prog8/examples/line-circle-txt.p8
2020-03-28 13:42:24 +01:00

166 lines
5.0 KiB
Lua

%import c64lib
%import c64utils
%zeropage basicsafe
main {
sub start() {
c64scr.print("mid-point\ncircle\n and\nbresenham\nline\nalgorithms.\n")
ubyte r
for r in 3 to 12 step 3 {
circle(20, 12, r)
}
c64scr.print("enter for disc:")
void c64.CHRIN()
c64.CHROUT('\n')
c64scr.clear_screen(' ', 1)
disc(20, 12, 12)
c64scr.print("enter for lines:")
void c64.CHRIN()
c64.CHROUT('\n')
c64scr.clear_screen(' ', 1)
line(1, 10, 38, 24)
line(1, 20, 38, 2)
line(20, 4, 10, 24)
line(39, 16, 12, 0)
c64scr.print("enter for rectangles:")
void c64.CHRIN()
c64.CHROUT('\n')
c64scr.clear_screen(' ', 1)
rect(4, 8, 37, 23, false)
rect(20, 12, 30, 20, true)
rect(10, 10, 10, 10, false)
rect(6, 0, 16, 20, true)
sub rect(ubyte x1, ubyte y1, ubyte x2, ubyte y2, ubyte fill) {
ubyte x
ubyte y
if fill {
for y in y1 to y2 {
for x in x1 to x2 {
c64scr.setcc(x, y, 42, x+y)
}
}
} else {
for x in x1 to x2 {
c64scr.setcc(x, y1, 42, 8)
c64scr.setcc(x, y2, 42, 8)
}
if y2>y1 {
for y in y1+1 to y2-1 {
c64scr.setcc(x1, y, 42, 7)
c64scr.setcc(x2, y, 42, 7)
}
}
}
}
sub line(ubyte x1, ubyte y1, ubyte x2, ubyte y2) {
; Bresenham algorithm, not very optimized to keep clear code.
; For a better optimized version have a look in the graphics.p8 module.
byte d = 0
ubyte dx = abs(x2 - x1)
ubyte dy = abs(y2 - y1)
ubyte dx2 = 2 * dx
ubyte dy2 = 2 * dy
byte ix = sgn(x2 as byte - x1 as byte)
byte iy = sgn(y2 as byte - y1 as byte)
ubyte x = x1
ubyte y = y1
if dx >= dy {
forever {
c64scr.setcc(x, y, 42, 5)
if x==x2
return
x += ix
d += dy2
if d > dx {
y += iy
d -= dx2
}
}
} else {
forever {
c64scr.setcc(x, y, 42, 5)
if y == y2
return
y += iy
d += dx2
if d > dy {
x += ix
d -= dy2
}
}
}
}
sub circle(ubyte xcenter, ubyte ycenter, ubyte radius) {
; Midpoint algorithm
ubyte x = radius
ubyte y = 0
byte decisionOver2 = 1-x
while x>=y {
c64scr.setcc(xcenter + x, ycenter + y as ubyte, 81, 1)
c64scr.setcc(xcenter - x, ycenter + y as ubyte, 81, 2)
c64scr.setcc(xcenter + x, ycenter - y as ubyte, 81, 3)
c64scr.setcc(xcenter - x, ycenter - y as ubyte, 81, 4)
c64scr.setcc(xcenter + y, ycenter + x as ubyte, 81, 5)
c64scr.setcc(xcenter - y, ycenter + x as ubyte, 81, 6)
c64scr.setcc(xcenter + y, ycenter - x as ubyte, 81, 7)
c64scr.setcc(xcenter - y, ycenter - x as ubyte, 81, 8)
y++
if decisionOver2<=0
decisionOver2 += 2*y+1
else {
x--
decisionOver2 += 2*(y-x)+1
}
}
}
sub disc(ubyte cx, ubyte cy, ubyte radius) {
; Midpoint algorithm, filled
ubyte x = radius
ubyte y = 0
byte decisionOver2 = 1-x
ubyte xx
while x>=y {
for xx in cx to cx+x {
c64scr.setcc(xx, cy + y as ubyte, 81, 1)
c64scr.setcc(xx, cy - y as ubyte, 81, 2)
}
for xx in cx-x to cx-1 {
c64scr.setcc(xx, cy + y as ubyte, 81, 3)
c64scr.setcc(xx, cy - y as ubyte, 81, 4)
}
for xx in cx to cx+y {
c64scr.setcc(xx, cy + x as ubyte, 81, 5)
c64scr.setcc(xx, cy - x as ubyte, 81, 6)
}
for xx in cx-y to cx {
c64scr.setcc(xx, cy + x as ubyte, 81, 7)
c64scr.setcc(xx, cy - x as ubyte, 81, 8)
}
y++
if decisionOver2<=0
decisionOver2 += 2*y+1
else {
x--
decisionOver2 += 2*(y-x)+1
}
}
}
}
}