flesh out page

This commit is contained in:
Joshua Bell 2018-10-27 22:42:31 -07:00
parent 899a1a4722
commit 45302cc3a0
2 changed files with 259 additions and 207 deletions

View File

@ -1,12 +1,59 @@
<!doctype html>
<title>Screen Capture Demo</title>
<title>vnIIc</title>
<link href="https://fonts.googleapis.com/css?family=Audiowide" rel="stylesheet">
<style>
video, canvas { border: 2px dotted black; }
h1, h2, h3 { font-family: Audiowide; }
h1 { font-size: 64px; margin: 0;}
#title { background-color: #d0d0d0; height: 128px; margin: 20px 0; padding: 10px; }
body { font-family: sans-serif; margin: 0 20px;}
</style>
<div id=title>
<h1>vn//c
<img style="float: left; margin-right: 24px;" src="res/icon128.png">
</h1>
<div>
Desktop streaming to an Apple II with Super Serial Card
</div>
</div>
<canvas id=quant width=140 height=192 style="width: 280px; height: 192px;"></canvas>
<br>
<div>
<button id=start>Start Capturing</button>
<button id=save>Save</button>
<button id=bootstrap>Bootstrap</button>
</div>
<script src="server.js"></script>
<h2>About vnIIc</h2>
<p>
The name "vnIIc" is a play on <a target=_blank
href="https://en.wikipedia.org/wiki/Virtual_Network_Computing">VNC
("Virtual Network Computing")</a> and the <a target=_blank
href="https://en.wikipedia.org/wiki/Apple_IIc">Apple IIc</a> for humor
purposes, but the application does not use the VNC or <a target=_blank
href="https://en.wikipedia.org/wiki/RFB_protocol">RFB</a> protocols.
Apple IIc is a trademark of Apple Computer, Inc. VNC and RFB are
registered trademarks of RealVNC Ltd.
</p>
<p>
The first version was a Windows application, written in 2008. See a <a
target=_blank href="https://www.youtube.com/watch?v=vAZHJa91JHk">video
demonstration on YouTube</a>.
</p>
<p>
Thanks to: Michael J. Mahon, Nick Westgate, David Wilson, David
Schmenk, David Schmidt and the rest of the <a target=_blank
href="https://groups.google.com/forum/#!forum/comp.sys.apple2.programmer">comp.sys.apple2.programmer</a>
gang!
</p>
</div>

415
server.js
View File

@ -1,30 +1,32 @@
(async function() {
const $ = document.querySelector.bind(document);
const $ = document.querySelector.bind(document);
const palette = [
/* Black1 */ [0x00, 0x00, 0x00],
/* Green */ [0x2f, 0xbc, 0x1a],
/* Violet */ [0xd0, 0x43, 0xe5],
/* White1 */ [0xff, 0xff, 0xff],
/* Black2 */ [0x00, 0x00, 0x00],
/* Orange */ [0xd0, 0x6a, 0x1a],
/* Blue */ [0x2f, 0x95, 0xe5],
/* White2 */ [0xff, 0xff, 0xff]
];
const palette = [
/* Black1 */ [0x00, 0x00, 0x00],
/* Green */ [0x2f, 0xbc, 0x1a],
/* Violet */ [0xd0, 0x43, 0xe5],
/* White1 */ [0xff, 0xff, 0xff],
/* Black2 */ [0x00, 0x00, 0x00],
/* Orange */ [0xd0, 0x6a, 0x1a],
/* Blue */ [0x2f, 0x95, 0xe5],
/* White2 */ [0xff, 0xff, 0xff]
];
let hires_buffer = new Uint8Array(8192);
let hires_buffer = new Uint8Array(8192);
$('#save').addEventListener('click', e => {
const blob = new Blob([hires_buffer], {type: 'application/octet-stream'});
const anchor = document.createElement('a');
anchor.download = 'image.bin';
anchor.href = URL.createObjectURL(blob);
document.body.appendChild(anchor);
anchor.click();
anchor.remove();
URL.revokeObjectURL(anchor.href);
});
// Save the last captured frame as a hires image file.
$('#save').addEventListener('click', e => {
const blob = new Blob([hires_buffer], {type: 'application/octet-stream'});
const anchor = document.createElement('a');
anchor.download = 'image.bin';
anchor.href = URL.createObjectURL(blob);
document.body.appendChild(anchor);
anchor.click();
anchor.remove();
URL.revokeObjectURL(anchor.href);
});
// Start capturing the desktop.
