/* AppleWin : An Apple //e emulator for Windows Copyright (C) 1994-1996, Michael O'Brien Copyright (C) 1999-2001, Oliver Schmidt Copyright (C) 2002-2005, Tom Charlesworth Copyright (C) 2006-2015, Tom Charlesworth, Michael Pohoreski, Nick Westgate AppleWin is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. AppleWin is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with AppleWin; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Description: Disk * * Author: Various * * In comments, UTAIIe is an abbreviation for a reference to "Understanding the Apple //e" by James Sather */ #include "StdAfx.h" #include "SaveState_Structs_v1.h" #include "Applewin.h" #include "CPU.h" #include "Disk.h" #include "DiskImage.h" #include "Frame.h" #include "Log.h" #include "Memory.h" #include "Registry.h" #include "Video.h" #include "YamlHelper.h" #include "../resource/resource.h" // About m_enhanceDisk: // . In general m_enhanceDisk==false is used for authentic disk access speed, whereas m_enhanceDisk==true is for enhanced speed. // Details: // . if false: Used by ImageReadTrack() to skew the sectors in a track (for .do, .dsk, .po 5.25" images). // . if true && m_floppyMotorOn, then this is a condition for full-speed (unthrottled) emulation mode. // . if false && I/O ReadWrite($C0EC) && drive is spinning, then advance the track buffer's nibble index (to simulate spinning). // . if I/O ReadWrite($C0EC) && read, then depending on true/false support partial nibble reads for different gaps between consecutive accesses. // Also m_enhanceDisk is persisted to the save-state, so it's an attribute of the DiskII interface card. DiskIIInterfaceCard::DiskIIInterfaceCard(void) { m_currDrive = 0; m_floppyLatch = 0; m_floppyMotorOn = 0; m_floppyLoadMode = 0; m_floppyWriteMode = 0; m_phases = 0; m_saveDiskImage = true; // Save the DiskImage name to Registry m_slot = 0; m_diskLastCycle = 0; m_diskLastReadLatchCycle = 0; m_enhanceDisk = true; // Debug: #if LOG_DISK_NIBBLES_USE_RUNTIME_VAR m_bLogDisk_NibblesRW = false; #endif #if LOG_DISK_NIBBLES_WRITE m_uWriteLastCycle = 0; m_uSyncFFCount = 0; #endif } bool DiskIIInterfaceCard::GetEnhanceDisk(void) { return m_enhanceDisk; } void DiskIIInterfaceCard::SetEnhanceDisk(bool bEnhanceDisk) { m_enhanceDisk = bEnhanceDisk; } int DiskIIInterfaceCard::GetCurrentDrive(void) { return m_currDrive; } int DiskIIInterfaceCard::GetCurrentTrack(void) { return m_floppyDrive[m_currDrive].m_track; } int DiskIIInterfaceCard::GetCurrentPhase(void) { return m_floppyDrive[m_currDrive].m_phase; } int DiskIIInterfaceCard::GetCurrentOffset(void) { return m_floppyDrive[m_currDrive].m_disk.byte; } int DiskIIInterfaceCard::GetTrack(const int drive) { return m_floppyDrive[drive].m_track; } LPCTSTR DiskIIInterfaceCard::GetCurrentState(void) { if (m_floppyDrive[m_currDrive].m_disk.imagehandle == NULL) return "Empty"; if (!m_floppyMotorOn) { if (m_floppyDrive[m_currDrive].m_spinning > 0) return "Off (spinning)"; else return "Off"; } else if (m_floppyWriteMode) { if (m_floppyDrive[m_currDrive].m_disk.bWriteProtected) return "Writing (write protected)"; else return "Writing"; } else { /*if (m_floppyLoadMode) { if (m_floppyDrive[m_currDrive].disk.bWriteProtected) return "Reading write protect state (write protected)"; else return "Reading write protect state (not write protected)"; } else*/ return "Reading"; } } //=========================================================================== void DiskIIInterfaceCard::LoadLastDiskImage(const int drive) { _ASSERT(drive == DRIVE_1 || drive == DRIVE_2); char sFilePath[ MAX_PATH + 1]; sFilePath[0] = 0; const char *pRegKey = (drive == DRIVE_1) ? REGVALUE_PREF_LAST_DISK_1 : REGVALUE_PREF_LAST_DISK_2; if (RegLoadString(TEXT(REG_PREFS), pRegKey, 1, sFilePath, MAX_PATH)) { sFilePath[ MAX_PATH ] = 0; m_saveDiskImage = false; // Pass in ptr to local copy of filepath, since RemoveDisk() sets DiskPathFilename = "" InsertDisk(drive, sFilePath, IMAGE_USE_FILES_WRITE_PROTECT_STATUS, IMAGE_DONT_CREATE); m_saveDiskImage = true; } } //=========================================================================== void DiskIIInterfaceCard::SaveLastDiskImage(const int drive) { _ASSERT(drive == DRIVE_1 || drive == DRIVE_2); if (!m_saveDiskImage) return; const char *pFileName = m_floppyDrive[drive].m_disk.fullname; if (drive == DRIVE_1) RegSaveString(TEXT(REG_PREFS), REGVALUE_PREF_LAST_DISK_1, TRUE, pFileName); else RegSaveString(TEXT(REG_PREFS), REGVALUE_PREF_LAST_DISK_2, TRUE, pFileName); // char szPathName[MAX_PATH]; strcpy(szPathName, DiskGetFullPathName(drive)); if (_tcsrchr(szPathName, TEXT('\\'))) { char* pPathEnd = _tcsrchr(szPathName, TEXT('\\'))+1; *pPathEnd = 0; RegSaveString(TEXT(REG_PREFS), TEXT(REGVALUE_PREF_START_DIR), 1, szPathName); } } //=========================================================================== // Called by DiskControlMotor() & DiskEnable() void DiskIIInterfaceCard::CheckSpinning(const ULONG nExecutedCycles) { DWORD modechange = (m_floppyMotorOn && !m_floppyDrive[m_currDrive].m_spinning); if (m_floppyMotorOn) m_floppyDrive[m_currDrive].m_spinning = SPINNING_CYCLES; if (modechange) FrameDrawDiskLEDS( (HDC)0 ); if (modechange) { // Set