AppleWin/source/NTSC.cpp
TomCh 3aa5750dcf
Make Video.cpp and WinVideo.cpp into a dependent class hierarchy (PR #898)
. class hierarchy: WinVideo IS_A Video (ie. WinVideo is a subclass of Video)
. GetVideo() singleton instance of WinVideo in AppleWin.cpp, exposed via Interface.h
2020-12-28 16:25:29 +00:00

2535 lines
84 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 2010-2011, William S Simms
Copyright (C) 2014-2016, Michael Pohoreski, Tom Charlesworth
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
// Includes
#include "StdAfx.h"
#include "NTSC.h"
#include "Core.h"
#include "CPU.h" // CpuGetCyclesThisVideoFrame()
#include "Memory.h" // MemGetMainPtr(), MemGetAuxPtr(), MemGetAnnunciator()
#include "Interface.h" // GetFrameBuffer()
#include "RGBMonitor.h"
#include "NTSC_CharSet.h"
// Some reference material here from 2000:
// http://www.kreativekorp.com/miscpages/a2info/munafo.shtml
//
#define NTSC_REMOVE_WHITE_RINGING 1 // 0 = theoritical dimmed white has chroma, 1 = pure white without chroma tinting
#define NTSC_REMOVE_BLACK_GHOSTING 1 // 1 = remove black smear/smudges carrying over
#define NTSC_REMOVE_GRAY_CHROMA 1 // 1 = remove all chroma in gray1 and gray2
#define DEBUG_PHASE_ZERO 0
#define ALT_TABLE 0
#if ALT_TABLE
#include "ntsc_rgb.h"
#endif
// Defines
#define HGR_TEST_PATTERN 0
#ifdef _MSC_VER
#define INLINE __forceinline
#else
#define INLINE inline
#endif
#define PI 3.1415926535898f
#define DEG_TO_RAD(x) (PI*(x)/180.f) // 2PI=360, PI=180,PI/2=90,PI/4=45
#define RAD_45 PI*0.25f
#define RAD_90 PI*0.5f
#define RAD_360 PI*2.f
// sadly float64 precision is needed
#define real double
//#define CYCLESTART (PI/4.f) // PI/4 = 45 degrees
#define CYCLESTART (DEG_TO_RAD(45))
// Globals (Public) ___________________________________________________
uint16_t g_nVideoClockVert = 0; // 9-bit: VC VB VA V5 V4 V3 V2 V1 V0 = 0 .. 262
uint16_t g_nVideoClockHorz = 0; // 6-bit: H5 H4 H3 H2 H1 H0 = 0 .. 64, 25 >= visible (NB. final hpos is 2 cycles long, so a line is 65 cycles)
// Globals (Private) __________________________________________________
static int g_nVideoCharSet = 0;
static int g_nVideoMixed = 0;
static int g_nHiresPage = 1;
static int g_nTextPage = 1;
static bool g_bDelayVideoMode = false; // NB. No need to save to save-state, as it will be done immediately after opcode completes in NTSC_VideoUpdateCycles()
static uint32_t g_uNewVideoModeFlags = 0;
// Understanding the Apple II, Timing Generation and the Video Scanner, Pg 3-11
// Vertical Scanning
// Horizontal Scanning
// "There are exactly 17030 (65 x 262) 6502 cycles in every television scan of an American Apple."
#define VIDEO_SCANNER_MAX_HORZ 65 // TODO: use Video.cpp: kHClocks
#define VIDEO_SCANNER_MAX_VERT 262 // TODO: use Video.cpp: kNTSCScanLines
static const UINT VIDEO_SCANNER_6502_CYCLES = VIDEO_SCANNER_MAX_HORZ * VIDEO_SCANNER_MAX_VERT;
#define VIDEO_SCANNER_MAX_VERT_PAL 312
static const UINT VIDEO_SCANNER_6502_CYCLES_PAL = VIDEO_SCANNER_MAX_HORZ * VIDEO_SCANNER_MAX_VERT_PAL;
static UINT g_videoScannerMaxVert = VIDEO_SCANNER_MAX_VERT; // default to NTSC
static UINT g_videoScanner6502Cycles = VIDEO_SCANNER_6502_CYCLES; // default to NTSC
#define VIDEO_SCANNER_HORZ_COLORBURST_BEG 12
#define VIDEO_SCANNER_HORZ_COLORBURST_END 16
#define VIDEO_SCANNER_HORZ_START 25 // first displayable horz scanner index
#define VIDEO_SCANNER_Y_MIXED 160 // num scanlins for mixed graphics + text
#define VIDEO_SCANNER_Y_DISPLAY 192 // max displayable scanlines
static bgra_t *g_pVideoAddress = 0;
static bgra_t *g_pScanLines[VIDEO_SCANNER_Y_DISPLAY*2]; // To maintain the 280x192 aspect ratio for 560px width, we double every scan line -> 560x384