$('#start').addEventListener('click', async e => {
try {
const mediaStream = await navigator.getDisplayMedia({video:true});
const vid = document.createElement('video');
@ -57,215 +59,218 @@
} catch (e) {
console.warn(`Error: ${e.name} - ${e.message}`);
}
});
// Distance in 3-space
function distance(r1,g1,b1,r2,g2,b2) {
const dr = r1 - r2;
const dg = g1 - g2;
const db = b1 - b2;
return Math.sqrt(dr*dr + dg*dg + db*db);
}
// Distance in 3-space
function distance(r1,g1,b1,r2,g2,b2) {
const dr = r1 - r2;
const dg = g1 - g2;
const db = b1 - b2;
return Math.sqrt(dr*dr + dg*dg + db*db);
function quantize(imagedata, indexes) {
const hash = {};
for (let i = 0; i < palette.length; ++i) {
const entry = palette[i];
const rgb = (entry[0] << 16) | (entry[1] << 8) | entry[2];
hash[rgb] = i;
}
function quantize(imagedata, indexes) {
const hash = {};
for (let i = 0; i < palette.length; ++i) {
const entry = palette[i];
const rgb = (entry[0] << 16) | (entry[1] << 8) | entry[2];
hash[rgb] = i;
}
// Floyd-Steinberg
function offset(x, y) {
return 4 * (x + y * imagedata.width);
}
function err(x, y, er, eg, eb) {
if (x < 0 || x >= imagedata.width || y < 0 || y >= imagedata.height)
return;
const i = offset(x, y);
const data = imagedata.data;
data[i + 0] += er;
data[i + 1] += eg;
data[i + 2] += eb;
}
// Floyd-Steinberg
function offset(x, y) {
return 4 * (x + y * imagedata.width);
}
function err(x, y, er, eg, eb) {
if (x < 0 || x >= imagedata.width || y < 0 || y >= imagedata.height)
return;
const i = offset(x, y);
const data = imagedata.data;
for (let y = 0; y < imagedata.height; ++y) {
for (let x = 0; x < imagedata.width; ++x) {
const i = offset(x, y);
const r = data[i];
const g = data[i+1];
const b = data[i+2];
// Find closest in palette.
const rgb = (r << 16) | (g << 8) | b;
let index = hash[rgb];
if (index === undefined) {
let dist;
for (let p = 0; p < palette.length; ++p) {
const entry = palette[p];
const d = distance(r,g,b, entry[0], entry[1], entry[2]);
if (dist === undefined || d < dist) {
dist = d;
index = p;
}
}
hash[rgb] = index;
}
const pi = palette[index];
// Calculate error
const err_r = data[i] - pi[0];
const err_g = data[i+1] - pi[1];
const err_b = data[i+2] - pi[2];
// Update pixel
data[i] = pi[0];
data[i+1] = pi[1];
data[i+2] = pi[2];
indexes[i / 4] = index;
// Distribute error
err(x + 1, y, err_r * 7/16, err_g * 7/16, err_b * 7/16);
err(x - 1, y + 1, err_r * 3/16, err_g * 3/16, err_b * 3/16);
err(x, y + 1, err_r * 5/16, err_g * 5/16, err_b * 5/16);
err(x + 1, y + 1, err_r * 1/16, err_g * 1/16, err_b * 1/16);
}
}
data[i + 0] += er;
data[i + 1] += eg;
data[i + 2] += eb;
}
// Scan line mapping table for Apple II Hi-Res screen.
// Index into the array is the y-coordinate. The value
// in the array is the offset (in bytes) from the
// start of the hi-res screen buffer to the start of the
// scan line. The scan line itself is 40 bytes wide.
