prog8/compiler/res/prog8lib/cx16/gfx_lores.p8

902 lines
27 KiB
Lua

; optimized graphics routines for just the single screen mode: lores 320*240, 256c (8bpp)
; bitmap image needs to start at VRAM addres $00000.
; This is compatible with the CX16's screen mode 128. (void cx16.set_screen_mode(128))
%import syslib
%import verafx
gfx_lores {
%option ignore_unused
const uword WIDTH = 320
const ubyte HEIGHT = 240
sub graphics_mode() {
; enable 320x240 256c bitmap graphics mode
cx16.VERA_CTRL=0
cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11001111) | %00100000 ; enable only layer 1
cx16.VERA_DC_HSCALE = 64
cx16.VERA_DC_VSCALE = 64
cx16.VERA_L1_CONFIG = %00000111
cx16.VERA_L1_MAPBASE = 0
cx16.VERA_L1_TILEBASE = 0
clear_screen(0)
drawmode_eor(false)
}
sub text_mode() {
; back to normal text mode
cx16.r15L = cx16.VERA_DC_VIDEO & %00000111 ; retain chroma + output mode
cbm.CINT()
cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11111000) | cx16.r15L
}
sub drawmode_eor(bool enabled) {
; with EOR drawing mode you can have non destructive drawing (2*EOR=restore original)
eor_mode = enabled
}
bool eor_mode
sub clear_screen(ubyte color) {
if verafx.available() {
; use verafx cache writes to quicly clear the screen
const ubyte vbank = 0
const uword vaddr = 0
cx16.VERA_CTRL = 0
cx16.VERA_ADDR_H = vbank | %00110000 ; 4-byte increment
cx16.VERA_ADDR_M = msb(vaddr)
cx16.VERA_ADDR_L = lsb(vaddr)
cx16.VERA_CTRL = 6<<1 ; dcsel = 6, fill the 32 bits cache
cx16.VERA_FX_CACHE_L = color
cx16.VERA_FX_CACHE_M = color
cx16.VERA_FX_CACHE_H = color
cx16.VERA_FX_CACHE_U = color
cx16.VERA_CTRL = 2<<1 ; dcsel = 2
cx16.VERA_FX_MULT = 0
cx16.VERA_FX_CTRL = %01000000 ; cache write enable
repeat 320/4/4 {
%asm {{
ldy #240
- stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
dey
bne -
}}
}
cx16.VERA_FX_CTRL = 0 ; cache write disable
cx16.VERA_CTRL = 0
return
}
; fallback to cpu clear
cx16.VERA_CTRL=0
cx16.VERA_ADDR=0
cx16.VERA_ADDR_H = 1<<4 ; 1 pixel auto increment
repeat HEIGHT {
%asm {{
lda p8v_color
ldy #p8c_WIDTH/8
- .rept 8
sta cx16.VERA_DATA0
.endrept
dey
bne -
}}
}
cx16.VERA_ADDR=0
cx16.VERA_ADDR_H = 0
}
sub rect(uword xx, ubyte yy, uword rwidth, ubyte rheight, ubyte color) {
if rwidth==0 or rheight==0
return
horizontal_line(xx, yy, rwidth, color)
if rheight==1
return
horizontal_line(xx, yy+rheight-1, rwidth, color)
vertical_line(xx, yy+1, rheight-2, color)
if rwidth==1
return
vertical_line(xx+rwidth-1, yy+1, rheight-2, color)
}
sub safe_rect(uword xx, ubyte yy, uword rwidth, ubyte rheight, ubyte color) {
; does bounds checking and clipping
safe_horizontal_line(xx, yy, rwidth, color)
if rheight==1
return
uword bottomyy = yy as uword + rheight -1
if bottomyy<HEIGHT
safe_horizontal_line(xx, lsb(bottomyy), rwidth, color)
safe_vertical_line(xx, yy+1, rheight-2, color)
if rwidth==1
return
safe_vertical_line(xx+rwidth-1, yy+1, rheight-2, color)
}
sub fillrect(uword xx, ubyte yy, uword rwidth, ubyte rheight, ubyte color) {
; Draw a filled rectangle of the given size and color.