static const UINT g_kFrameBufferWidth = GetVideo().GetFrameBufferWidth();
static unsigned short (*g_pHorzClockOffset)[VIDEO_SCANNER_MAX_HORZ] = 0;
typedef void (*UpdateScreenFunc_t)(long);
static UpdateScreenFunc_t g_apFuncVideoUpdateScanline[VIDEO_SCANNER_Y_DISPLAY];
static UpdateScreenFunc_t g_pFuncUpdateTextScreen = 0; // updateScreenText40;
static UpdateScreenFunc_t g_pFuncUpdateGraphicsScreen = 0; // updateScreenText40;
static UpdateScreenFunc_t g_pFuncModeSwitchDelayed = 0;
typedef void (*UpdatePixelFunc_t)(uint16_t);
static UpdatePixelFunc_t g_pFuncUpdateBnWPixel = 0; //updatePixelBnWMonitorSingleScanline;
static UpdatePixelFunc_t g_pFuncUpdateHuePixel = 0; //updatePixelHueMonitorSingleScanline;
static uint8_t g_nTextFlashCounter = 0;
static uint16_t g_nTextFlashMask = 0;
static unsigned g_aPixelMaskGR [ 16];
static uint16_t g_aPixelDoubleMaskHGR[128]; // hgrbits -> g_aPixelDoubleMaskHGR: 7-bit mono 280 pixels to 560 pixel doubling
static int g_nLastColumnPixelNTSC;
static int g_nColorBurstPixels;
#define INITIAL_COLOR_PHASE 0
static int g_nColorPhaseNTSC = INITIAL_COLOR_PHASE;
static int g_nSignalBitsNTSC = 0;
#define NTSC_NUM_PHASES 4
#define NTSC_NUM_SEQUENCES 4096
/*extern*/ uint32_t g_nChromaSize = 0; // for NTSC_VideoGetChromaTable()
static bgra_t g_aBnWMonitor [NTSC_NUM_SEQUENCES];
static bgra_t g_aHueMonitor[NTSC_NUM_PHASES][NTSC_NUM_SEQUENCES];
static bgra_t g_aBnwColorTV [NTSC_NUM_SEQUENCES];
static bgra_t g_aHueColorTV[NTSC_NUM_PHASES][NTSC_NUM_SEQUENCES];
// g_aBnWMonitor * g_nMonochromeRGB -> g_aBnWMonitorCustom
// g_aBnwColorTV * g_nMonochromeRGB -> g_aBnWColorTVCustom
static bgra_t g_aBnWMonitorCustom [NTSC_NUM_SEQUENCES];
static bgra_t g_aBnWColorTVCustom [NTSC_NUM_SEQUENCES];
#define CHROMA_ZEROS 2
#define CHROMA_POLES 2
#define CHROMA_GAIN 7.438011255f // Should this be 7.15909 MHz ?
#define CHROMA_0 -0.7318893645f
#define CHROMA_1 1.2336442711f
//#define LUMGAIN 1.062635655e+01
//#define LUMCOEF1 -0.3412038399
//#define LUMCOEF2 0.9647813115
#define LUMA_ZEROS 2
#define LUMA_POLES 2
#define LUMA_GAIN 13.71331570f // Should this be 14.318180 MHz ?
#define LUMA_0 -0.3961075449f
#define LUMA_1 1.1044202472f
#define SIGNAL_ZEROS 2
#define SIGNAL_POLES 2
#define SIGNAL_GAIN 7.614490548f // Should this be 7.15909 MHz ?
#define SIGNAL_0 -0.2718798058f
#define SIGNAL_1 0.7465656072f
// Tables
// Video scanner tables are now runtime-generated using UTAIIe logic
static unsigned short g_aClockVertOffsetsHGR[VIDEO_SCANNER_MAX_VERT_PAL];
static unsigned short g_aClockVertOffsetsTXT[VIDEO_SCANNER_MAX_VERT_PAL/8];
static unsigned short APPLE_IIP_HORZ_CLOCK_OFFSET[5][VIDEO_SCANNER_MAX_HORZ]; // 5 = CEILING(312/64) = CEILING(262/64)
static unsigned short APPLE_IIE_HORZ_CLOCK_OFFSET[5][VIDEO_SCANNER_MAX_HORZ];
#ifdef _DEBUG
static unsigned short g_kClockVertOffsetsHGR[ VIDEO_SCANNER_MAX_VERT ] =
{
0x0000,0x0400,0x0800,0x0C00,0x1000,0x1400,0x1800,0x1C00,0x0080,0x0480,0x0880,0x0C80,0x1080,0x1480,0x1880,0x1C80,
0x0100,0x0500,0x0900,0x0D00,0x1100,0x1500,0x1900,0x1D00,0x0180,0x0580,0x0980,0x0D80,0x1180,0x1580,0x1980,0x1D80,
0x0200,0x0600,0x0A00,0x0E00,0x1200,0x1600,0x1A00,0x1E00,0x0280,0x0680,0x0A80,0x0E80,0x1280,0x1680,0x1A80,0x1E80,
0x0300,0x0700,0x0B00,0x0F00,0x1300,0x1700,0x1B00,0x1F00,0x0380,0x0780,0x0B80,0x0F80,0x1380,0x1780,0x1B80,0x1F80,
0x0000,0x0400,0x0800,0x0C00,0x1000,0x1400,0x1800,0x1C00,0x0080,0x0480,0x0880,0x0C80,0x1080,0x1480,0x1880,0x1C80,
0x0100,0x0500,0x0900,0x0D00,0x1100,0x1500,0x1900,0x1D00,0x0180,0x0580,0x0980,0x0D80,0x1180,0x1580,0x1980,0x1D80,