m_diskLastCycle when motor changes: not spinning (ie. off for 1 sec) -> on CpuCalcCycles(nExecutedCycles); m_diskLastCycle = g_nCumulativeCycles; } } //=========================================================================== Disk_Status_e DiskIIInterfaceCard::GetDriveLightStatus(const int drive) { if (IsDriveValid( drive )) { FloppyDrive* pDrive = &m_floppyDrive[ drive ]; if (pDrive->m_spinning) { if (pDrive->m_disk.bWriteProtected) return DISK_STATUS_PROT; if (pDrive->m_writelight) return DISK_STATUS_WRITE; else return DISK_STATUS_READ; } else { return DISK_STATUS_OFF; } } return DISK_STATUS_OFF; } //=========================================================================== bool DiskIIInterfaceCard::IsDriveValid(const int drive) { return (drive >= 0 && drive < NUM_DRIVES); } //=========================================================================== void DiskIIInterfaceCard::AllocTrack(const int drive) { Disk_t* pFloppy = &m_floppyDrive[drive].m_disk; pFloppy->trackimage = (LPBYTE)VirtualAlloc(NULL, NIBBLES_PER_TRACK, MEM_COMMIT, PAGE_READWRITE); } //=========================================================================== void DiskIIInterfaceCard::ReadTrack(const int drive) { if (! IsDriveValid( drive )) return; FloppyDrive* pDrive = &m_floppyDrive[ drive ]; Disk_t* pFloppy = &pDrive->m_disk; if (pDrive->m_track >= ImageGetNumTracks(pFloppy->imagehandle)) { pFloppy->trackimagedata = false; return; } if (!pFloppy->trackimage) AllocTrack( drive ); if (pFloppy->trackimage && pFloppy->imagehandle) { #if LOG_DISK_TRACKS LOG_DISK("track $%02X%s read\r\n", pDrive->track, (pDrive->phase & 1) ? ".5" : " "); #endif ImageReadTrack( pFloppy->imagehandle, pDrive->m_track, pDrive->m_phase, pFloppy->trackimage, &pFloppy->nibbles, m_enhanceDisk); pFloppy->byte = 0; pFloppy->trackimagedata = (pFloppy->nibbles != 0); } } //=========================================================================== void DiskIIInterfaceCard::RemoveDisk(const int drive) { Disk_t* pFloppy = &m_floppyDrive[drive].m_disk; if (pFloppy->imagehandle) { FlushCurrentTrack(drive); ImageClose(pFloppy->imagehandle); pFloppy->imagehandle = NULL; } if (pFloppy->trackimage) { VirtualFree(pFloppy->trackimage, 0, MEM_RELEASE); pFloppy->trackimage = NULL; pFloppy->trackimagedata = false; } memset( pFloppy->imagename, 0, MAX_DISK_IMAGE_NAME+1 ); memset( pFloppy->fullname , 0, MAX_DISK_FULL_NAME +1 ); pFloppy->strFilenameInZip = ""; SaveLastDiskImage( drive ); Video_ResetScreenshotCounter( NULL ); } //=========================================================================== void DiskIIInterfaceCard::WriteTrack(const int drive) { FloppyDrive* pDrive = &m_floppyDrive[ drive ]; Disk_t* pFloppy = &pDrive->m_disk; if (pDrive->m_track >= ImageGetNumTracks(pFloppy->imagehandle)) return; if (pFloppy->bWriteProtected) return; if (pFloppy->trackimage && pFloppy->imagehandle) { #if LOG_DISK_TRACKS LOG_DISK("track $%02X%s write\r\n", pDrive->track, (pDrive->phase & 0) ? ".5" : " "); // TODO: hard-coded to whole tracks - see below (nickw) #endif ImageWriteTrack( pFloppy->imagehandle, pDrive->m_track, pDrive->m_phase, // TODO: this should never be used; it's the current phase (half-track), not that of the track to be written (nickw) pFloppy->trackimage, pFloppy->nibbles); } pFloppy->trackimagedirty = false; } void DiskIIInterfaceCard::FlushCurrentTrack(const int drive) { Disk_t* pFloppy = &m_floppyDrive[drive].m_disk; if (pFloppy->trackimage && pFloppy->trackimagedirty) WriteTrack(drive); } //=========================================================================== void DiskIIInterfaceCard::Boot(void) { // THIS FUNCTION RELOADS A PROGRAM IMAGE IF ONE IS LOADED IN DRIVE ONE. // IF A DISK IMAGE OR NO IMAGE IS LOADED IN DRIVE ONE, IT DOES NOTHING. if (m_floppyDrive[0].m_disk.imagehandle && ImageBoot(m_floppyDrive[0].m_disk.imagehandle)) m_floppyMotorOn = 0; } //=========================================================================== void __stdcall DiskIIInterfaceCard::ControlMotor(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles) { BOOL newState = address & 1; if (newState != m_floppyMotorOn) // motor changed state m_formatTrack.DriveNotWritingTrack(); m_floppyMotorOn = newState; // NB. Motor off doesn't reset the Command Decoder like reset. (UTAIIe figures 9.7 & 9.8 chip C2) // - so it doesn't reset this state: m_floppyLoadMode, m_floppyWriteMode, m_phases #if LOG_DISK_MOTOR LOG_DISK("motor %s\r\n", (m_floppyMotorOn) ? "on" : "off"); #endif CheckSpinning(uExecutedCycles); } //=========================================================================== void __stdcall DiskIIInterfaceCard::ControlStepper(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles) { FloppyDrive* pDrive = &m_floppyDrive[m_currDrive]; Disk_t* pFloppy = &pDrive->m_disk; if (!m_floppyMotorOn) // GH#525 { if (!pDrive->m_spinning) { #if LOG_DISK_PHASES LOG_DISK("stepper accessed whilst motor is off and not spinning\r\n"); #endif return; } #if LOG_DISK_PHASES LOG_DISK("stepper accessed whilst motor is off, but still spinning\r\n"); #endif } int phase = (address >> 1) & 3; int phase_bit = (1 << phase); #if 1 // update the magnet states if (address & 1) { // phase on m_phases |= phase_bit; } else { // phase off m_phases &= ~phase_bit; } // check for any stepping effect from a magnet // - move only when the magnet opposite the cog is off // - move in the direction of an adjacent magnet if one is on // - do not move if both adjacent magnets are on // momentum and timing are not accounted for ... maybe one day! int direction = 0; if (m_phases & (1 << ((pDrive->m_phase + 1) & 3))) direction += 1; if (m_phases & (1 << ((pDrive->m_phase + 3) & 3))) direction -= 1; // apply magnet step, if any if (direction) { pDrive->m_phase = MAX(0, MIN(79, pDrive->m_phase + direction)); const int nNumTracksInImage = ImageGetNumTracks(pFloppy->imagehandle); const int newtrack = (nNumTracksInImage == 0) ? 