvc +
lda #1
plp
rts
+ lda #0
plp
rts
}}
}
sub set_program_args(uword args_ptr, ubyte args_size) {
; Set the inter-program arguments.
; standardized way to pass arguments between programs is in ram bank 0, address $bf00-$bfff.
; see https://github.com/X16Community/x16-docs/blob/master/X16%20Reference%20-%2007%20-%20Memory%20Map.md#bank-0
sys.push(getrambank())
rambank(0)
sys.memcopy(args_ptr, $bf00, args_size)
if args_size<255
@($bf00+args_size) = 0
rambank(sys.pop())
}
asmsub get_program_args(uword buffer @R0, ubyte buf_size @R1, bool binary @Pc) {
; Retrieve the inter-program arguments. If binary=false, it treats them as a string (stops copying at first zero).
; standardized way to pass arguments between programs is in ram bank 0, address $bf00-$bfff.
; see https://github.com/X16Community/x16-docs/blob/master/X16%20Reference%20-%2007%20-%20Memory%20Map.md#bank-0
%asm {{
lda #0
rol a
sta P8ZP_SCRATCH_REG
lda $00
pha
stz $00
stz P8ZP_SCRATCH_W1
lda #$bf
sta P8ZP_SCRATCH_W1+1
ldy #0
- lda (P8ZP_SCRATCH_W1),y
sta (cx16.r0),y
beq +
_continue iny
cpy cx16.r1L ; max size?
bne -
beq ++
+ lda P8ZP_SCRATCH_REG ; binary?
bne _continue
+ pla
sta $00
}}
}
sub reset_system() {
; Soft-reset the system back to initial power-on Basic prompt.
sys.reset_system()
}
sub poweroff_system() {
; use the SMC to shutdown the computer
void cx16.i2c_write_byte($42, $01, $00)
}
sub set_led_brightness(ubyte brightness) {
void cx16.i2c_write_byte($42, $05, brightness)
}
}
sys {
; ------- lowlevel system routines --------
const ubyte target = 16 ; compilation target specifier. 64 = C64, 128 = C128, 16 = CommanderX16.
asmsub init_system() {
; Initializes the machine to a sane starting state.
; Called automatically by the loader program logic.
%asm {{
sei
lda #0
tax
tay
jsr cx16.mouse_config ; disable mouse
cld
lda cx16.VERA_DC_VIDEO
and #%00000111 ; retain chroma + output mode
sta P8ZP_SCRATCH_REG
lda #$0a
sta $01 ; rom bank 10 (audio)
jsr cx16.audio_init ; silence
stz $01 ; rom bank 0 (kernal)
jsr cbm.IOINIT
jsr cbm.RESTOR
jsr cbm.CINT
lda cx16.VERA_DC_VIDEO
and #%11111000
ora P8ZP_SCRATCH_REG
sta cx16.VERA_DC_VIDEO ; restore old output mode
lda #$90 ; black
jsr cbm.CHROUT
lda #1
jsr cbm.CHROUT ; swap fg/bg
lda #$9e ; yellow
jsr cbm.CHROUT
lda #147 ; clear screen
jsr cbm.CHROUT
lda #8 ; disable charset case switch
jsr cbm.CHROUT
lda #PROG8_VARSHIGH_RAMBANK
sta $00 ; select ram bank
lda #0
tax
tay
clc
clv
cli
rts
}}
}
asmsub init_system_phase2() {
%asm {{
sei
lda cx16.CINV
sta restore_irq._orig_irqvec
lda cx16.CINV+1
sta restore_irq._orig_irqvec+1
lda #PROG8_VARSHIGH_RAMBANK
sta $00 ; select ram bank
cli
rts
}}
}
asmsub cleanup_at_exit() {
; executed when the main subroutine does rts
%asm {{
lda #1
sta $00 ; ram bank 1
lda #4
sta $01 ; rom bank 4 (basic)
stz $2d ; hack to reset machine code monitor bank to 0
jsr cbm.CLRCHN ; reset i/o channels
_exitcodeCarry = *+1
lda #0
lsr a
_exitcode = *+1
lda #0 ; exit code possibly modified in exit()
_exitcodeX = *+1
ldx #0
_exitcodeY = *+1
ldy #0
rts
}}
}
asmsub set_irq(uword handler @AY) clobbers(A) {
; Sets the handler for the VSYNC interrupt, and enable that interrupt.
