WOZ-related changes:

. Significant bit-cells after a gap between latch access upped from 50 to 100 (#1020)
. Minor track sync mod: Update bitStream position for current track before re-calc'ing position for new track (#1022)
. Minor: for DiskII I/O regs $A/B (Select Drive 1/2) update the isWOZ variable to reflect new image-type
This commit is contained in:
tomcw 2022-01-29 21:27:03 +00:00
parent af814347f0
commit 24378313c3
2 changed files with 16 additions and 7 deletions

View File

@ -302,6 +302,13 @@ void Disk2InterfaceCard::ReadTrack(const int drive, ULONG uExecutedCycles)
if (pFloppy->m_trackimage && pFloppy->m_imagehandle) if (pFloppy->m_trackimage && pFloppy->m_imagehandle)
{ {
if (ImageIsWOZ(pFloppy->m_imagehandle))
{
// Update bitStream position for *current* track before re-calc'ing position for new track
UINT bitCellDelta = GetBitCellDelta(uExecutedCycles);
UpdateBitStreamPosition(*pFloppy, bitCellDelta);
}
const UINT32 currentPosition = pFloppy->m_byte; const UINT32 currentPosition = pFloppy->m_byte;
const UINT32 currentTrackLength = pFloppy->m_nibbles; const UINT32 currentTrackLength = pFloppy->m_nibbles;
@ -568,7 +575,7 @@ void Disk2InterfaceCard::Destroy(void)
//=========================================================================== //===========================================================================
void __stdcall Disk2InterfaceCard::Enable(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles) bool __stdcall Disk2InterfaceCard::Enable(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
{ {
WORD newDrive = address & 1; WORD newDrive = address & 1;
bool stateChanged = (newDrive != m_currDrive); bool stateChanged = (newDrive != m_currDrive);
@ -580,6 +587,8 @@ void __stdcall Disk2InterfaceCard::Enable(WORD, WORD address, BYTE, BYTE, ULONG
m_floppyDrive[!m_currDrive].m_spinning = 0; m_floppyDrive[!m_currDrive].m_spinning = 0;
m_floppyDrive[!m_currDrive].m_writelight = 0; m_floppyDrive[!m_currDrive].m_writelight = 0;
CheckSpinning(stateChanged, uExecutedCycles); CheckSpinning(stateChanged, uExecutedCycles);
return ImageIsWOZ(m_floppyDrive[m_currDrive].m_disk.m_imagehandle); // Drive may've changed, so image-type may've changed
} }
//=========================================================================== //===========================================================================
@ -1211,7 +1220,7 @@ void __stdcall Disk2InterfaceCard::DataLatchReadWriteWOZ(WORD pc, WORD addr, BYT
// Skipping forward a large amount of bitcells means the bitstream will very likely be out-of-sync. // Skipping forward a large amount of bitcells means the bitstream will very likely be out-of-sync.
// The first 1-bit will produce a latch nibble, and this 1-bit is unlikely to be the nibble's high bit. // The first 1-bit will produce a latch nibble, and this 1-bit is unlikely to be the nibble's high bit.
// So we need to ensure we run enough bits through the sequencer to re-sync. // So we need to ensure we run enough bits through the sequencer to re-sync.
const UINT significantBitCells = 50; // 5x 10-bit sync FF nibbles const UINT significantBitCells = 100; // eg. long stream of weak bits and/or 5x 10-bit sync FF nibbles (GH#1020)
UINT bitCellDelta = GetBitCellDelta(uExecutedCycles); UINT bitCellDelta = GetBitCellDelta(uExecutedCycles);
UINT bitCellRemainder; UINT bitCellRemainder;
@ -1872,8 +1881,8 @@ BYTE __stdcall Disk2InterfaceCard::IORead(WORD pc, WORD addr, BYTE bWrite, BYTE
case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xA: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xA: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xB: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xB: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break; case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break; case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break; case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break;
@ -1919,8 +1928,8 @@ BYTE __stdcall Disk2InterfaceCard::IOWrite(WORD pc, WORD addr, BYTE bWrite, BYTE
case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xA: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xA: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xB: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xB: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break; case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break; case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break; case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break;

View File

@ -219,7 +219,7 @@ private:
void __stdcall ControlStepper(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles); void __stdcall ControlStepper(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles);
void __stdcall ControlMotor(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles); void __stdcall ControlMotor(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles);
void __stdcall Enable(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles); bool __stdcall Enable(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles);
void __stdcall ReadWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG uExecutedCycles); void __stdcall ReadWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG uExecutedCycles);
void __stdcall DataLatchReadWriteWOZ(WORD pc, WORD addr, BYTE bWrite, ULONG uExecutedCycles); void __stdcall DataLatchReadWriteWOZ(WORD pc, WORD addr, BYTE bWrite, ULONG uExecutedCycles);
void __stdcall LoadWriteProtect(WORD, WORD, BYTE write, BYTE value, ULONG); void __stdcall LoadWriteProtect(WORD, WORD, BYTE write, BYTE value, ULONG);