; To fill the whole screen, use clear_screen(color) instead - it is much faster.
if rwidth==0
return
repeat rheight {
horizontal_line(xx, yy, rwidth, color)
yy++
}
}
sub safe_fillrect(uword xx, ubyte yy, uword rwidth, ubyte rheight, ubyte color) {
; Draw a filled rectangle of the given size and color.
; To fill the whole screen, use clear_screen(color) instead - it is much faster.
; This safe version does bounds checking and clipping.
if xx>=WIDTH or yy>=HEIGHT
return
if msb(xx)&$80!=0 {
rwidth += xx
xx = 0
}
if xx>=WIDTH
return
if xx+rwidth>WIDTH
rwidth = WIDTH-xx
if rwidth>WIDTH
return
if yy as uword + rheight > HEIGHT
rheight = HEIGHT-yy
if rheight>HEIGHT
return
repeat rheight {
horizontal_line(xx, yy, rwidth, color)
yy++
}
}
sub horizontal_line(uword xx, ubyte yy, uword length, ubyte color) {
if length==0
return
position(xx, yy)
; set vera auto-increment to 1 pixel
cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & %00000111 | (1<<4)
if eor_mode {
cx16.vaddr_clone(0) ; also setup port 1, for reading
%asm {{
ldx p8v_length+1
beq +
ldy #0
- lda p8v_color
eor cx16.VERA_DATA1
sta cx16.VERA_DATA0
iny
bne -
dex
bne -
+ ldy p8v_length ; remaining
beq +
- lda p8v_color
eor cx16.VERA_DATA1
sta cx16.VERA_DATA0
dey
bne -
+
}}
} else {
%asm {{
lda p8v_color
ldx p8v_length+1
beq +
ldy #0
- sta cx16.VERA_DATA0
iny
bne -
dex
bne -
+ ldy p8v_length ; remaining
beq +
- sta cx16.VERA_DATA0
dey
bne -
+
}}
}
}
sub safe_horizontal_line(uword xx, ubyte yy, uword length, ubyte color) {
; does bounds checking and clipping
if yy>=HEIGHT
return
if msb(xx)&$80!=0 {
length += xx
xx = 0
}
if xx>=WIDTH
return
if xx+length>WIDTH
length = WIDTH-xx
if length>WIDTH
return
horizontal_line(xx, yy, length, color)
}
sub vertical_line(uword xx, ubyte yy, ubyte lheight, ubyte color) {
if lheight==0
return
position(xx, yy)
; set vera auto-increment to 320 pixel increment (=next line)
cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & %00000111 | (14<<4)
if eor_mode {
cx16.vaddr_clone(0) ; also setup port 1, for reading
%asm {{
ldy p8v_lheight
beq +
- lda p8v_color
eor cx16.VERA_DATA1
sta cx16.VERA_DATA0
dey
bne -
+
}}
} else {
%asm {{
ldy p8v_lheight
lda p8v_color
- sta cx16.VERA_DATA0
dey
bne -
}}
}
}
sub safe_vertical_line(uword xx, ubyte yy, ubyte lheight, ubyte color) {
; does bounds checking and clipping
if yy>=HEIGHT
return
if msb(xx)&$80!=0 or xx>=WIDTH
return
if yy as uword + lheight > HEIGHT
lheight = HEIGHT-yy
if lheight>HEIGHT
return
vertical_line(xx, yy, lheight, color)
}
sub line(uword x1, ubyte y1, uword x2, ubyte y2, ubyte color) {
; Bresenham algorithm.
; This code special-cases various quadrant loops to allow simple ++ and -- operations.
; NOTE: this is about twice as fast as the kernal routine GRAPH_draw_line, and ~3-4 times as fast as gfx2.line()
; it trades memory for speed (uses inline plot routine and multiplication lookup tables)
;
; NOTE: is currently still a regular 6502 routine, could likely be made much faster with the VeraFX line helper.