0 : MIN(nNumTracksInImage-1, pDrive->m_phase >> 1); // (round half tracks down) if (newtrack != pDrive->m_track) { FlushCurrentTrack(m_currDrive); pDrive->m_track = newtrack; pFloppy->trackimagedata = false; m_formatTrack.DriveNotWritingTrack(); } // Feature Request #201 Show track status // https://github.com/AppleWin/AppleWin/issues/201 FrameDrawDiskStatus( (HDC)0 ); } #else // substitute alternate stepping code here to test #endif #if LOG_DISK_PHASES LOG_DISK("track $%02X%s phases %d%d%d%d phase %d %s address $%4X\r\n", pDrive->phase >> 1, (pDrive->phase & 1) ? ".5" : " ", (m_phases >> 3) & 1, (m_phases >> 2) & 1, (m_phases >> 1) & 1, (m_phases >> 0) & 1, phase, (address & 1) ? "on " : "off", address); #endif } //=========================================================================== void DiskIIInterfaceCard::Destroy(void) { m_saveDiskImage = false; RemoveDisk(DRIVE_1); m_saveDiskImage = false; RemoveDisk(DRIVE_2); m_saveDiskImage = true; } //=========================================================================== void __stdcall DiskIIInterfaceCard::Enable(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles) { m_currDrive = address & 1; #if LOG_DISK_ENABLE_DRIVE LOG_DISK("enable drive: %d\r\n", m_currDrive); #endif m_floppyDrive[!m_currDrive].m_spinning = 0; m_floppyDrive[!m_currDrive].m_writelight = 0; CheckSpinning(uExecutedCycles); } //=========================================================================== void DiskIIInterfaceCard::EjectDisk(const int drive) { if (IsDriveValid(drive)) { RemoveDisk(drive); } } //=========================================================================== // Return the filename // . Used by Drive Buttons' tooltips LPCTSTR DiskIIInterfaceCard::GetFullDiskFilename(const int drive) { if (!m_floppyDrive[drive].m_disk.strFilenameInZip.empty()) return m_floppyDrive[drive].m_disk.strFilenameInZip.c_str(); return GetFullName(drive); } // Return the file or zip name // . Used by Property Sheet Page (Disk) LPCTSTR DiskIIInterfaceCard::GetFullName(const int drive) { return m_floppyDrive[drive].m_disk.fullname; } // Return the imagename // . Used by Drive Button's icons & Property Sheet Page (Save snapshot) LPCTSTR DiskIIInterfaceCard::GetBaseName(const int drive) { return m_floppyDrive[drive].m_disk.imagename; } LPCTSTR DiskIIInterfaceCard::DiskGetFullPathName(const int drive) { return ImageGetPathname(m_floppyDrive[drive].m_disk.imagehandle); } //=========================================================================== void DiskIIInterfaceCard::GetLightStatus(Disk_Status_e *pDisk1Status, Disk_Status_e *pDisk2Status) { if (pDisk1Status) *pDisk1Status = GetDriveLightStatus(DRIVE_1); if (pDisk2Status) *pDisk2Status = GetDriveLightStatus(DRIVE_2); } //=========================================================================== ImageError_e DiskIIInterfaceCard::InsertDisk(const int drive, LPCTSTR pszImageFilename, const bool bForceWriteProtected, const bool bCreateIfNecessary) { FloppyDrive* pDrive = &m_floppyDrive[drive]; Disk_t* pFloppy = &pDrive->m_disk; if (pFloppy->imagehandle) RemoveDisk(drive); // Reset the drive's struct, but preserve the physical attributes (bug#18242: Platoon) // . Changing the disk (in the drive) doesn't affect the drive's head etc. { int track = pDrive->m_track; int phase = pDrive->m_phase; pDrive->clear(); pDrive->m_track = track; pDrive->m_phase = phase; } const DWORD dwAttributes = GetFileAttributes(pszImageFilename); if(dwAttributes == INVALID_FILE_ATTRIBUTES) pFloppy->bWriteProtected = false; // Assume this is a new file to create else pFloppy->bWriteProtected = bForceWriteProtected ? true : (dwAttributes & FILE_ATTRIBUTE_READONLY); // Check if image is being used by the other drive, and if so remove it in order so it can be swapped { const char* pszOtherPathname = DiskGetFullPathName(!drive); char szCurrentPathname[MAX_PATH]; DWORD uNameLen = GetFullPathName(pszImageFilename, MAX_PATH, szCurrentPathname, NULL); if (uNameLen == 0 || uNameLen >= MAX_PATH) strcpy_s(szCurrentPathname, MAX_PATH, pszImageFilename); if (!strcmp(pszOtherPathname, szCurrentPathname)) { EjectDisk(!drive); FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES); } } ImageError_e Error = ImageOpen(pszImageFilename, &pFloppy->imagehandle, &pFloppy->bWriteProtected, bCreateIfNecessary, pFloppy->strFilenameInZip); if (Error == eIMAGE_ERROR_NONE && ImageIsMultiFileZip(pFloppy->imagehandle)) { TCHAR