const OFFSETS = [
0x0000,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,
0x0080,0x0480,0x0880,0x0c80,0x1080,0x1480,0x1880,0x1c80,
0x0100,0x0500,0x0900,0x0d00,0x1100,0x1500,0x1900,0x1d00,
0x0180,0x0580,0x0980,0x0d80,0x1180,0x1580,0x1980,0x1d80,
0x0200,0x0600,0x0a00,0x0e00,0x1200,0x1600,0x1a00,0x1e00,
0x0280,0x0680,0x0a80,0x0e80,0x1280,0x1680,0x1a80,0x1e80,
0x0300,0x0700,0x0b00,0x0f00,0x1300,0x1700,0x1b00,0x1f00,
0x0380,0x0780,0x0b80,0x0f80,0x1380,0x1780,0x1b80,0x1f80,
0x0028,0x0428,0x0828,0x0c28,0x1028,0x1428,0x1828,0x1c28,
0x00a8,0x04a8,0x08a8,0x0ca8,0x10a8,0x14a8,0x18a8,0x1ca8,
0x0128,0x0528,0x0928,0x0d28,0x1128,0x1528,0x1928,0x1d28,
0x01a8,0x05a8,0x09a8,0x0da8,0x11a8,0x15a8,0x19a8,0x1da8,
0x0228,0x0628,0x0a28,0x0e28,0x1228,0x1628,0x1a28,0x1e28,
0x02a8,0x06a8,0x0aa8,0x0ea8,0x12a8,0x16a8,0x1aa8,0x1ea8,
0x0328,0x0728,0x0b28,0x0f28,0x1328,0x1728,0x1b28,0x1f28,
0x03a8,0x07a8,0x0ba8,0x0fa8,0x13a8,0x17a8,0x1ba8,0x1fa8,
0x0050,0x0450,0x0850,0x0c50,0x1050,0x1450,0x1850,0x1c50,
0x00d0,0x04d0,0x08d0,0x0cd0,0x10d0,0x14d0,0x18d0,0x1cd0,
0x0150,0x0550,0x0950,0x0d50,0x1150,0x1550,0x1950,0x1d50,
0x01d0,0x05d0,0x09d0,0x0dd0,0x11d0,0x15d0,0x19d0,0x1dd0,
0x0250,0x0650,0x0a50,0x0e50,0x1250,0x1650,0x1a50,0x1e50,
0x02d0,0x06d0,0x0ad0,0x0ed0,0x12d0,0x16d0,0x1ad0,0x1ed0,
0x0350,0x0750,0x0b50,0x0f50,0x1350,0x1750,0x1b50,0x1f50,
0x03d0,0x07d0,0x0bd0,0x0fd0,0x13d0,0x17d0,0x1bd0,0x1fd0
];
const data = imagedata.data;
for (let y = 0; y < imagedata.height; ++y) {
for (let x = 0; x < imagedata.width; ++x) {
const i = offset(x, y);
const SCREEN_WIDTH = 280;
const SCREEN_WIDTH_COLOR = SCREEN_WIDTH/2;
const SCREEN_HEIGHT = 192;
const PIXEL_BITS_PER_BYTE = 7;
const r = data[i];
const g = data[i+1];
const b = data[i+2];
function convert_to_hires(indexes, buffer) {
for (let y = 0; y < SCREEN_HEIGHT; ++y) {
let hbas = OFFSETS[y];
let hidx = y * SCREEN_WIDTH_COLOR;
// Process two bytes at a time (20 per scan line) since pixel patterns
// repeat every two bytes (7 color pixels).
for (let pair = 0; pair < (SCREEN_WIDTH_COLOR / PIXEL_BITS_PER_BYTE); ++pair) {
// Count the pixels in each "palette"; the most votes wins the byte
let pal1 = 0; // count of "palette 1" (green/violet) pixels
let pal2 = 0; // count of "palette 2" (orange/blue) pixels
// Accumulate the pixel bit-pairs into accum at offset
let accum = 0;
let offset = 0;
for (let pixel = 0; pixel < PIXEL_BITS_PER_BYTE; ++pixel) {
const index = indexes[hidx++];
let bits = 0;
// Note that pixels are in "reverse" order
switch (index) {
case 0: bits = 0; break;
case 1: bits = 2; ++pal1; break;
case 2: bits = 1; ++pal1; break;
case 3: bits = 3; break;
case 4: bits = 0; break;
case 5: bits = 2; ++pal2; break;
case 6: bits = 1; ++pal2; break;
case 7: bits = 3; break;
default:
throw new Error(`Invalid palette index: ${index} ${y}`);
// Find closest in palette.