cx16.r3L = y2 ; ensure zeropage
cx16.r1L = y1 ; ensure zeropage
if cx16.r1L > cx16.r3L {
; make sure dy is always positive to have only 4 instead of 8 special cases
cx16.r0 = x1
x1 = x2
x2 = cx16.r0
cx16.r0L = cx16.r1L
cx16.r1L = cx16.r3L
cx16.r3L = cx16.r0L
}
word @zp dx = x2 as word
word @zp dy = cx16.r3L
dx -= x1
dy -= cx16.r1L
if dx==0 {
vertical_line(x1, cx16.r1L, lsb(dy)+1, color)
return
}
if dy==0 {
if x1>x2
x1=x2
horizontal_line(x1, cx16.r1L, abs(dx) as uword +1, color)
return
}
word @zp d = 0
bool positive_ix = true
if dx < 0 {
dx = -dx
positive_ix = false
}
word @zp dx2 = dx*2
word @zp dy2 = dy*2
cx16.r0 = x1 ; ensure zeropage
cx16.r2 = x2 ; ensure zeropage
cx16.VERA_CTRL = 0
if dx >= dy {
if positive_ix {
repeat {
plot()
if cx16.r0==cx16.r2
return
cx16.r0++
d += dy2
if d > dx {
cx16.r1L++
d -= dx2
}
}
} else {
repeat {
plot()
if cx16.r0==cx16.r2
return
cx16.r0--
d += dy2
if d > dx {
cx16.r1L++
d -= dx2
}
}
}
}
else {
if positive_ix {
repeat {
plot()
if cx16.r1L == cx16.r3L
return
cx16.r1L++
d += dx2
if d > dy {
cx16.r0++
d -= dy2
}
}
} else {
repeat {
plot()
if cx16.r1L == cx16.r3L
return
cx16.r1L++
d += dx2
if d > dy {
cx16.r0--
d -= dy2
}
}
}
}
asmsub plot() {
; internal plot routine for the line algorithm: x in r0, y in r1, color in variable.
%asm {{
ldy cx16.r1L
clc
lda times320_lo,y
adc cx16.r0L
sta cx16.VERA_ADDR_L
lda times320_mid,y
adc cx16.r0H
sta cx16.VERA_ADDR_M
lda #0
adc times320_hi,y
sta cx16.VERA_ADDR_H
lda p8v_eor_mode
bne +
lda p8v_color
sta cx16.VERA_DATA0
rts
+ lda p8v_color
eor cx16.VERA_DATA0
sta cx16.VERA_DATA0
rts
}}
}
}
sub circle(uword @zp xcenter, ubyte @zp ycenter, ubyte radius, ubyte color) {
; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen.
; Midpoint algorithm.
if radius==0
return
ubyte @zp xx = radius
ubyte @zp yy = 0
word @zp decisionOver2 = (1 as word)-xx
; R14 = internal plot X
; R15 = internal plot Y
while xx>=yy {
cx16.r14 = xcenter + xx
cx16.r15 = ycenter + yy
plotq()
cx16.r14 = xcenter - xx
plotq()
cx16.r14 = xcenter + xx
cx16.r15 = ycenter - yy
plotq()
cx16.r14 = xcenter - xx
plotq()
cx16.r14 = xcenter + yy
cx16.r15 = ycenter + xx
plotq()
cx16.r14 = xcenter - yy
plotq()
cx16.r14 = xcenter + yy
cx16.r15 = ycenter - xx
plotq()
cx16.r14 = xcenter - yy
plotq()
yy++
if decisionOver2>=0 {
xx--
decisionOver2 -= xx*$0002
}
decisionOver2 += yy*$0002
decisionOver2++
}
sub plotq() {
; cx16.r14 = x, cx16.r15 = y, color=color.
plot(cx16.r14, cx16.r15L, color)
}
}
sub safe_circle(uword @zp xcenter, uword @zp ycenter, ubyte radius, ubyte color) {
; This version does bounds checks and clipping, but is a lot slower.
; Midpoint algorithm.
if radius==0
return
ubyte @zp xx = radius
ubyte @zp yy = 0
word @zp decisionOver2 = (1 as word)-xx
; R14 = internal plot X
; R15 = internal plot Y
while xx>=yy {
cx16.r14 = xcenter + xx
cx16.r15 = ycenter + yy
plotq()
cx16.r14 = xcenter - xx
plotq()
cx16.r14 = xcenter + xx
cx16.r15 = ycenter - yy
plotq()
cx16.r14 = xcenter - xx
plotq()
cx16.r14 = xcenter + yy
cx16.r15 = ycenter + xx
plotq()
cx16.r14 = xcenter - yy
plotq()
cx16.r14 = xcenter + yy
cx16.r15 = ycenter - xx
plotq()
cx16.r14 = xcenter - yy
plotq()
yy++
if decisionOver2>=0 {
xx--
decisionOver2 -= xx*$0002
}
decisionOver2 += yy*$0002
decisionOver2++
}
sub plotq() {
; cx16.r14 = x, cx16.r15 = y, color=color.
if cx16.r15 < HEIGHT
safe_plot(cx16.r14, cx16.r15L, color)
}
}
sub disc(uword @zp xcenter, ubyte @zp ycenter, ubyte @zp radius, ubyte color) {
; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen.