szText[100+MAX_PATH]; szText[sizeof(szText)-1] = 0; _snprintf(szText, sizeof(szText)-1, "Only the first file in a multi-file zip is supported\nUse disk image '%s' ?", pFloppy->strFilenameInZip.c_str()); int nRes = MessageBox(g_hFrameWindow, szText, TEXT("Multi-Zip Warning"), MB_ICONWARNING | MB_YESNO | MB_SETFOREGROUND); if (nRes == IDNO) { RemoveDisk(drive); Error = eIMAGE_ERROR_REJECTED_MULTI_ZIP; } } if (Error == eIMAGE_ERROR_NONE) { GetImageTitle(pszImageFilename, pFloppy->imagename, pFloppy->fullname); Video_ResetScreenshotCounter(pFloppy->imagename); } else { Video_ResetScreenshotCounter(NULL); } SaveLastDiskImage(drive); return Error; } //=========================================================================== bool DiskIIInterfaceCard::IsConditionForFullSpeed(void) { return m_floppyMotorOn && m_enhanceDisk; } BOOL DiskIIInterfaceCard::IsSpinning(void) { return m_floppyMotorOn; } //=========================================================================== void DiskIIInterfaceCard::NotifyInvalidImage(const int drive, LPCTSTR pszImageFilename, const ImageError_e Error) { TCHAR szBuffer[MAX_PATH+128]; szBuffer[sizeof(szBuffer)-1] = 0; switch (Error) { case eIMAGE_ERROR_UNABLE_TO_OPEN: case eIMAGE_ERROR_UNABLE_TO_OPEN_GZ: case eIMAGE_ERROR_UNABLE_TO_OPEN_ZIP: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Unable to open the file %s."), pszImageFilename); break; case eIMAGE_ERROR_BAD_SIZE: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Unable to use the file %s\nbecause the ") TEXT("disk image is an unsupported size."), pszImageFilename); break; case eIMAGE_ERROR_BAD_FILE: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Unable to use the file %s\nbecause the ") TEXT("OS can't access it."), pszImageFilename); break; case eIMAGE_ERROR_UNSUPPORTED: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Unable to use the file %s\nbecause the ") TEXT("disk image format is not recognized."), pszImageFilename); break; case eIMAGE_ERROR_UNSUPPORTED_HDV: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Unable to use the file %s\n") TEXT("because this UniDisk 3.5/Apple IIGS/hard-disk image is not supported.\n") TEXT("Try inserting as a hard-disk image instead."), pszImageFilename); break; case eIMAGE_ERROR_UNSUPPORTED_MULTI_ZIP: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Unable to use the file %s\nbecause the ") TEXT("first file (%s) in this multi-zip archive is not recognized.\n") TEXT("Try unzipping and using the disk images directly.\n"), pszImageFilename, m_floppyDrive[drive].m_disk.strFilenameInZip.c_str()); break; case eIMAGE_ERROR_GZ: case eIMAGE_ERROR_ZIP: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Unable to use the compressed file %s\nbecause the ") TEXT("compressed disk image is corrupt/unsupported."), pszImageFilename); break; case eIMAGE_ERROR_FAILED_TO_GET_PATHNAME: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Unable to GetFullPathName() for the file: %s."), pszImageFilename); break; case eIMAGE_ERROR_ZEROLENGTH_WRITEPROTECTED: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Unsupported zero-length write-protected file: %s."), pszImageFilename); break; case eIMAGE_ERROR_FAILED_TO_INIT_ZEROLENGTH: _snprintf( szBuffer, sizeof(szBuffer)-1, TEXT("Failed to resize the zero-length file: %s."), pszImageFilename); break; default: // IGNORE OTHER ERRORS SILENTLY return; } MessageBox( g_hFrameWindow, szBuffer, g_pAppTitle, MB_ICONEXCLAMATION | MB_SETFOREGROUND); } //=========================================================================== bool DiskIIInterfaceCard::GetProtect(const int drive) { if (IsDriveValid(drive)) { if (m_floppyDrive[drive].m_disk.bWriteProtected) return true; } return false; } //=========================================================================== void DiskIIInterfaceCard::SetProtect(const int drive, const bool bWriteProtect) { if (IsDriveValid( drive )) { m_floppyDrive[drive].m_disk.bWriteProtected = bWriteProtect; } } //=========================================================================== bool DiskIIInterfaceCard::IsDiskImageWriteProtected(const int drive) { if (!IsDriveValid(drive)) return true; return ImageIsWriteProtected(m_floppyDrive[drive].m_disk.imagehandle); } //=========================================================================== bool DiskIIInterfaceCard::IsDriveEmpty(const int drive) { if (!IsDriveValid(drive)) return true; return m_floppyDrive[drive].m_disk.imagehandle == NULL; } //=========================================================================== #if LOG_DISK_NIBBLES_WRITE bool DiskIIInterfaceCard::LogWriteCheckSyncFF(ULONG& uCycleDelta) { bool bIsSyncFF = false; if (m_uWriteLastCycle == 0) // Reset to 0 when write mode is enabled { uCycleDelta = 0; if (m_floppyLatch == 0xFF) { m_uSyncFFCount = 0; bIsSyncFF = true; } } else { uCycleDelta = (ULONG) (g_nCumulativeCycles - m_uWriteLastCycle); if (m_floppyLatch == 0xFF && uCycleDelta > 32) { m_uSyncFFCount++; bIsSyncFF = true; } } m_uWriteLastCycle = g_nCumulativeCycles; return bIsSyncFF; } #endif //=========================================================================== void __stdcall