AppleWin/AppleWin/source/Harddisk.cpp

568 lines
14 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 1994-1996, Michael O'Brien
Copyright (C) 1999-2001, Oliver Schmidt
Copyright (C) 2002-2005, Tom Charlesworth
Copyright (C) 2006, Tom Charlesworth, Michael Pohoreski
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Description: Hard drive emulation
*
* Author: Copyright (c) 2005, Robert Hoem
*/
#include "StdAfx.h"
#pragma hdrstop
#include "..\resource\resource.h"
/*
Memory map:
C0F0 (r) EXECUTE AND RETURN STATUS
C0F1 (r) STATUS (or ERROR)
C0F2 (r/w) COMMAND
C0F3 (r/w) UNIT NUMBER
C0F4 (r/w) LOW BYTE OF MEMORY BUFFER
C0F5 (r/w) HIGH BYTE OF MEMORY BUFFER
C0F6 (r/w) LOW BYTE OF BLOCK NUMBER
C0F7 (r/w) HIGH BYTE OF BLOCK NUMBER
C0F8 (r) NEXT BYTE
*/
/*
Hard drive emulation in Applewin.
Concept
To emulate a 32mb hard drive connected to an Apple IIe via Applewin.
Designed to work with Autoboot Rom and Prodos.
Overview
1. Hard drive image file
The hard drive image file (.HDV) will be formatted into blocks of 512
bytes, in a linear fashion. The internal formatting and meaning of each
block to be decided by the Apple's operating system (ProDos). To create
an empty .HDV file, just create a 0 byte file (I prefer the debug method).
2. Emulation code
There are 4 commands Prodos will send to a block device.
Listed below are each command and how it's handled:
1. STATUS
In the emulation's case, returns only a DEVICE OK (0) or DEVICE I/O ERROR (8).
DEVICE I/O ERROR only returned if no HDV file is selected.
2. READ
Loads requested block into a 512 byte buffer by attempting to seek to
location in HDV file.
If seek fails, returns a DEVICE I/O ERROR. Resets hd_buf_ptr used by HD_NEXTBYTE
Returns a DEVICE OK if read was successful, or a DEVICE I/O ERROR otherwise.
3. WRITE
Copies requested block from the Apple's memory to a 512 byte buffer
then attempts to seek to requested block.
If the seek fails (usually because the seek is beyond the EOF for the
HDV file), the Emulation will attempt to "grow" the HDV file to accomodate.
Once the file can accomodate, or if the seek did not fail, the buffer is
written to the HDV file. NOTE: A2PC will grow *AND* shrink the HDV file.
I didn't see the point in shrinking the file as this behaviour would require
patching prodos (to detect DELETE FILE calls).
4. FORMAT
Ignored. This would be used for low level formatting of the device
(as in the case of a tape or SCSI drive, perhaps).
3. Bugs
The only thing I've noticed is that Copy II+ 7.1 seems to crash or stall
occasionally when trying to calculate how many free block are available
when running a catalog. This might be due to the great number of blocks
available. Also, DDD pro will not optimise the disk correctally (it's
doing a disk defragment of some sort, and when it requests a block outside
the range of the image file, it starts getting I/O errors), so don't
bother. Any program that preforms a read before write to an "unwritten"
block (a block that should be located beyond the EOF of the .HDV, which is
valid for writing but not for reading until written to) will fail with I/O
errors (although these are few and far between).
I'm sure there are programs out there that may try to use the I/O ports in
ways they weren't designed (like telling Ultima 5 that you have a Phazor
sound card in slot 7 is a generally bad idea) will cause problems.