; Midpoint algorithm, filled
if radius==0
return
ubyte @zp yy = 0
word @zp decisionOver2 = (1 as word)-radius
ubyte last_y3 = ycenter+radius
ubyte last_y4 = ycenter-radius
ubyte new_y3, new_y4
while radius>=yy {
horizontal_line(xcenter-radius, ycenter+yy, radius*$0002+1, color)
horizontal_line(xcenter-radius, ycenter-yy, radius*$0002+1, color)
new_y3 = ycenter+radius
if new_y3 != last_y3 {
horizontal_line(xcenter-yy, last_y3, yy*$0002+1, color)
last_y3 = new_y3
}
new_y4 = ycenter-radius
if new_y4 != last_y4 {
horizontal_line(xcenter-yy, last_y4, yy*$0002+1, color)
last_y4 = new_y4
}
yy++
if decisionOver2>=0 {
radius--
decisionOver2 -= radius*$0002
}
decisionOver2 += yy*$0002
decisionOver2++
}
; draw the final two spans
yy--
horizontal_line(xcenter-yy, last_y3, yy*$0002+1, color)
horizontal_line(xcenter-yy, last_y4, yy*$0002+1, color)
}
sub safe_disc(uword @zp xcenter, uword @zp ycenter, ubyte @zp radius, ubyte color) {
; This version does bounds checks and clipping, but is a lot slower.
; Midpoint algorithm, filled
if radius==0
return
ubyte @zp yy = 0
word @zp decisionOver2 = (1 as word)-radius
uword last_y3 = ycenter+radius
uword last_y4 = ycenter-radius
uword new_y3, new_y4
while radius>=yy {
uword liney = ycenter+yy
if msb(liney)==0
safe_horizontal_line(xcenter-radius, lsb(ycenter+yy), radius*$0002+1, color)
liney = ycenter-yy
if msb(liney)==0
safe_horizontal_line(xcenter-radius, lsb(ycenter-yy), radius*$0002+1, color)
new_y3 = ycenter+radius
if new_y3 != last_y3 {
if msb(last_y3)==0
safe_horizontal_line(xcenter-yy, lsb(last_y3), yy*$0002+1, color)
last_y3 = new_y3
}
new_y4 = ycenter-radius
if new_y4 != last_y4 {
if msb(last_y4)==0
safe_horizontal_line(xcenter-yy, lsb(last_y4), yy*$0002+1, color)
last_y4 = new_y4
}
yy++
if decisionOver2>=0 {
radius--
decisionOver2 -= radius*$0002
}
decisionOver2 += yy*$0002
decisionOver2++
}
; draw the final two spans
yy--
if msb(last_y3)==0
safe_horizontal_line(xcenter-yy, lsb(last_y3), yy*$0002+1, color)
if msb(last_y4)==0
safe_horizontal_line(xcenter-yy, lsb(last_y4), yy*$0002+1, color)
}
asmsub plot(uword x @AX, ubyte y @Y, ubyte color @R0) {
; x in r0, y in r1, color.
%asm {{
clc
adc times320_lo,y
sta cx16.VERA_ADDR_L
txa
adc times320_mid,y
sta cx16.VERA_ADDR_M
lda #0
adc times320_hi,y
sta cx16.VERA_ADDR_H
lda p8v_eor_mode
bne +
lda cx16.r0L
sta cx16.VERA_DATA0
rts
+ lda cx16.r0L
eor cx16.VERA_DATA0
sta cx16.VERA_DATA0
rts
}}
}
sub safe_plot(uword xx, ubyte yy, ubyte color) {
; A plot that does bounds checks to see if the pixel is inside the screen.
if msb(xx)&$80!=0
return
if xx >= WIDTH or yy >= HEIGHT
return
plot(xx, yy, color)
}
asmsub pget(uword x @AX, ubyte y @Y) -> ubyte @A {
; returns the color of the pixel
%asm {{
jsr p8s_position
lda cx16.VERA_DATA0
rts
}}
}
sub fill(uword x, ubyte y, ubyte new_color) {
; reuse a few virtual registers in ZP for variables
&ubyte fillm = &cx16.r7L
&ubyte seedm = &cx16.r8L
&ubyte cmask = &cx16.r8H
&ubyte vub = &cx16.r13L
&ubyte nvub = &cx16.r13H
ubyte[4] amask = [$c0,$30,$0c,$03] ; array of cmask bytes
; Non-recursive scanline flood fill.