%asm {{
sei
sta _modified+1
sty _modified+2
lda #<_irq_handler
sta cx16.CINV
lda #>_irq_handler
sta cx16.CINV+1
lda #1
tsb cx16.VERA_IEN ; enable the vsync irq
cli
rts
_irq_handler
jsr sys.save_prog8_internals
cld
_modified
jsr $ffff ; modified
pha
jsr sys.restore_prog8_internals
pla
beq +
jmp (restore_irq._orig_irqvec) ; continue with normal kernal irq routine
+ lda #1
sta cx16.VERA_ISR ; clear Vera Vsync irq status
ply
plx
pla
rti
}}
}
asmsub restore_irq() clobbers(A) {
%asm {{
sei
lda _orig_irqvec
sta cx16.CINV
lda _orig_irqvec+1
sta cx16.CINV+1
lda cx16.VERA_IEN
and #%11110000 ; disable all Vera IRQs but the vsync
ora #%00000001
sta cx16.VERA_IEN
cli
rts
_orig_irqvec .word 0
}}
}
asmsub set_rasterirq(uword handler @AY, uword rasterpos @R0) clobbers(A) {
; Sets the handler for the LINE interrupt, and enable (only) that interrupt.
%asm {{
sei
sta _modified+1
sty _modified+2
lda cx16.r0
ldy cx16.r0+1
lda cx16.VERA_IEN
and #%11110000 ; disable all irqs but the line(raster) one
ora #%00000010
sta cx16.VERA_IEN
lda cx16.r0
ldy cx16.r0+1
jsr set_rasterline
lda #<_raster_irq_handler
sta cx16.CINV
lda #>_raster_irq_handler
sta cx16.CINV+1
cli
rts
_raster_irq_handler
jsr sys.save_prog8_internals
cld
_modified jsr $ffff ; modified
jsr sys.restore_prog8_internals
; end irq processing - don't use kernal's irq handling
lda #2
tsb cx16.VERA_ISR ; clear Vera line irq status
ply
plx
pla
rti
}}
}
asmsub set_rasterline(uword line @AY) {
%asm {{
php
sei
sta cx16.VERA_IRQLINE_L
tya
lsr a
bcs +
lda #%10000000
trb cx16.VERA_IEN
plp
rts
+ lda #%10000000
tsb cx16.VERA_IEN
plp
rts
}}
}
asmsub reset_system() {
; Soft-reset the system back to initial power-on Basic prompt.
; We do this via the SMC so that a true reset is performed that also resets the Vera fully.
; (note: this is an asmsub on purpose! don't change into a normal sub)
%asm {{
sei
ldx #$42
ldy #2
lda #0
jmp cx16.i2c_write_byte
}}
}
sub poweroff_system() {
; use the SMC to shutdown the computer
void cx16.i2c_write_byte($42, $01, $00)
}
sub set_leds_brightness(ubyte activity, ubyte power) {
void cx16.i2c_write_byte($42, $04, power)
void cx16.i2c_write_byte($42, $05, activity)
}
asmsub wait(uword jiffies @AY) clobbers(X) {
; --- wait approximately the given number of jiffies (1/60th seconds) (N or N+1)
; note: the system irq handler has to be active for this to work as it depends on the system jiffy clock
; note: this routine cannot be used from inside a irq handler
%asm {{
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
_loop lda P8ZP_SCRATCH_W1
ora P8ZP_SCRATCH_W1+1
bne +
rts
+ sei
jsr cbm.RDTIM
cli
sta P8ZP_SCRATCH_B1
- sei
jsr cbm.RDTIM
cli
cmp P8ZP_SCRATCH_B1
beq -
lda P8ZP_SCRATCH_W1
bne +
dec P8ZP_SCRATCH_W1+1
+ dec P8ZP_SCRATCH_W1
bra _loop
}}
}
inline asmsub waitvsync() {
; --- suspend execution until the next vsync has occurred, without depending on custom irq handling.
; note: system vsync irq handler has to be active for this routine to work (and no other irqs-- which is the default).
; note: a more accurate way to wait for vsync is to set up a vsync irq handler instead.
%asm {{
wai
}}
}
asmsub internal_stringcopy(uword source @R0, uword target @AY) clobbers (A,Y) {
; Called when the compiler wants to assign a string value to another string.
%asm {{
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
lda cx16.r0
ldy cx16.r0+1
jmp prog8_lib.strcpy
}}
}
asmsub memcopy(uword source @R0, uword target @R1, uword count @AY) clobbers(A,X,Y) {
; note: only works for NON-OVERLAPPING memory regions!
; If you have to copy overlapping memory regions, consider using
; the cx16 specific kernal routine `memory_copy` (make sure kernal rom is banked in).
; note: can't be inlined because is called from asm as well.
; also: doesn't use cx16 ROM routine so this always works even when ROM is not banked in.