*/
typedef struct
{
TCHAR hd_imagename[16];
TCHAR hd_fullname[128];
BYTE hd_error;
WORD hd_memblock;
WORD hd_diskblock;
WORD hd_buf_ptr;
BOOL hd_imageloaded;
HANDLE hd_file;
BYTE hd_buf[513];
} HDD, *PHDD;
static bool g_bHD_RomLoaded = false;
static bool g_bHD_Enabled = false;
static BYTE g_nHD_UnitNum = DRIVE_1;
// The HDD interface has a single Command register for both drives:
// . ProDOS will write to Command before switching drives
static BYTE g_nHD_Command;
static HDD g_HardDrive[2] = {0};
//===========================================================================
static void GetImageTitle (LPCTSTR imagefilename, PHDD pHardDrive)
{
TCHAR imagetitle[128];
LPCTSTR startpos = imagefilename;
// imagetitle = <FILENAME.EXT>
if (_tcsrchr(startpos,TEXT('\\')))
startpos = _tcsrchr(startpos,TEXT('\\'))+1;
_tcsncpy(imagetitle,startpos,127);
imagetitle[127] = 0;
// if imagetitle contains a lowercase char, then found=1 (why?)
BOOL found = 0;
int loop = 0;
while (imagetitle[loop] && !found)
{
if (IsCharLower(imagetitle[loop]))
found = 1;
else
loop++;
}
if ((!found) && (loop > 2))
CharLowerBuff(imagetitle+1,_tcslen(imagetitle+1));
// fptr->fullname = <FILENAME.EXT>
_tcsncpy(pHardDrive->hd_fullname,imagetitle,127);
pHardDrive->hd_fullname[127] = 0;
if (imagetitle[0])
{
LPTSTR dot = imagetitle;
if (_tcsrchr(dot,TEXT('.')))
dot = _tcsrchr(dot,TEXT('.'));
if (dot > imagetitle)
*dot = 0;
}
// fptr->imagename = <FILENAME> (ie. no extension)
_tcsncpy(pHardDrive->hd_imagename,imagetitle,15);
pHardDrive->hd_imagename[15] = 0;
}
static void NotifyInvalidImage (TCHAR* filename)
{
// TC: TO DO
}
static void HD_CleanupDrive(int nDrive)
{
CloseHandle(g_HardDrive[nDrive].hd_file);
g_HardDrive[nDrive].hd_imageloaded = false;
g_HardDrive[nDrive].hd_imagename[0] = 0;
g_HardDrive[nDrive].hd_fullname[0] = 0;
}
static BOOL HD_Load_Image(int nDrive, LPCSTR filename)
{
g_HardDrive[nDrive].hd_file = CreateFile(filename,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ,
(LPSECURITY_ATTRIBUTES)NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
NULL);
if (g_HardDrive[nDrive].hd_file == INVALID_HANDLE_VALUE)
g_HardDrive[nDrive].hd_imageloaded = false;
else
g_HardDrive[nDrive].hd_imageloaded = true;
return g_HardDrive[nDrive].hd_imageloaded;
}
static LPCTSTR HD_DiskGetName (int nDrive)
{
return g_HardDrive[nDrive].hd_imagename;
}
//===========================================================================
// everything below is global
static const DWORD HDDRVR_SIZE = 0x100;
static LPBYTE lpMemC000 = NULL;
bool HD_CardIsEnabled()
{
return g_bHD_RomLoaded && g_bHD_Enabled;
}
void HD_SetEnabled(bool bEnabled)
{
if(g_bHD_Enabled == bEnabled)
return;
g_bHD_Enabled = bEnabled;
if(lpMemC000 == NULL) // This will be NULL when called after loading value from Registry
return;
if(g_bHD_Enabled)
HD_Load_Rom(lpMemC000);
else
memset(lpMemC000+0x700, 0, HDDRVR_SIZE);