0x0200,0x0600,0x0A00,0x0E00,0x1200,0x1600,0x1A00,0x1E00,0x0280,0x0680,0x0A80,0x0E80,0x1280,0x1680,0x1A80,0x1E80,
0x0300,0x0700,0x0B00,0x0F00,0x1300,0x1700,0x1B00,0x1F00,0x0380,0x0780,0x0B80,0x0F80,0x1380,0x1780,0x1B80,0x1F80,
0x0000,0x0400,0x0800,0x0C00,0x1000,0x1400,0x1800,0x1C00,0x0080,0x0480,0x0880,0x0C80,0x1080,0x1480,0x1880,0x1C80,
0x0100,0x0500,0x0900,0x0D00,0x1100,0x1500,0x1900,0x1D00,0x0180,0x0580,0x0980,0x0D80,0x1180,0x1580,0x1980,0x1D80,
0x0200,0x0600,0x0A00,0x0E00,0x1200,0x1600,0x1A00,0x1E00,0x0280,0x0680,0x0A80,0x0E80,0x1280,0x1680,0x1A80,0x1E80,
0x0300,0x0700,0x0B00,0x0F00,0x1300,0x1700,0x1B00,0x1F00,0x0380,0x0780,0x0B80,0x0F80,0x1380,0x1780,0x1B80,0x1F80,
0x0000,0x0400,0x0800,0x0C00,0x1000,0x1400,0x1800,0x1C00,0x0080,0x0480,0x0880,0x0C80,0x1080,0x1480,0x1880,0x1C80,
0x0100,0x0500,0x0900,0x0D00,0x1100,0x1500,0x1900,0x1D00,0x0180,0x0580,0x0980,0x0D80,0x1180,0x1580,0x1980,0x1D80,
0x0200,0x0600,0x0A00,0x0E00,0x1200,0x1600,0x1A00,0x1E00,0x0280,0x0680,0x0A80,0x0E80,0x1280,0x1680,0x1A80,0x1E80,
0x0300,0x0700,0x0B00,0x0F00,0x1300,0x1700,0x1B00,0x1F00,0x0380,0x0780,0x0B80,0x0F80,0x1380,0x1780,0x1B80,0x1F80,
0x0B80,0x0F80,0x1380,0x1780,0x1B80,0x1F80
};
static unsigned short g_kClockVertOffsetsTXT[33] = // 33 = CEILING(262/8)
{
0x0000,0x0080,0x0100,0x0180,0x0200,0x0280,0x0300,0x0380,
0x0000,0x0080,0x0100,0x0180,0x0200,0x0280,0x0300,0x0380,
0x0000,0x0080,0x0100,0x0180,0x0200,0x0280,0x0300,0x0380,
0x0000,0x0080,0x0100,0x0180,0x0200,0x0280,0x0300,0x0380,
0x380
};
static unsigned short kAPPLE_IIP_HORZ_CLOCK_OFFSET[5][VIDEO_SCANNER_MAX_HORZ] =
{
{0x1068,0x1068,0x1069,0x106A,0x106B,0x106C,0x106D,0x106E,0x106F,
0x1070,0x1071,0x1072,0x1073,0x1074,0x1075,0x1076,0x1077,
0x1078,0x1079,0x107A,0x107B,0x107C,0x107D,0x107E,0x107F,
0x0000,0x0001,0x0002,0x0003,0x0004,0x0005,0x0006,0x0007,
0x0008,0x0009,0x000A,0x000B,0x000C,0x000D,0x000E,0x000F,
0x0010,0x0011,0x0012,0x0013,0x0014,0x0015,0x0016,0x0017,
0x0018,0x0019,0x001A,0x001B,0x001C,0x001D,0x001E,0x001F,
0x0020,0x0021,0x0022,0x0023,0x0024,0x0025,0x0026,0x0027},
{0x1010,0x1010,0x1011,0x1012,0x1013,0x1014,0x1015,0x1016,0x1017,
0x1018,0x1019,0x101A,0x101B,0x101C,0x101D,0x101E,0x101F,
0x1020,0x1021,0x1022,0x1023,0x1024,0x1025,0x1026,0x1027,
0x0028,0x0029,0x002A,0x002B,0x002C,0x002D,0x002E,0x002F,
0x0030,0x0031,0x0032,0x0033,0x0034,0x0035,0x0036,0x0037,
0x0038,0x0039,0x003A,0x003B,0x003C,0x003D,0x003E,0x003F,
0x0040,0x0041,0x0042,0x0043,0x0044,0x0045,0x0046,0x0047,
0x0048,0x0049,0x004A,0x004B,0x004C,0x004D,0x004E,0x004F},
{0x1038,0x1038,0x1039,0x103A,0x103B,0x103C,0x103D,0x103E,0x103F,
0x1040,0x1041,0x1042,0x1043,0x1044,0x1045,0x1046,0x1047,
0x1048,0x1049,0x104A,0x104B,0x104C,0x104D,0x104E,0x104F,
0x0050,0x0051,0x0052,0x0053,0x0054,0x0055,0x0056,0x0057,
0x0058,0x0059,0x005A,0x005B,0x005C,0x005D,0x005E,0x005F,
0x0060,0x0061,0x0062,0x0063,0x0064,0x0065,0x0066,0x0067,
0x0068,0x0069,0x006A,0x006B,0x006C,0x006D,0x006E,0x006F,
0x0070,0x0071,0x0072,0x0073,0x0074,0x0075,0x0076,0x0077},
{0x1060,0x1060,0x1061,0x1062,0x1063,0x1064,0x1065,0x1066,0x1067,
0x1068,0x1069,0x106A,0x106B,0x106C,0x106D,0x106E,0x106F,
0x1070,0x1071,0x1072,0x1073,0x1074,0x1075,0x1076,0x1077,
0x0078,0x0079,0x007A,0x007B,0x007C,0x007D,0x007E,0x007F,
0x0000,0x0001,0x0002,0x0003,0x0004,0x0005,0x0006,0x0007,
0x0008,0x0009,0x000A,0x000B,0x000C,0x000D,0x000E,0x000F,
0x0010,0x0011,0x0012,0x0013,0x0014,0x0015,0x0016,0x0017,
0x0018,0x0019,0x001A,0x001B,0x001C,0x001D,0x001E,0x001F},
{0x1060,0x1060,0x1061,0x1062,0x1063,0x1064,0x1065,0x1066,0x1067,
0x1068,0x1069,0x106A,0x106B,0x106C,0x106D,0x106E,0x106F,
0x1070,0x1071,0x1072,0x1073,0x1074,0x1075,0x1076,0x1077,