const rgb = (r << 16) | (g << 8) | b;
let index = hash[rgb];
if (index === undefined) {
let dist;
for (let p = 0; p < palette.length; ++p) {
const entry = palette[p];
const d = distance(r,g,b, entry[0], entry[1], entry[2]);
if (dist === undefined || d < dist) {
dist = d;
index = p;
}
}
hash[rgb] = index;
}
const pi = palette[index];
accum |= ( bits << offset );
offset += 2;
// Calculate error
const err_r = data[i] - pi[0];
const err_g = data[i+1] - pi[1];
const err_b = data[i+2] - pi[2];
// bits: 01234560123456
// pixels: 00112233445566
// Update pixel
data[i] = pi[0];
data[i+1] = pi[1];
data[i+2] = pi[2];
// NOTE: This is a poor approximation and doesn't account for white
// emerging from any two adjacent lit bits and other NTSC fun.
indexes[i / 4] = index;
if (pixel == 3 || pixel == 6) {
// emit byte
let b = accum & 0x7f;
accum >>= 7;
offset = 1;
// Distribute error
err(x + 1, y, err_r * 7/16, err_g * 7/16, err_b * 7/16);
err(x - 1, y + 1, err_r * 3/16, err_g * 3/16, err_b * 3/16);
err(x, y + 1, err_r * 5/16, err_g * 5/16, err_b * 5/16);
err(x + 1, y + 1, err_r * 1/16, err_g * 1/16, err_b * 1/16);
}
}
}
if (pal2 > pal1)
b |= 0x80;
// Scan line mapping table for Apple II Hi-Res screen.
// Index into the array is the y-coordinate. The value
// in the array is the offset (in bytes) from the
// start of the hi-res screen buffer to the start of the
// scan line. The scan line itself is 40 bytes wide.
const OFFSETS = [
0x0000,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,
0x0080,0x0480,0x0880,0x0c80,0x1080,0x1480,0x1880,0x1c80,
0x0100,0x0500,0x0900,0x0d00,0x1100,0x1500,0x1900,0x1d00,
0x0180,0x0580,0x0980,0x0d80,0x1180,0x1580,0x1980,0x1d80,
0x0200,0x0600,0x0a00,0x0e00,0x1200,0x1600,0x1a00,0x1e00,
0x0280,0x0680,0x0a80,0x0e80,0x1280,0x1680,0x1a80,0x1e80,
0x0300,0x0700,0x0b00,0x0f00,0x1300,0x1700,0x1b00,0x1f00,
0x0380,0x0780,0x0b80,0x0f80,0x1380,0x1780,0x1b80,0x1f80,
0x0028,0x0428,0x0828,0x0c28,0x1028,0x1428,0x1828,0x1c28,
0x00a8,0x04a8,0x08a8,0x0ca8,0x10a8,0x14a8,0x18a8,0x1ca8,
0x0128,0x0528,0x0928,0x0d28,0x1128,0x1528,0x1928,0x1d28,
0x01a8,0x05a8,0x09a8,0x0da8,0x11a8,0x15a8,0x19a8,0x1da8,
0x0228,0x0628,0x0a28,0x0e28,0x1228,0x1628,0x1a28,0x1e28,
0x02a8,0x06a8,0x0aa8,0x0ea8,0x12a8,0x16a8,0x1aa8,0x1ea8,
0x0328,0x0728,0x0b28,0x0f28,0x1328,0x1728,0x1b28,0x1f28,
0x03a8,0x07a8,0x0ba8,0x0fa8,0x13a8,0x17a8,0x1ba8,0x1fa8,
0x0050,0x0450,0x0850,0x0c50,0x1050,0x1450,0x1850,0x1c50,
0x00d0,0x04d0,0x08d0,0x0cd0,0x10d0,0x14d0,0x18d0,0x1cd0,
0x0150,0x0550,0x0950,0x0d50,0x1150,0x1550,0x1950,0x1d50,
0x01d0,0x05d0,0x09d0,0x0dd0,0x11d0,0x15d0,0x19d0,0x1dd0,
0x0250,0x0650,0x0a50,0x0e50,0x1250,0x1650,0x1a50,0x1e50,
0x02d0,0x06d0,0x0ad0,0x0ed0,0x12d0,0x16d0,0x1ad0,0x1ed0,
0x0350,0x0750,0x0b50,0x0f50,0x1350,0x1750,0x1b50,0x1f50,
0x03d0,0x07d0,0x0bd0,0x0fd0,0x13d0,0x17d0,0x1bd0,0x1fd0
];
buffer[hbas] = b;
hbas++;
const SCREEN_WIDTH = 280;
const SCREEN_WIDTH_COLOR = SCREEN_WIDTH/2;
const SCREEN_HEIGHT = 192;
const PIXEL_BITS_PER_BYTE = 7;
pal1 = 0;
pal2 = 0;
}
function convert_to_hires(indexes, buffer) {
for (let y = 0; y < SCREEN_HEIGHT; ++y) {
let hbas = OFFSETS[y];
let hidx = y * SCREEN_WIDTH_COLOR;
// Process two bytes at a time (20 per scan line) since pixel patterns
// repeat every two bytes (7 color pixels).