}
LPCTSTR HD_GetFullName (int nDrive)
{
return g_HardDrive[nDrive].hd_fullname;
}
VOID HD_Load_Rom(LPBYTE lpMemRom)
{
lpMemC000 = lpMemRom; // Keep a copy for HD_SetEnabled()
if(!g_bHD_Enabled)
return;
HRSRC hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_HDDRVR), RT_RCDATA);
if(hResInfo == NULL)
return;
DWORD dwResSize = SizeofResource(NULL, hResInfo);
if(dwResSize != HDDRVR_SIZE)
return;
HGLOBAL hResData = LoadResource(NULL, hResInfo);
if(hResData == NULL)
return;
BYTE* pData = (BYTE*) LockResource(hResData); // NB. Don't need to unlock resource
if(pData == NULL)
return;
memcpy(lpMemRom+0x700, pData, HDDRVR_SIZE);
g_bHD_RomLoaded = true;
}
VOID HD_Cleanup()
{
for(int i=DRIVE_1; i<DRIVE_2; i++)
{
HD_CleanupDrive(i);
}
}
// pszFilename is not qualified with path
BOOL HD_InsertDisk2(int nDrive, LPCTSTR pszFilename)
{
if (*pszFilename == 0x00)
return false;
char szFullFilename[MAX_PATH];
RegLoadString(TEXT("Preferences"),TEXT("HDV Starting Directory"), 1, szFullFilename, MAX_PATH);
strcat(szFullFilename, pszFilename);
return HD_InsertDisk(nDrive, szFullFilename);
}
// imagefilename is qualified with path
BOOL HD_InsertDisk(int nDrive, LPCTSTR imagefilename)
{
if (*imagefilename == 0x00)
return false;
if (g_HardDrive[nDrive].hd_imageloaded)
HD_CleanupDrive(nDrive);
BOOL result = HD_Load_Image(nDrive, imagefilename);
if (result)
GetImageTitle(imagefilename, &g_HardDrive[nDrive]);
return result;
}
void HD_Select(int nDrive)
{
TCHAR directory[MAX_PATH] = TEXT("");
TCHAR filename[MAX_PATH] = TEXT("");
TCHAR title[40];
RegLoadString(TEXT("Preferences"),TEXT("HDV Starting Directory"),1,directory,MAX_PATH);
_tcscpy(title,TEXT("Select HDV Image For HDD "));
_tcscat(title,nDrive ? TEXT("2") : TEXT("1"));
OPENFILENAME ofn;
ZeroMemory(&ofn,sizeof(OPENFILENAME));
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = framewindow;
ofn.hInstance = instance;
ofn.lpstrFilter = TEXT("Hard Disk Images (*.hdv)\0*.hdv\0");
ofn.lpstrFile = filename;
ofn.nMaxFile = MAX_PATH;
ofn.lpstrInitialDir = directory;
ofn.Flags = OFN_CREATEPROMPT | OFN_HIDEREADONLY;
ofn.lpstrTitle = title;
ofn.lpTemplateName = TEXT("INSERT_DIALOG");
if (GetOpenFileName(&ofn))
{
if ((!ofn.nFileExtension) || !filename[ofn.nFileExtension])
_tcscat(filename,TEXT(".hdv"));
if (HD_InsertDisk(nDrive, filename))
{
filename[ofn.nFileOffset] = 0;
if (_tcsicmp(directory,filename))
RegSaveString(TEXT("Preferences"),TEXT("HDV Starting Directory"),1,filename);
}
else
{
NotifyInvalidImage(filename);
}
}
}
//-----------------------------------------------------------------------------
#define DEVICE_OK 0x00
#define DEVICE_UNKNOWN_ERROR 0x03
#define DEVICE_IO_ERROR 0x08
BYTE __stdcall HD_IO_EMUL (WORD pc, BYTE addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
BYTE r = DEVICE_OK;
if (!HD_CardIsEnabled())
return r;
PHDD pHDD = &g_HardDrive[g_nHD_UnitNum >> 7]; // bit7 = drive select