0x0078,0x0079,0x007A,0x007B,0x007C,0x007D,0x007E,0x007F,
0x0000,0x0001,0x0002,0x0003,0x0004,0x0005,0x0006,0x0007,
0x0008,0x0009,0x000A,0x000B,0x000C,0x000D,0x000E,0x000F,
0x0010,0x0011,0x0012,0x0013,0x0014,0x0015,0x0016,0x0017,
0x0018,0x0019,0x001A,0x001B,0x001C,0x001D,0x001E,0x001F}
};
static unsigned short kAPPLE_IIE_HORZ_CLOCK_OFFSET[5][VIDEO_SCANNER_MAX_HORZ] =
{
{0x0068,0x0068,0x0069,0x006A,0x006B,0x006C,0x006D,0x006E,0x006F,
0x0070,0x0071,0x0072,0x0073,0x0074,0x0075,0x0076,0x0077,
0x0078,0x0079,0x007A,0x007B,0x007C,0x007D,0x007E,0x007F,
0x0000,0x0001,0x0002,0x0003,0x0004,0x0005,0x0006,0x0007,
0x0008,0x0009,0x000A,0x000B,0x000C,0x000D,0x000E,0x000F,
0x0010,0x0011,0x0012,0x0013,0x0014,0x0015,0x0016,0x0017,
0x0018,0x0019,0x001A,0x001B,0x001C,0x001D,0x001E,0x001F,
0x0020,0x0021,0x0022,0x0023,0x0024,0x0025,0x0026,0x0027},
{0x0010,0x0010,0x0011,0x0012,0x0013,0x0014,0x0015,0x0016,0x0017,
0x0018,0x0019,0x001A,0x001B,0x001C,0x001D,0x001E,0x001F,
0x0020,0x0021,0x0022,0x0023,0x0024,0x0025,0x0026,0x0027,
0x0028,0x0029,0x002A,0x002B,0x002C,0x002D,0x002E,0x002F,
0x0030,0x0031,0x0032,0x0033,0x0034,0x0035,0x0036,0x0037,
0x0038,0x0039,0x003A,0x003B,0x003C,0x003D,0x003E,0x003F,
0x0040,0x0041,0x0042,0x0043,0x0044,0x0045,0x0046,0x0047,
0x0048,0x0049,0x004A,0x004B,0x004C,0x004D,0x004E,0x004F},
{0x0038,0x0038,0x0039,0x003A,0x003B,0x003C,0x003D,0x003E,0x003F,
0x0040,0x0041,0x0042,0x0043,0x0044,0x0045,0x0046,0x0047,
0x0048,0x0049,0x004A,0x004B,0x004C,0x004D,0x004E,0x004F,
0x0050,0x0051,0x0052,0x0053,0x0054,0x0055,0x0056,0x0057,
0x0058,0x0059,0x005A,0x005B,0x005C,0x005D,0x005E,0x005F,
0x0060,0x0061,0x0062,0x0063,0x0064,0x0065,0x0066,0x0067,
0x0068,0x0069,0x006A,0x006B,0x006C,0x006D,0x006E,0x006F,
0x0070,0x0071,0x0072,0x0073,0x0074,0x0075,0x0076,0x0077},
{0x0060,0x0060,0x0061,0x0062,0x0063,0x0064,0x0065,0x0066,0x0067,
0x0068,0x0069,0x006A,0x006B,0x006C,0x006D,0x006E,0x006F,
0x0070,0x0071,0x0072,0x0073,0x0074,0x0075,0x0076,0x0077,
0x0078,0x0079,0x007A,0x007B,0x007C,0x007D,0x007E,0x007F,
0x0000,0x0001,0x0002,0x0003,0x0004,0x0005,0x0006,0x0007,
0x0008,0x0009,0x000A,0x000B,0x000C,0x000D,0x000E,0x000F,
0x0010,0x0011,0x0012,0x0013,0x0014,0x0015,0x0016,0x0017,
0x0018,0x0019,0x001A,0x001B,0x001C,0x001D,0x001E,0x001F},
{0x0060,0x0060,0x0061,0x0062,0x0063,0x0064,0x0065,0x0066,0x0067,
0x0068,0x0069,0x006A,0x006B,0x006C,0x006D,0x006E,0x006F,
0x0070,0x0071,0x0072,0x0073,0x0074,0x0075,0x0076,0x0077,
0x0078,0x0079,0x007A,0x007B,0x007C,0x007D,0x007E,0x007F,
0x0000,0x0001,0x0002,0x0003,0x0004,0x0005,0x0006,0x0007,
0x0008,0x0009,0x000A,0x000B,0x000C,0x000D,0x000E,0x000F,
0x0010,0x0011,0x0012,0x0013,0x0014,0x0015,0x0016,0x0017,
0x0018,0x0019,0x001A,0x001B,0x001C,0x001D,0x001E,0x001F}
};
#endif
static csbits_t csbits; // charset, optionally followed by alt charset
// Prototypes
INLINE void updateFramebufferTVSingleScanline( uint16_t signal, bgra_t *pTable );
INLINE void updateFramebufferTVDoubleScanline( uint16_t signal, bgra_t *pTable );
INLINE void updateFramebufferMonitorSingleScanline( uint16_t signal, bgra_t *pTable );
INLINE void updateFramebufferMonitorDoubleScanline( uint16_t signal, bgra_t *pTable );
INLINE void updatePixels( uint16_t bits );
INLINE void updateVideoScannerHorzEOL();
INLINE void updateVideoScannerAddress();
INLINE uint16_t getVideoScannerAddressTXT();
INLINE uint16_t getVideoScannerAddressHGR();
static void initChromaPhaseTables();
static real initFilterChroma (real z);
static real initFilterLuma0 (real z);
static real initFilterLuma1 (real z);
static real initFilterSignal(real z);
static void initPixelDoubleMasks(void);
static void updateMonochromeTables( uint16_t r, uint16_t g, uint16_t b );