DiskIIInterfaceCard::ReadWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles) { /* m_floppyLoadMode = 0; */ FloppyDrive* pDrive = &m_floppyDrive[m_currDrive]; Disk_t* pFloppy = &pDrive->m_disk; if (!pFloppy->trackimagedata && pFloppy->imagehandle) ReadTrack(m_currDrive); if (!pFloppy->trackimagedata) { m_floppyLatch = 0xFF; return; } // Improve precision of "authentic" drive mode - GH#125 UINT uSpinNibbleCount = 0; CpuCalcCycles(nExecutedCycles); // g_nCumulativeCycles required for uSpinNibbleCount & LogWriteCheckSyncFF() if (!m_enhanceDisk && pDrive->m_spinning) { const ULONG nCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastCycle); m_diskLastCycle = g_nCumulativeCycles; if (nCycleDiff > 40) { // 40 cycles for a write of a 10-bit 0xFF sync byte uSpinNibbleCount = nCycleDiff >> 5; // ...but divide by 32 (not 40) ULONG uWrapOffset = uSpinNibbleCount % pFloppy->nibbles; pFloppy->byte += uWrapOffset; if (pFloppy->byte >= pFloppy->nibbles) pFloppy->byte -= pFloppy->nibbles; #if LOG_DISK_NIBBLES_SPIN UINT uCompleteRevolutions = uSpinNibbleCount / pFloppy->nibbles; LOG_DISK("spin: revs=%d, nibbles=%d\r\n", uCompleteRevolutions, uWrapOffset); #endif } } if (!m_floppyWriteMode) { // Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13) // "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12) // Note: Sherwood Forest sets shift mode and reads with the drive off. if (!pDrive->m_spinning) // GH#599 return; const ULONG nReadCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastReadLatchCycle); // Support partial nibble read if disk reads are very close: (GH#582) // . 6 cycles (1st->2nd read) for DOS 3.3 / $BD34: "read with delays to see if disk is spinning." (Beneath Apple DOS) // . 6 cycles (1st->2nd read) for Curse of the Azure Bonds (loop to see if disk is spinning) // . 31 cycles is the max for a partial 8-bit nibble const ULONG kReadAccessThreshold = m_enhanceDisk ? 6 : 31; if (nReadCycleDiff <= kReadAccessThreshold) { UINT invalidBits = 8 - (nReadCycleDiff / 4); // 4 cycles per bit-cell m_floppyLatch = *(pFloppy->trackimage + pFloppy->byte) >> invalidBits; return; // Early return so don't update: m_diskLastReadLatchCycle & pFloppy->byte } m_floppyLatch = *(pFloppy->trackimage + pFloppy->byte); m_diskLastReadLatchCycle = g_nCumulativeCycles; #if LOG_DISK_NIBBLES_READ #if LOG_DISK_NIBBLES_USE_RUNTIME_VAR if (m_bLogDisk_NibblesRW) #endif { LOG_DISK("read %04X = %02X\r\n", pFloppy->byte, m_floppyLatch); } m_formatTrack.DecodeLatchNibbleRead(m_floppyLatch); #endif } else if (!pFloppy->bWriteProtected) // && m_floppyWriteMode { *(pFloppy->trackimage + pFloppy->byte) = m_floppyLatch; pFloppy->trackimagedirty = true; bool bIsSyncFF = false; #if LOG_DISK_NIBBLES_WRITE ULONG uCycleDelta = 0; bIsSyncFF = LogWriteCheckSyncFF(uCycleDelta); #endif m_formatTrack.DecodeLatchNibbleWrite(m_floppyLatch, uSpinNibbleCount, pFloppy, bIsSyncFF); // GH#125 #if LOG_DISK_NIBBLES_WRITE #if LOG_DISK_NIBBLES_USE_RUNTIME_VAR if (m_bLogDisk_NibblesRW) #endif { if (!bIsSyncFF) LOG_DISK("write %04X = %02X (cy=+%d)\r\n", pFloppy->byte, m_floppyLatch, uCycleDelta); else LOG_DISK("write %04X = %02X (cy=+%d) sync #%d\r\n", pFloppy->byte, m_floppyLatch, uCycleDelta, m_uSyncFFCount); } #endif } if (++pFloppy->byte >= pFloppy->nibbles) pFloppy->byte = 0; // Show track status (GH#201) - NB. Prevent flooding of forcing UI to redraw!!! if ((pFloppy->byte & 0xFF) == 0) FrameDrawDiskStatus( (HDC)0 ); } //=========================================================================== void DiskIIInterfaceCard::Reset(const bool bIsPowerCycle/*=false*/) { // RESET forces all switches off (UTAIIe Table 9.1) m_currDrive = 0; m_floppyMotorOn = 0; m_floppyLoadMode = 0; m_floppyWriteMode = 0; m_phases = 0; m_formatTrack.Reset(); if (bIsPowerCycle) // GH#460 { // NB. This doesn't affect the drive head (ie. drive's track position) // . The initial machine start-up state is track=0, but after a power-cycle the track could be any value. // . (For DiskII firmware, this results in a subtle extra latch read in this latter case, for the track!=0 case) m_floppyDrive[DRIVE_1].m_spinning = 0; m_floppyDrive[DRIVE_1].m_writelight = 0; m_floppyDrive[DRIVE_2].m_spinning = 0; m_floppyDrive[DRIVE_2].m_writelight = 0; FrameRefreshStatus(DRAW_LEDS, false); } } //=========================================================================== bool DiskIIInterfaceCard::UserSelectNewDiskImage(const int drive, LPCSTR pszFilename/*=""*/) { TCHAR directory[MAX_PATH] = TEXT(""); TCHAR filename[MAX_PATH] = TEXT(""); TCHAR title[40]; strcpy(filename, pszFilename); RegLoadString(TEXT(REG_PREFS), REGVALUE_PREF_START_DIR, 1, directory, MAX_PATH); _tcscpy(title, TEXT("Select Disk Image For Drive ")); _tcscat(title, drive ? TEXT("2") : TEXT("1")); _ASSERT(sizeof(OPENFILENAME) == sizeof(OPENFILENAME_NT4)); // Required for Win98/ME support (selected by _WIN32_WINNT=0x0400 in stdafx.h) OPENFILENAME ofn; ZeroMemory(&ofn,sizeof(OPENFILENAME)); ofn.lStructSize = sizeof(OPENFILENAME); ofn.hwndOwner = g_hFrameWindow; ofn.hInstance = g_hInstance; ofn.lpstrFilter = TEXT("All Images\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.zip;*.2mg;*.2img;*.iie;*.apl\0") TEXT("Disk Images (*.bin,*.do,*.dsk,*.nib,*.po,*.gz,*.zip,*.2mg,*.2img,*.iie)\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.zip;*.2mg;*.2img;*.iie\0") TEXT("All Files\0*.