if (bWrite == 0) // read
{
switch (addr)
{
case 0xF0:
{
if (pHDD->hd_imageloaded)
{
// based on loaded data block request, load block into memory
// returns status
switch (g_nHD_Command)
{
default:
case 0x00: //status
if (GetFileSize(pHDD->hd_file,NULL) == 0)
{
pHDD->hd_error = 1;
r = DEVICE_IO_ERROR;
}
break;
case 0x01: //read
{
DWORD br = GetFileSize(pHDD->hd_file,NULL);
if ((DWORD)(pHDD->hd_diskblock * 512) <= br) // seek to block
{
SetFilePointer(pHDD->hd_file,pHDD->hd_diskblock * 512,NULL,FILE_BEGIN); // seek to block
if (ReadFile(pHDD->hd_file,pHDD->hd_buf,512,&br,NULL)) // read block into buffer
{
pHDD->hd_error = 0;
r = 0;
pHDD->hd_buf_ptr = 0;
}
else
{
pHDD->hd_error = 1;
r = DEVICE_IO_ERROR;
}
}
else
{
pHDD->hd_error = 1;
r = DEVICE_IO_ERROR;
}
}
break;
case 0x02: //write
{
DWORD bw = GetFileSize(pHDD->hd_file,NULL);
if ((DWORD)(pHDD->hd_diskblock * 512) <= bw)
{
MoveMemory(pHDD->hd_buf,mem+pHDD->hd_memblock,512);
SetFilePointer(pHDD->hd_file,pHDD->hd_diskblock * 512,NULL,FILE_BEGIN); // seek to block
if (WriteFile(pHDD->hd_file,pHDD->hd_buf,512,&bw,NULL)) // write buffer to file
{
pHDD->hd_error = 0;
r = 0;
}
else
{
pHDD->hd_error = 1;
r = DEVICE_IO_ERROR;
}
}
else
{
DWORD fsize = SetFilePointer(pHDD->hd_file,0,NULL,FILE_END);
DWORD addblocks = pHDD->hd_diskblock - (fsize / 512);
FillMemory(pHDD->hd_buf,512,0);
while (addblocks--)
{
DWORD bw;
WriteFile(pHDD->hd_file,pHDD->hd_buf,512,&bw,NULL);
}
if (SetFilePointer(pHDD->hd_file,pHDD->hd_diskblock * 512,NULL,FILE_BEGIN) != 0xFFFFFFFF) { // seek to block
MoveMemory(pHDD->hd_buf,mem+pHDD->hd_memblock,512);
if (WriteFile(pHDD->hd_file,pHDD->hd_buf,512,&bw,NULL)) // write buffer to file
{
pHDD->hd_error = 0;
r = 0;
}
else
{
pHDD->hd_error = 1;
r = DEVICE_IO_ERROR;
}
}
}
}
break;
case 0x03: //format
break;
}
}
else
{
pHDD->hd_error = 1;
r = DEVICE_UNKNOWN_ERROR;
}
}
break;
case 0xF1: // hd_error
{
r = pHDD->hd_error;
}
break;
case 0xF2:
{
r = g_nHD_Command;
}
break;
case 0xF3:
{
r = g_nHD_UnitNum;
}
break;
case 0xF4:
{
r = (BYTE)(pHDD->hd_memblock & 0x00FF);
}
break;
case 0xF5:
{
r = (BYTE)(pHDD->hd_memblock & 0xFF00 >> 8);
}
break;
case 0xF6:
{
r = (BYTE)(pHDD->hd_diskblock & 0x00FF);
}
break;
case 0xF7:
{
r = (BYTE)(pHDD->hd_diskblock & 0xFF00 >> 8);
}
break;
case 0xF8:
{
r = pHDD->hd_buf[pHDD->hd_buf_ptr];
pHDD->hd_buf_ptr++;
}
break;
default:
{
}
}
}
else // write
{
switch (addr)
{
case 0xF2:
{
g_nHD_Command = d;
}
break;
case 0xF3:
{
// b7 = drive#
// b6..4 = slot#
// b3..0 = ?
g_nHD_UnitNum = d;
}
break;
case 0xF4:
{
pHDD->hd_memblock = pHDD->hd_memblock & 0xFF00 | d;
}
break;
case 0xF5:
{
pHDD->hd_memblock = pHDD->hd_memblock & 0x00FF | (d << 8);
}
break;
case 0xF6:
{
pHDD->hd_diskblock = pHDD->hd_diskblock & 0xFF00 | d;
}
break;
case 0xF7:
{
pHDD->hd_diskblock = pHDD->hd_diskblock & 0x00FF | (d << 8);
}
break;
default:
break;
}
}
return r;
}