static void updatePixelBnWColorTVSingleScanline( uint16_t compositeSignal );
static void updatePixelBnWColorTVDoubleScanline( uint16_t compositeSignal );
static void updatePixelBnWMonitorSingleScanline( uint16_t compositeSignal );
static void updatePixelBnWMonitorDoubleScanline( uint16_t compositeSignal );
static void updatePixelHueColorTVSingleScanline( uint16_t compositeSignal );
static void updatePixelHueColorTVDoubleScanline( uint16_t compositeSignal );
static void updatePixelHueMonitorSingleScanline( uint16_t compositeSignal );
static void updatePixelHueMonitorDoubleScanline( uint16_t compositeSignal );
static void updateScreenDoubleHires40( long cycles6502 );
static void updateScreenDoubleHires80( long cycles6502 );
static void updateScreenDoubleLores40( long cycles6502 );
static void updateScreenDoubleLores80( long cycles6502 );
static void updateScreenSingleHires40( long cycles6502 );
static void updateScreenSingleLores40( long cycles6502 );
static void updateScreenText40 ( long cycles6502 );
static void updateScreenText80 ( long cycles6502 );
static void updateScreenText40RGB ( long cycles6502 );
static void updateScreenText80RGB ( long cycles6502 );
static void updateScreenDoubleHires80Simplified(long cycles6502);
static void updateScreenDoubleHires80RGB(long cycles6502);
//===========================================================================
static void set_csbits()
{
// NB. For models that don't have an alt charset then set /g_nVideoCharSet/ to zero
switch ( GetApple2Type() )
{
case A2TYPE_APPLE2: csbits = &csbits_a2[0]; g_nVideoCharSet = 0; break;
case A2TYPE_APPLE2PLUS: csbits = &csbits_a2[0]; g_nVideoCharSet = 0; break;
case A2TYPE_APPLE2JPLUS: csbits = &csbits_a2j[MemGetAnnunciator(2) ? 1 : 0]; g_nVideoCharSet = 0; break;
case A2TYPE_APPLE2E: csbits = Get2e_csbits(); break;
case A2TYPE_APPLE2EENHANCED:csbits = Get2e_csbits(); break;
case A2TYPE_PRAVETS82: csbits = &csbits_pravets82[0]; g_nVideoCharSet = 0; break; // Apple ][ clone
case A2TYPE_PRAVETS8M: csbits = &csbits_pravets8M[0]; g_nVideoCharSet = 0; break; // Apple ][ clone
case A2TYPE_PRAVETS8A: csbits = &csbits_pravets8C[0]; break; // Apple //e clone
case A2TYPE_TK30002E: csbits = &csbits_enhanced2e[0]; break; // Enhanced Apple //e clone
case A2TYPE_BASE64A: csbits = &csbits_base64a[GetVideo().GetVideoRomRockerSwitch() ? 0 : 1]; g_nVideoCharSet = 0; break; // Apple ][ clone
default: _ASSERT(0); csbits = &csbits_enhanced2e[0]; break;
}
}
//===========================================================================
inline float clampZeroOne( const float & x )
{
if (x < 0.f) return 0.f;
if (x > 1.f) return 1.f;
/* ...... */ return x;
}
//===========================================================================
inline uint8_t getCharSetBits(int iChar)
{
return csbits[g_nVideoCharSet][iChar][g_nVideoClockVert & 7];
}
//===========================================================================
inline uint16_t getLoResBits( uint8_t iByte )
{
return g_aPixelMaskGR[ (iByte >> (g_nVideoClockVert & 4)) & 0xF ];
}
//===========================================================================
inline uint32_t getScanlineColor( const uint16_t signal, const bgra_t *pTable )
{
g_nSignalBitsNTSC = ((g_nSignalBitsNTSC << 1) | signal) & 0xFFF; // 12-bit
return *(uint32_t*) &pTable[ g_nSignalBitsNTSC ];
}
//===========================================================================
inline uint32_t* getScanlineNextInbetween()
{
return (uint32_t*) (g_pVideoAddress - 1*g_kFrameBufferWidth);
}
#if 0 // don't use this pixel, as it's from the previous video-frame!