; based loosely on code found here https://www.codeproject.com/Articles/6017/QuickFill-An-efficient-flood-fill-algorithm
; with the fixes applied to the seedfill_4 routine as mentioned in the comments.
const ubyte MAXDEPTH = 100
word @zp xx = x as word
word @zp yy = y as word
word[MAXDEPTH] @split @shared stack_xl
word[MAXDEPTH] @split @shared stack_xr
word[MAXDEPTH] @split @shared stack_y
byte[MAXDEPTH] @shared stack_dy
cx16.r12L = 0 ; stack pointer
word x1
word x2
byte dy
cx16.r10L = new_color
sub push_stack(word sxl, word sxr, word sy, byte sdy) {
if cx16.r12L==MAXDEPTH
return
cx16.r0s = sy+sdy
if cx16.r0s>=0 and cx16.r0s<=HEIGHT-1 {
;; stack_xl[cx16.r12L] = sxl
;; stack_xr[cx16.r12L] = sxr
;; stack_y[cx16.r12L] = sy
;; stack_dy[cx16.r12L] = sdy
;; cx16.r12L++
%asm {{
ldy cx16.r12L
lda p8v_sxl
sta p8v_stack_xl_lsb,y
lda p8v_sxl+1
sta p8v_stack_xl_msb,y
lda p8v_sxr
sta p8v_stack_xr_lsb,y
lda p8v_sxr+1
sta p8v_stack_xr_msb,y
lda p8v_sy
sta p8v_stack_y_lsb,y
lda p8v_sy+1
sta p8v_stack_y_msb,y
ldy cx16.r12L
lda p8v_sdy
sta p8v_stack_dy,y
inc cx16.r12L
}}
}
}
sub pop_stack() {
;; cx16.r12L--
;; x1 = stack_xl[cx16.r12L]
;; x2 = stack_xr[cx16.r12L]
;; y = stack_y[cx16.r12L]
;; dy = stack_dy[cx16.r12L]
%asm {{
dec cx16.r12L
ldy cx16.r12L
lda p8v_stack_xl_lsb,y
sta p8v_x1
lda p8v_stack_xl_msb,y
sta p8v_x1+1
lda p8v_stack_xr_lsb,y
sta p8v_x2
lda p8v_stack_xr_msb,y
sta p8v_x2+1
lda p8v_stack_y_lsb,y
sta p8v_yy
lda p8v_stack_y_msb,y
sta p8v_yy+1
ldy cx16.r12L
lda p8v_stack_dy,y
sta p8v_dy
}}
yy+=dy
}
cx16.r11L = pget(xx as uword, lsb(yy)) ; old_color
if cx16.r11L == cx16.r10L
return
if xx<0 or xx>WIDTH-1 or yy<0 or yy>HEIGHT-1
return
push_stack(xx, xx, yy, 1)
push_stack(xx, xx, yy + 1, -1)
word left = 0
while cx16.r12L!=0 {
pop_stack()
xx = x1
if fill_scanline_left_8bpp() goto skip
left = xx + 1
if left < x1
push_stack(left, x1 - 1, yy, -dy)
xx = x1 + 1
do {
fill_scanline_right_8bpp()
push_stack(left, xx - 1, yy, dy)
if xx > x2 + 1
push_stack(x2 + 1, xx - 1, yy, -dy)
skip:
xx++
while xx <= x2 {
if pget(xx as uword, lsb(yy)) == cx16.r11L
break
xx++
}
left = xx
} until xx>x2
}
sub set_vera_address(bool decr) {
; set both data0 and data1 addresses
position(xx as uword, lsb(yy))
cx16.r0 = cx16.VERA_ADDR
cx16.r1L = cx16.VERA_ADDR_H & 1 | if decr %00011000 else %00010000
cx16.VERA_ADDR_H = cx16.r1L
cx16.VERA_CTRL = 1
cx16.VERA_ADDR = cx16.r0
cx16.VERA_ADDR_H = cx16.r1L
cx16.VERA_CTRL = 0
}
sub fill_scanline_left_8bpp() -> bool {
set_vera_address(true)
cx16.r9s = xx
while xx >= 0 {
if cx16.VERA_DATA0 != cx16.r11L
break
cx16.VERA_DATA1 = cx16.r10L
xx--
}
return xx==cx16.r9s
}
sub fill_scanline_right_8bpp() {
set_vera_address(false)
while xx <= WIDTH-1 {
if cx16.VERA_DATA0 != cx16.r11L
break
cx16.VERA_DATA1 = cx16.r10L
xx++
}
}
}
sub text_charset(ubyte charset) {
; -- select the text charset to use with the text() routine
; the charset number is the same as for the cx16.screen_set_charset() ROM function.