for (let pair = 0; pair < (SCREEN_WIDTH_COLOR / PIXEL_BITS_PER_BYTE); ++pair) {
// Count the pixels in each "palette"; the most votes wins the byte
let pal1 = 0; // count of "palette 1" (green/violet) pixels
let pal2 = 0; // count of "palette 2" (orange/blue) pixels
// Accumulate the pixel bit-pairs into accum at offset
let accum = 0;
let offset = 0;
for (let pixel = 0; pixel < PIXEL_BITS_PER_BYTE; ++pixel) {
const index = indexes[hidx++];
let bits = 0;
// Note that pixels are in "reverse" order
switch (index) {
case 0: bits = 0; break;
case 1: bits = 2; ++pal1; break;
case 2: bits = 1; ++pal1; break;
case 3: bits = 3; break;
case 4: bits = 0; break;
case 5: bits = 2; ++pal2; break;
case 6: bits = 1; ++pal2; break;
case 7: bits = 3; break;
default:
throw new Error(`Invalid palette index: ${index} ${y}`);
}
accum |= ( bits << offset );
offset += 2;
// bits: 01234560123456
// pixels: 00112233445566
// NOTE: This is a poor approximation and doesn't account for white
// emerging from any two adjacent lit bits and other NTSC fun.
if (pixel == 3 || pixel == 6) {
// emit byte
let b = accum & 0x7f;
accum >>= 7;
offset = 1;
if (pal2 > pal1)
b |= 0x80;
buffer[hbas] = b;
hbas++;
pal1 = 0;
pal2 = 0;
}
}
}
}
}
$('#bootstrap').addEventListener('click', async e => {
$('#bootstrap').addEventListener('click', async e => {
const CLIENT_ADDR = 0x6000;
const CLIENT_FILE = 'client/client.bin';
alert('On the Apple II, type:\n\n' +
' IN#2 (then press Return)\n' +
' Ctrl+A 14B (then press Return)\n\n' +
'Then click OK');
function send(str) {
// TODO: Send this over serial, obviously...
console.log(str);
}
const CLIENT_ADDR = 0x6000;
const CLIENT_FILE = 'client/client.bin';
send('CALL -151'); // Enter Monitor
function send(str) {
// TODO: Send this over serial, obviously...
console.log(str);
}
const response = await fetch(CLIENT_FILE);
if (!response.ok)
throw new Error(response.statusText);
const bytes = new Uint8Array(await response.arrayBuffer());
let addr = CLIENT_ADDR;
for (let offset = 0; offset < bytes.length; offset += 8) {
const str = addr.toString(16).toUpperCase() + ': ' +
[...bytes.slice(offset, offset + 8)]
.map(b => ('00' + b.toString(16).toUpperCase()).substr(-2))
.join(' ');
send('CALL -151'); // Enter Monitor
send(str);
}
const response = await fetch(CLIENT_FILE);
if (!response.ok)
throw new Error(response.statusText);
const bytes = new Uint8Array(await response.arrayBuffer());
let addr = CLIENT_ADDR;
for (let offset = 0; offset < bytes.length; offset += 8) {
const str = addr.toString(16).toUpperCase() + ': ' +
[...bytes.slice(offset, offset + 8)]
.map(b => ('00' + b.toString(16).toUpperCase()).substr(-2))
.join(' ');
send('\x03'); // Ctrl+C - Exit Monitor
send(`CALL ${CLIENT_ADDR}`); // Execute client
});
send(str);
}
})();
send('\x03'); // Ctrl+C - Exit Monitor
send(`CALL ${CLIENT_ADDR}`); // Execute client
});