*\0"); ofn.lpstrFile = filename; ofn.nMaxFile = MAX_PATH; ofn.lpstrInitialDir = directory; ofn.Flags = OFN_PATHMUSTEXIST; ofn.lpstrTitle = title; bool bRes = false; if (GetOpenFileName(&ofn)) { if ((!ofn.nFileExtension) || !filename[ofn.nFileExtension]) _tcscat(filename,TEXT(".dsk")); ImageError_e Error = InsertDisk(drive, filename, ofn.Flags & OFN_READONLY, IMAGE_CREATE); if (Error == eIMAGE_ERROR_NONE) { bRes = true; } else { NotifyInvalidImage(drive, filename, Error); } } return bRes; } //=========================================================================== void __stdcall DiskIIInterfaceCard::LoadWriteProtect(WORD, WORD, BYTE write, BYTE value, ULONG) { /* m_floppyLoadMode = 1; */ // Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13) // "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12) // Note: Gemstone Warrior sets load mode with the drive off. if (!m_floppyDrive[m_currDrive].m_spinning) // GH#599 return; if (!write) { // Notes: // . Phase 1 on also forces write protect in the Disk II drive (UTAIIe page 9-7) but we don't implement that // . write mode doesn't prevent reading write protect (GH#537): // "If for some reason the above write protect check were entered with the READ/WRITE switch in WRITE, // the write protect switch would still be read correctly" (UTAIIe page 9-21) if (m_floppyDrive[m_currDrive].m_disk.bWriteProtected) m_floppyLatch |= 0x80; else m_floppyLatch &= 0x7F; } } //=========================================================================== void __stdcall DiskIIInterfaceCard::SetReadMode(WORD, WORD, BYTE, BYTE, ULONG) { m_floppyWriteMode = 0; m_formatTrack.DriveSwitchedToReadMode(&m_floppyDrive[m_currDrive].m_disk); #if LOG_DISK_RW_MODE LOG_DISK("rw mode: read\r\n"); #endif } //=========================================================================== void __stdcall DiskIIInterfaceCard::SetWriteMode(WORD, WORD, BYTE, BYTE, ULONG uExecutedCycles) { m_floppyWriteMode = 1; m_formatTrack.DriveSwitchedToWriteMode(m_floppyDrive[m_currDrive].m_disk.byte); BOOL modechange = !m_floppyDrive[m_currDrive].m_writelight; #if LOG_DISK_RW_MODE LOG_DISK("rw mode: write (mode changed=%d)\r\n", modechange ? 1 : 0); #endif #if LOG_DISK_NIBBLES_WRITE m_uWriteLastCycle = 0; #endif m_floppyDrive[m_currDrive].m_writelight = WRITELIGHT_CYCLES; if (modechange) FrameDrawDiskLEDS( (HDC)0 ); } //=========================================================================== void DiskIIInterfaceCard::UpdateDriveState(DWORD cycles) { int loop = NUM_DRIVES; while (loop--) { FloppyDrive* pDrive = &m_floppyDrive[loop]; if (pDrive->m_spinning && !m_floppyMotorOn) { if (!(pDrive->m_spinning -= MIN(pDrive->m_spinning, cycles))) { FrameDrawDiskLEDS( (HDC)0 ); FrameDrawDiskStatus( (HDC)0 ); } } if (m_floppyWriteMode && (m_currDrive == loop) && pDrive->m_spinning) { pDrive->m_writelight = WRITELIGHT_CYCLES; } else if (pDrive->m_writelight) { if (!(pDrive->m_writelight -= MIN(pDrive->m_writelight, cycles))) { FrameDrawDiskLEDS( (HDC)0 ); FrameDrawDiskStatus( (HDC)0 ); } } } } //=========================================================================== bool DiskIIInterfaceCard::DriveSwap(void) { // Refuse to swap if either Disk][ is active // TODO: if Shift-Click then FORCE drive swap to bypass message if (m_floppyDrive[DRIVE_1].m_spinning || m_floppyDrive[DRIVE_2].m_spinning) { // 1.26.2.4 Prompt when trying to swap disks while drive is on instead of silently failing int status = MessageBox( g_hFrameWindow, "WARNING:\n" "\n" "\tAttempting to swap a disk while a drive is on\n" "\t\t--> is NOT recommended <--\n" "\tas this will most likely read/write incorrect data!\n" "\n" "If the other drive is empty then swapping is harmless. The" " computer will appear to 'hang' trying to read non-existent data but" " you can safely swap disks once more to restore the original disk.\n" "\n" "Do you still wish to swap disks?", "Trying to swap a disk while a drive is on ...", MB_ICONWARNING | MB_YESNOCANCEL ); switch( status ) { case IDNO: case IDCANCEL: return false; default: break; // User is OK with swapping disks so let them proceed at their own risk } } FlushCurrentTrack(DRIVE_1); FlushCurrentTrack(DRIVE_2); // Swap disks between drives // . NB. We swap trackimage ptrs (so don't need to swap the buffers' data) std::swap(m_floppyDrive[DRIVE_1].m_disk, m_floppyDrive[DRIVE_2].m_disk); // Invalidate the trackimage so that a read latch will re-read the track for the new floppy (GH#543) m_floppyDrive[DRIVE_1].m_disk.trackimagedata = false; m_floppyDrive[DRIVE_2].m_disk.trackimagedata = false; SaveLastDiskImage(DRIVE_1); SaveLastDiskImage(DRIVE_2); FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES, false); return true; } //=========================================================================== // TODO: LoadRom_Disk_Floppy() void DiskIIInterfaceCard::Initialize(LPBYTE pCxRomPeripheral, UINT uSlot) { const UINT DISK2_FW_SIZE = APPLE_SLOT_SIZE; HRSRC hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_DISK2_FW), "FIRMWARE"); if(hResInfo == NULL) return; DWORD dwResSize = SizeofResource(NULL, hResInfo); if(dwResSize != DISK2_FW_SIZE) return; HGLOBAL hResData = LoadResource(NULL, hResInfo); if(hResData == NULL) return; BYTE* pData = (BYTE*) LockResource(hResData); // NB. Don't need to unlock resource if(pData == NULL) return; memcpy(pCxRomPeripheral + uSlot*APPLE_SLOT_SIZE, pData, DISK2_FW_SIZE); // Note: We used to disable the track stepping delay in the Disk II controller firmware by // patching $C64C with $A9,$00,$EA. Now not doing this since: // . Authentic Speed should be authentic // . Enhanced Speed runs emulation unthrottled, so removing the delay has negligible effect // . Patching the firmware breaks the ADC checksum used by "The CIA Files" (Tricky Dick) // . In this case we can patch to compensate for an ADC or EOR checksum but not both (nickw) RegisterIoHandler(uSlot, &DiskIIInterfaceCard::IORead, &DiskIIInterfaceCard::IOWrite, NULL, NULL, this, NULL); m_slot = uSlot; } //=========================================================================== BYTE __stdcall DiskIIInterfaceCard::IORead(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles) { UINT uSlot = ((addr & 0xff) >> 4) - 8; DiskIIInterfaceCard* pCard = (DiskIIInterfaceCard*) MemGetSlotParameters(uSlot); switch (addr & 0xF) { case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0xA: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xB: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xC: pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break; case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break; case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break; case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break; } // only even addresses return the latch (UTAIIe Table 9.1) if (!(addr & 1)) return pCard->m_floppyLatch; else return MemReadFloatingBus(nExecutedCycles); } BYTE __stdcall DiskIIInterfaceCard::IOWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles) { UINT uSlot = ((addr & 0xff) >> 4) - 8; DiskIIInterfaceCard* pCard = (DiskIIInterfaceCard*) MemGetSlotParameters(uSlot); switch (addr & 0xF) { case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0xA: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xB: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xC: pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break; case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break; case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break; case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break; } // any address writes the latch via sequencer LD command (74LS323 datasheet) if (pCard->m_floppyWriteMode /* && m_floppyLoadMode */) { pCard->m_floppyLatch = d; } return 0; } //=========================================================================== // Unit version history: // 2: Added: Format Track state & DiskLastCycle // 3: Added: DiskLastReadLatchCycle static const UINT kUNIT_VERSION = 3; #define SS_YAML_VALUE_CARD_DISK2 "Disk][" #define SS_YAML_KEY_PHASES "Phases" #define SS_YAML_KEY_CURRENT_DRIVE "Current Drive" #define SS_YAML_KEY_DISK_ACCESSED "Disk Accessed" #define SS_YAML_KEY_ENHANCE_DISK "Enhance Disk" #define SS_YAML_KEY_FLOPPY_LATCH "Floppy Latch" #define SS_YAML_KEY_FLOPPY_MOTOR_ON "Floppy Motor On" #define SS_YAML_KEY_FLOPPY_WRITE_MODE "Floppy Write Mode" #define SS_YAML_KEY_LAST_CYCLE "Last Cycle" #define SS_YAML_KEY_LAST_READ_LATCH_CYCLE "Last Read Latch Cycle" #define SS_YAML_KEY_DISK2UNIT "Unit" #define SS_YAML_KEY_FILENAME "Filename" #define SS_YAML_KEY_TRACK "Track" #define SS_YAML_KEY_PHASE "Phase" #define SS_YAML_KEY_BYTE "Byte" #define SS_YAML_KEY_WRITE_PROTECTED "Write Protected" #define SS_YAML_KEY_SPINNING "Spinning" #define SS_YAML_KEY_WRITE_LIGHT "Write Light" #define SS_YAML_KEY_NIBBLES "Nibbles" #define SS_YAML_KEY_TRACK_IMAGE_DATA "Track Image Data" #define SS_YAML_KEY_TRACK_IMAGE_DIRTY "Track Image Dirty" #define SS_YAML_KEY_TRACK_IMAGE "Track Image" std::string DiskIIInterfaceCard::GetSnapshotCardName(void) { static const std::string name(SS_YAML_VALUE_CARD_DISK2); return name; } void DiskIIInterfaceCard::SaveSnapshotDisk2Unit(YamlSaveHelper& yamlSaveHelper, UINT unit) { YamlSaveHelper::Label label(yamlSaveHelper, "%s%d:\n", SS_YAML_KEY_DISK2UNIT, unit); yamlSaveHelper.SaveString(SS_YAML_KEY_FILENAME, m_floppyDrive[unit].m_disk.fullname); yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK, m_floppyDrive[unit].m_track); yamlSaveHelper.SaveUint(SS_YAML_KEY_PHASE, m_floppyDrive[unit].m_phase); yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_BYTE, m_floppyDrive[unit].m_disk.byte); yamlSaveHelper.SaveBool(SS_YAML_KEY_WRITE_PROTECTED, m_floppyDrive[unit].m_disk.bWriteProtected); yamlSaveHelper.SaveUint(SS_YAML_KEY_SPINNING, m_floppyDrive[unit].m_spinning); yamlSaveHelper.SaveUint(SS_YAML_KEY_WRITE_LIGHT, m_floppyDrive[unit].m_writelight); yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_NIBBLES, m_floppyDrive[unit].m_disk.nibbles); yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DATA, m_floppyDrive[unit].m_disk.trackimagedata); yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY, m_floppyDrive[unit].m_disk.trackimagedirty); if (m_floppyDrive[unit].m_disk.trackimage) { YamlSaveHelper::Label image(yamlSaveHelper, "%s:\n", SS_YAML_KEY_TRACK_IMAGE); yamlSaveHelper.SaveMemory(m_floppyDrive[unit].m_disk.trackimage, NIBBLES_PER_TRACK); } } void DiskIIInterfaceCard::SaveSnapshot(class YamlSaveHelper& yamlSaveHelper) { YamlSaveHelper::Slot slot(yamlSaveHelper, GetSnapshotCardName(), m_slot, kUNIT_VERSION); YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE); yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_PHASES, m_phases); yamlSaveHelper.SaveUint(SS_YAML_KEY_CURRENT_DRIVE, m_currDrive); yamlSaveHelper.SaveBool(SS_YAML_KEY_DISK_ACCESSED, false); // deprecated yamlSaveHelper.SaveBool(SS_YAML_KEY_ENHANCE_DISK, m_enhanceDisk); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_FLOPPY_LATCH, m_floppyLatch); yamlSaveHelper.SaveBool(SS_YAML_KEY_FLOPPY_MOTOR_ON, m_floppyMotorOn == TRUE); yamlSaveHelper.SaveBool(SS_YAML_KEY_FLOPPY_WRITE_MODE, m_floppyWriteMode == TRUE); yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_CYCLE, m_diskLastCycle); // v2 yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE, m_diskLastReadLatchCycle); // v3 m_formatTrack.SaveSnapshot(yamlSaveHelper); // v2 SaveSnapshotDisk2Unit(yamlSaveHelper, DRIVE_1); SaveSnapshotDisk2Unit(yamlSaveHelper, DRIVE_2); } void DiskIIInterfaceCard::LoadSnapshotDriveUnit(YamlLoadHelper& yamlLoadHelper, UINT unit) { std::string disk2UnitName = std::string(SS_YAML_KEY_DISK2UNIT) + (unit == DRIVE_1 ? std::string("0") : std::string("1")); if (!yamlLoadHelper.GetSubMap(disk2UnitName)) throw std::string("Card: Expected key: ") + disk2UnitName; bool bImageError = false; m_floppyDrive[unit].m_disk.fullname[0] = 0; m_floppyDrive[unit].m_disk.imagename[0] = 0; m_floppyDrive[unit].m_disk.bWriteProtected = false; // Default to false (until image is successfully loaded below) std::string filename = yamlLoadHelper.LoadString(SS_YAML_KEY_FILENAME); if (!filename.empty()) { DWORD dwAttributes = GetFileAttributes(filename.c_str()); if(dwAttributes == INVALID_FILE_ATTRIBUTES) { // Get user to browse for file UserSelectNewDiskImage(unit, filename.c_str()); dwAttributes = GetFileAttributes(filename.c_str()); } bImageError = (dwAttributes == INVALID_FILE_ATTRIBUTES); if (!bImageError) { if(InsertDisk(unit, filename.c_str(), dwAttributes & FILE_ATTRIBUTE_READONLY, IMAGE_DONT_CREATE) != eIMAGE_ERROR_NONE) bImageError = true; // DiskInsert() zeros m_floppyDrive[unit], then sets up: // . imagename // . fullname // . writeprotected } } m_floppyDrive[unit].m_track = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK); m_floppyDrive[unit].m_phase = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASE); m_floppyDrive[unit].m_disk.byte = yamlLoadHelper.LoadUint(SS_YAML_KEY_BYTE); yamlLoadHelper.LoadBool(SS_YAML_KEY_WRITE_PROTECTED); // Consume m_floppyDrive[unit].m_spinning = yamlLoadHelper.LoadUint(SS_YAML_KEY_SPINNING); m_floppyDrive[unit].m_writelight = yamlLoadHelper.LoadUint(SS_YAML_KEY_WRITE_LIGHT); m_floppyDrive[unit].m_disk.nibbles = yamlLoadHelper.LoadUint(SS_YAML_KEY_NIBBLES); m_floppyDrive[unit].m_disk.trackimagedata = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DATA) ? true : false; m_floppyDrive[unit].m_disk.trackimagedirty = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY) ? true : false; std::vector track(NIBBLES_PER_TRACK); if (yamlLoadHelper.GetSubMap(SS_YAML_KEY_TRACK_IMAGE)) { yamlLoadHelper.LoadMemory(&track[0], NIBBLES_PER_TRACK); yamlLoadHelper.PopMap(); } yamlLoadHelper.PopMap(); // if (!filename.empty() && !bImageError) { if ((m_floppyDrive[unit].m_disk.trackimage == NULL) && m_floppyDrive[unit].m_disk.nibbles) AllocTrack(unit); if (m_floppyDrive[unit].m_disk.trackimage == NULL) bImageError = true; else memcpy(m_floppyDrive[unit].m_disk.trackimage, &track[0], NIBBLES_PER_TRACK); } if (bImageError) { m_floppyDrive[unit].m_disk.trackimagedata = false; m_floppyDrive[unit].m_disk.trackimagedirty = false; m_floppyDrive[unit].m_disk.nibbles = 0; } } bool DiskIIInterfaceCard::LoadSnapshot(class YamlLoadHelper& yamlLoadHelper, UINT slot, UINT version) { if (slot != 6) // fixme throw std::string("Card: wrong slot"); if (version < 1 || version > kUNIT_VERSION) throw std::string("Card: wrong version"); m_phases = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASES); m_currDrive = yamlLoadHelper.LoadUint(SS_YAML_KEY_CURRENT_DRIVE); (void) yamlLoadHelper.LoadBool(SS_YAML_KEY_DISK_ACCESSED); // deprecated - but retrieve the value to avoid the "State: Unknown key (Disk Accessed)" warning m_enhanceDisk = yamlLoadHelper.LoadBool(SS_YAML_KEY_ENHANCE_DISK); m_floppyLatch = yamlLoadHelper.LoadUint(SS_YAML_KEY_FLOPPY_LATCH); m_floppyMotorOn = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_MOTOR_ON); m_floppyWriteMode = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_WRITE_MODE); if (version >= 2) { m_diskLastCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_CYCLE); m_formatTrack.LoadSnapshot(yamlLoadHelper); } if (version >= 3) { m_diskLastReadLatchCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE); } // Eject all disks first in case Drive-2 contains disk to be inserted into Drive-1 for (UINT i=0; i