; 1 = ISO charset, 2 = PETSCII uppercase+graphs, 3= PETSCII uppercase+lowercase etc. etc.
cx16.screen_set_charset(charset, 0)
}
const ubyte charset_bank = $1
const uword charset_addr = $f000 ; in bank 1, so $1f000
sub text(uword @zp xx, uword yy, ubyte color, uword textptr) {
; -- Write some text at the given pixel position. The text string must be in an encoding approprite for the charset.
; You must also have called text_charset() first to select and prepare the character set to use.
uword chardataptr
ubyte[8] @shared char_bitmap_bytes_left
ubyte[8] @shared char_bitmap_bytes_right
while @(textptr)!=0 {
chardataptr = charset_addr + (@(textptr) as uword)*8
cx16.vaddr(charset_bank, chardataptr, 1, 1)
repeat 8 {
position(xx,lsb(yy))
yy++
%asm {{
ldx p8v_color
lda cx16.VERA_DATA1
sta P8ZP_SCRATCH_B1
ldy #8
- asl P8ZP_SCRATCH_B1
bcc +
stx cx16.VERA_DATA0 ; write a pixel
bra ++
+ lda cx16.VERA_DATA0 ; don't write a pixel, but do advance to the next address
+ dey
bne -
}}
}
xx+=8
yy-=8
textptr++
}
}
asmsub position(uword x @AX, ubyte y @Y) {
%asm {{
clc
adc times320_lo,y
sta cx16.VERA_ADDR_L
txa
adc times320_mid,y
sta cx16.VERA_ADDR_M
lda #%00010000 ; auto increment on
adc times320_hi,y
sta cx16.VERA_ADDR_H
rts
}}
}
inline asmsub next_pixel(ubyte color @A) {
; -- sets the next pixel byte to the graphics chip.
; for 8 bpp screens this will plot 1 pixel.
; for 2 bpp screens it will plot 4 pixels at once (color = bit pattern).
%asm {{
sta cx16.VERA_DATA0
}}
}
asmsub next_pixels(uword pixels @AY, uword amount @R0) clobbers(A, X, Y) {
; -- sets the next bunch of pixels from a prepared array of bytes.
; for 8 bpp screens this will plot 1 pixel per byte.
; for 2 bpp screens it will plot 4 pixels at once (colors are the bit patterns per byte).
%asm {{
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldx cx16.r0+1
beq +
ldy #0
- lda (P8ZP_SCRATCH_W1),y
sta cx16.VERA_DATA0
iny
bne -
inc P8ZP_SCRATCH_W1+1 ; next page of 256 pixels
dex
bne -
+ ldx cx16.r0 ; remaining pixels
beq +
ldy #0
- lda (P8ZP_SCRATCH_W1),y
sta cx16.VERA_DATA0
iny
dex
bne -
+ rts
}}
}
asmsub set_8_pixels_from_bits(ubyte bits @R0, ubyte oncolor @A, ubyte offcolor @Y) clobbers(X) {
; this is only useful in 256 color mode where one pixel equals one byte value.
%asm {{
ldx #8
- asl cx16.r0
bcc +
sta cx16.VERA_DATA0
bra ++
+ sty cx16.VERA_DATA0
+ dex
bne -
rts
}}
}
%asm {{
; multiplication by 320 lookup table
times320 := 320*range(240)
times320_lo .byte <times320
times320_mid .byte >times320
times320_hi .byte `times320
}}
}