%asm {{
cpy #0
bne _longcopy
; copy <= 255 bytes
tay
bne _copyshort
rts ; nothing to copy
_copyshort
dey
beq +
- lda (cx16.r0),y
sta (cx16.r1),y
dey
bne -
+ lda (cx16.r0),y
sta (cx16.r1),y
rts
_longcopy
pha ; lsb(count) = remainder in last page
tya
tax ; x = num pages (1+)
ldy #0
- lda (cx16.r0),y
sta (cx16.r1),y
iny
bne -
inc cx16.r0+1
inc cx16.r1+1
dex
bne -
ply
bne _copyshort
rts
}}
}
asmsub memset(uword mem @R0, uword numbytes @R1, ubyte value @A) clobbers(A,X,Y) {
%asm {{
ldy cx16.r0
sty P8ZP_SCRATCH_W1
ldy cx16.r0+1
sty P8ZP_SCRATCH_W1+1
ldx cx16.r1
ldy cx16.r1+1
jmp prog8_lib.memset
}}
}
asmsub memsetw(uword mem @R0, uword numwords @R1, uword value @AY) clobbers (A,X,Y) {
%asm {{
ldx cx16.r0
stx P8ZP_SCRATCH_W1
ldx cx16.r0+1
stx P8ZP_SCRATCH_W1+1
ldx cx16.r1
stx P8ZP_SCRATCH_W2
ldx cx16.r1+1
stx P8ZP_SCRATCH_W2+1
jmp prog8_lib.memsetw
}}
}
inline asmsub read_flags() -> ubyte @A {
%asm {{
php
pla
}}
}
inline asmsub clear_carry() {
%asm {{
clc
}}
}
inline asmsub set_carry() {
%asm {{
sec
}}
}
inline asmsub clear_irqd() {
%asm {{
cli
}}
}
inline asmsub set_irqd() {
%asm {{
sei
}}
}
inline asmsub irqsafe_set_irqd() {
%asm {{
php
sei
}}
}
inline asmsub irqsafe_clear_irqd() {
%asm {{
plp
}}
}
inline asmsub disable_caseswitch() {
%asm {{
lda #8
jsr cbm.CHROUT
}}
}
inline asmsub enable_caseswitch() {
%asm {{
lda #9
jsr cbm.CHROUT
}}
}
asmsub save_prog8_internals() {
%asm {{
lda P8ZP_SCRATCH_B1
sta save_SCRATCH_ZPB1
lda P8ZP_SCRATCH_REG
sta save_SCRATCH_ZPREG
lda P8ZP_SCRATCH_W1
sta save_SCRATCH_ZPWORD1
lda P8ZP_SCRATCH_W1+1
sta save_SCRATCH_ZPWORD1+1
lda P8ZP_SCRATCH_W2
sta save_SCRATCH_ZPWORD2
lda P8ZP_SCRATCH_W2+1
sta save_SCRATCH_ZPWORD2+1
rts
save_SCRATCH_ZPB1 .byte 0
save_SCRATCH_ZPREG .byte 0
save_SCRATCH_ZPWORD1 .word 0
save_SCRATCH_ZPWORD2 .word 0
}}
}
asmsub restore_prog8_internals() {
%asm {{
lda save_prog8_internals.save_SCRATCH_ZPB1
sta P8ZP_SCRATCH_B1
lda save_prog8_internals.save_SCRATCH_ZPREG
sta P8ZP_SCRATCH_REG
lda save_prog8_internals.save_SCRATCH_ZPWORD1
sta P8ZP_SCRATCH_W1
lda save_prog8_internals.save_SCRATCH_ZPWORD1+1
sta P8ZP_SCRATCH_W1+1
lda save_prog8_internals.save_SCRATCH_ZPWORD2
sta P8ZP_SCRATCH_W2
lda save_prog8_internals.save_SCRATCH_ZPWORD2+1
sta P8ZP_SCRATCH_W2+1
rts
}}
}
asmsub exit(ubyte returnvalue @A) {
; -- immediately exit the program with a return code in the A register
%asm {{
sta cleanup_at_exit._exitcode
ldx prog8_lib.orig_stackpointer
txs
jmp cleanup_at_exit
}}
}
asmsub exit2(ubyte resulta @A, ubyte resultx @X, ubyte resulty @Y) {
; -- immediately exit the program with result values in the A, X and Y registers.
%asm {{
sta cleanup_at_exit._exitcode
stx cleanup_at_exit._exitcodeX
sty cleanup_at_exit._exitcodeY
ldx prog8_lib.orig_stackpointer
txs
jmp cleanup_at_exit
}}
}
asmsub exit3(ubyte resulta @A, ubyte resultx @X, ubyte resulty @Y, bool carry @Pc) {
; -- immediately exit the program with result values in the A, X and Y registers, and the Carry flag in the status register.
%asm {{
sta cleanup_at_exit._exitcode
lda #0
rol a
sta cleanup_at_exit._exitcodeCarry
stx cleanup_at_exit._exitcodeX
sty cleanup_at_exit._exitcodeY
ldx prog8_lib.orig_stackpointer
txs
jmp cleanup_at_exit
}}
}
inline asmsub progend() -> uword @AY {
%asm {{
lda #<prog8_program_end
ldy #>prog8_program_end
}}
}
inline asmsub push(ubyte value @A) {
%asm {{
pha
}}
}
inline asmsub pushw(uword value @AY) {
%asm {{
pha
phy
}}
}
inline asmsub pop() -> ubyte @A {
%asm {{
pla
}}
}
inline asmsub popw() -> uword @AY {
%asm {{
ply
pla
}}
}
}