inline uint32_t* getScanlineNext()
{
return (uint32_t*) (g_pVideoAddress - 2*g_kFrameBufferWidth);
}
#endif
//===========================================================================
inline uint32_t* getScanlinePreviousInbetween()
{
return (uint32_t*) (g_pVideoAddress + 1*g_kFrameBufferWidth);
}
inline uint32_t* getScanlinePrevious()
{
return (uint32_t*) (g_pVideoAddress + 2*g_kFrameBufferWidth);
}
//===========================================================================
inline uint32_t* getScanlineCurrent()
{
return (uint32_t*) g_pVideoAddress;
}
//===========================================================================
inline void updateColorPhase()
{
g_nColorPhaseNTSC++;
g_nColorPhaseNTSC &= 3;
}
//===========================================================================
inline void updateFlashRate() // TODO: Flash rate should be constant (regardless of CPU speed)
{
// BUG: In unthrottled CPU mode, flash rate should not be affected
// Flash rate:
// . NTSC : 60/16 ~= 4Hz
// . PAL : 50/16 ~= 3Hz
if ((++g_nTextFlashCounter & 0xF) == 0)
g_nTextFlashMask ^= -1; // 16-bits
// The old way to handle flashing was
// if ((SW_TEXT || SW_MIXED) ) // && !SW_80COL) // FIX: FLASH 80-Column
// g_nTextFlashMask = true;
// The new way is to check the active char set, inlined:
// if (0 == g_nVideoCharSet && 0x40 == (m & 0xC0)) // Flash only if mousetext not active
}
#if 0
#define updateFramebufferMonitorSingleScanline(signal,table) \
do { \
uint32_t *cp, *mp; \
g_nSignalBitsNTSC = ((g_nSignalBitsNTSC << 1) | signal) & 0xFFF; \
cp = (uint32_t*) &table[g_nSignalBitsNTSC]; \
*(uint32_t*)g_pVideoAddress = *cp; \
mp = (uint32_t*)(g_pVideoAddress - FRAMEBUFFER_W); \
*mp = ((*cp & 0x00fcfcfc) >> 2) | ALPHA32_MASK; \
g_pVideoAddress++; \
} while(0)
// prevp is never used nor blended with!
#define updateFramebufferTVSingleScanline(signal,table) \
do { \
uint32_t ntscp, /*prevp,*/ betwp; \
uint32_t *prevlin, *between; \
g_nSignalBitsNTSC = ((g_nSignalBitsNTSC << 1) | signal) & 0xFFF; \
/*prevlin = (uint32_t*)(g_pVideoAddress + 2*FRAMEBUFFER_W);*/ \
between = (uint32_t*)(g_pVideoAddress + 1*FRAMEBUFFER_W); \
ntscp = *(uint32_t*) &table[g_nSignalBitsNTSC]; /* raw current NTSC color */ \
/*prevp = *prevlin;*/ \
betwp = ntscp - ((ntscp & 0x00fcfcfc) >> 2); \
*between = betwp | ALPHA32_MASK; \
*(uint32_t*)g_pVideoAddress = ntscp; \
g_pVideoAddress++; \
} while(0)
#define updateFramebufferMonitorDoubleScanline(signal,table) \
do { \
uint32_t *cp, *mp; \
g_nSignalBitsNTSC = ((g_nSignalBitsNTSC << 1) | signal) & 0xFFF; \
cp = (uint32_t*) &table[g_nSignalBitsNTSC]; \
mp = (uint32_t*)(g_pVideoAddress - FRAMEBUFFER_W); \
*(uint32_t*)g_pVideoAddress = *mp = *cp; \
g_pVideoAddress++; \
} while(0)
#define updateFramebufferTVDoubleScanline(signal,table) \
do { \
uint32_t ntscp, prevp, betwp; \
uint32_t *prevlin, *between; \
g_nSignalBitsNTSC = ((g_nSignalBitsNTSC << 1) | signal) & 0xFFF; \
prevlin = (uint32_t*)(g_pVideoAddress + 2*FRAMEBUFFER_W); \
between = (uint32_t*)(g_pVideoAddress + 1*FRAMEBUFFER_W); \
ntscp = *(uint32_t*) &table[g_nSignalBitsNTSC]; /* raw current NTSC color */ \
prevp = *prevlin; \
betwp = ((ntscp & 0x00fefefe) >> 1) + ((prevp & 0x00fefefe) >> 1); \
*between = betwp | ALPHA32_MASK; \
*(uint32_t*)g_pVideoAddress = ntscp; \
g_pVideoAddress++; \
} while(0)
#else
//===========================================================================
// Original: Prev1(inbetween) = current - 25% of previous AppleII scanline
// GH#650: Prev1(inbetween) = 50% of (50% current + 50% of previous AppleII scanline)
inline void updateFramebufferTVSingleScanline( uint16_t signal, bgra_t *pTable )
{
uint32_t *pLine0Curr = getScanlineCurrent();
uint32_t *pLine1Prev = getScanlinePreviousInbetween();
uint32_t *pLine2Prev = getScanlinePrevious();
const uint32_t color0 = getScanlineColor( signal, pTable );
const uint32_t color2 = *pLine2Prev;
uint32_t color1 = ((color0 & 0x00fefefe) >> 1) + ((color2 & 0x00fefefe) >> 1); // 50% Blend
color1 = (color1 & 0x00fefefe) >> 1; // ... then 50% brightness for inbetween line
*pLine1Prev = color1 | ALPHA32_MASK;
*pLine0Curr = color0;
// GH#650: Draw to final inbetween scanline to avoid residue from other video modes (eg. Amber->TV B&W)
if (g_nVideoClockVert == (VIDEO_SCANNER_Y_DISPLAY-1))
*getScanlineNextInbetween() = ((color0 & 0x00fcfcfc) >> 2) | ALPHA32_MASK; // 50% of (50% current + black)) = 25% of current
g_pVideoAddress++;
}
//===========================================================================
// Original: Prev1(inbetween) = 50% current + 50% of previous AppleII scanline
inline void updateFramebufferTVDoubleScanline( uint16_t signal, bgra_t *pTable )
{
uint32_t *pLine0Curr = getScanlineCurrent();
uint32_t *pLine1Prev = getScanlinePreviousInbetween();
uint32_t *pLine2Prev = getScanlinePrevious();
const uint32_t color0 = getScanlineColor( signal, pTable );
const uint32_t color2 = *pLine2Prev;
const uint32_t color1 = ((color0 & 0x00fefefe) >> 1) + ((color2 & 0x00fefefe) >> 1); // 50% Blend
*pLine1Prev = color1 | ALPHA32_MASK;
*pLine0Curr = color0;
// GH#650: Draw to final inbetween scanline to avoid residue from other video modes (eg. Amber->TV B&W)
if (g_nVideoClockVert == (VIDEO_SCANNER_Y_DISPLAY-1))
*getScanlineNextInbetween() = ((color0 & 0x00fefefe) >> 1) | ALPHA32_MASK; // (50% current + black)) = 50% of current
g_pVideoAddress++;
}
//===========================================================================
inline void updateFramebufferMonitorSingleScanline( uint16_t signal, bgra_t *pTable )
{
uint32_t *pLine0Curr = getScanlineCurrent();
uint32_t *pLine1Next = getScanlineNextInbetween();
const uint32_t color0 = getScanlineColor( signal, pTable );
const uint32_t color1 = 0; // Remove blending for consistent DHGR MIX mode (GH#631)
// const uint32_t color1 = ((color0 & 0x00fcfcfc) >> 2); // 25% Blend (original)
*pLine1Next = color1 | ALPHA32_MASK;
*pLine0Curr = color0;
g_pVideoAddress++;
}
//===========================================================================
inline void updateFramebufferMonitorDoubleScanline( uint16_t signal, bgra_t *pTable )
{
uint32_t *pLine0Curr = getScanlineCurrent();
uint32_t *pLine1Next = getScanlineNextInbetween();
const uint32_t color0 = getScanlineColor( signal, pTable );
*pLine1Next = color0;
*pLine0Curr = color0;
g_pVideoAddress++;
}
#endif
//===========================================================================
inline bool GetColorBurst( void )
{
return g_nColorBurstPixels >= 2;
}
//===========================================================================
void update7MonoPixels( uint16_t bits )
{
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1);
}
//===========================================================================
// NB. g_nLastColumnPixelNTSC = bits.b13 will be superseded by these parent funcs which use bits.b14:
// . updateScreenDoubleHires80(), updateScreenDoubleLores80(), updateScreenText80()
inline void updatePixels(uint16_t bits)
{
if (!GetColorBurst())
{
/* #1 of 7 */
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
/* #2 of 7 */
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
/* #3 of 7 */
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
/* #4 of 7 */
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
/* #5 of 7 */
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
/* #6 of 7 */
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
/* #7 of 7 */
g_pFuncUpdateBnWPixel(bits & 1); bits >>= 1;
g_pFuncUpdateBnWPixel(bits & 1);
g_nLastColumnPixelNTSC = bits & 1;
}
else
{
/* #1 of 7 */ // abcd efgh ijkl mnop
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0abc defg hijk lmno
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 00ab cdef ghi jklmn
/* #2 of 7 */
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 000a bcde fghi jklm
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 abcd efgh ijkl
/* #3 of 7 */
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 0abc defg hijk
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 00ab cdef ghij
/* #4 of 7 */
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 000a bcde fghi
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 0000 abcd efgh
/* #5 of 7 */
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 0000 0abc defg
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 0000 00ab cdef
/* #6 of 7 */
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 0000 000a bcde
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 0000 0000 abcd
/* #7 of 7 */
g_pFuncUpdateHuePixel(bits & 1); bits >>= 1; // 0000 0000 0000 0abc
g_pFuncUpdateHuePixel(bits & 1);
g_nLastColumnPixelNTSC = bits & 1;
}
}
//===========================================================================
inline void updateVideoScannerHorzEOLSimple()
{
if (VIDEO_SCANNER_MAX_HORZ == ++g_nVideoClockHorz)
{
g_nVideoClockHorz = 0;
if (++g_nVideoClockVert == g_videoScannerMaxVert)
{
g_nVideoClockVert = 0;
updateFlashRate();
}
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
updateVideoScannerAddress();
}
}
}
// NOTE: This writes out-of-bounds for a 560x384 framebuffer
inline void updateVideoScannerHorzEOL()
{
if (VIDEO_SCANNER_MAX_HORZ == ++g_nVideoClockHorz)
{
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if (!GetColorBurst())
{
// Only for: VF_TEXT && !VF_MIXED (ie. full 24-row TEXT40 or TEXT80)
g_pFuncUpdateBnWPixel(g_nLastColumnPixelNTSC);
g_pFuncUpdateBnWPixel(0);
g_pFuncUpdateBnWPixel(0);
}
else
{
g_pFuncUpdateHuePixel(g_nLastColumnPixelNTSC);
g_pFuncUpdateHuePixel(0);
g_pFuncUpdateHuePixel(0);
}
}
g_nVideoClockHorz = 0;
if (++g_nVideoClockVert == g_videoScannerMaxVert)
{
g_nVideoClockVert = 0;
updateFlashRate();
}
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
updateVideoScannerAddress();
}
}
}
//===========================================================================
inline void updateVideoScannerAddress()
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED && GetVideo().GetVideoRefreshRate() == VR_50HZ) // GH#763
g_nColorBurstPixels = 0; // instantaneously kill color-burst!
g_pVideoAddress = g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY ? g_pScanLines[2*g_nVideoClockVert] : g_pScanLines[0];
// Adjust, as these video styles have 2x 14M pixels of pre-render
// NB. For VT_COLOR_MONITOR_NTSC, also check color-burst so that TEXT and MIXED(HGR+TEXT) render the TEXT at the same offset (GH#341)
if (GetVideo().GetVideoType() == VT_MONO_TV || GetVideo().GetVideoType() == VT_COLOR_TV || (GetVideo().GetVideoType() == VT_COLOR_MONITOR_NTSC && GetColorBurst()))
g_pVideoAddress -= 2;
// GH#555: For the 14M video modes (DHGR,DGR,80COL), start rendering 1x 14M pixel early to account for these video modes being shifted right by 1 pixel
// NB. This 1 pixel shift right is a workaround for the 14M video modes that actually start 7x 14M pixels to the left on *real h/w*.
// . 7x 14M pixels early + 1x 14M pixel shifted right = 2 complete color phase rotations.
// . ie. the 14M colors are correct, but being 1 pixel out is the closest we can get the 7M and 14M video modes to overlap.
// . The alternative is to render the 14M correctly 7 pixels early, but have 7-pixel borders left (for 7M modes) or right (for 14M modes).
if (((g_pFuncUpdateGraphicsScreen == updateScreenDoubleHires80) ||
(g_pFuncUpdateGraphicsScreen == updateScreenDoubleLores80) ||
(g_pFuncUpdateGraphicsScreen == updateScreenText80) ||
(g_pFuncUpdateGraphicsScreen == updateScreenText80RGB) ||
(g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED && (g_pFuncUpdateTextScreen == updateScreenText80 || g_pFuncUpdateGraphicsScreen == updateScreenText80RGB)))
&& (GetVideo().GetVideoType() != VT_COLOR_IDEALIZED) && (GetVideo().GetVideoType() != VT_COLOR_VIDEOCARD_RGB)) // Fix for "Ansi Story" (Turn the disk over) - Top row of TEXT80 is shifted by 1 pixel
{
g_pVideoAddress -= 1;
}
g_nColorPhaseNTSC = INITIAL_COLOR_PHASE;
g_nLastColumnPixelNTSC = 0;
g_nSignalBitsNTSC = 0;
}
//===========================================================================
INLINE uint16_t getVideoScannerAddressTXT()
{
return (g_aClockVertOffsetsTXT[g_nVideoClockVert/8] +
g_pHorzClockOffset [g_nVideoClockVert/64][g_nVideoClockHorz] + (g_nTextPage * 0x400));
}
//===========================================================================
INLINE uint16_t getVideoScannerAddressHGR()
{
// NB. For both A2 and //e use APPLE_IIE_HORZ_CLOCK_OFFSET - see VideoGetScannerAddress() where only TEXT mode adds $1000
return (g_aClockVertOffsetsHGR[g_nVideoClockVert ] +
APPLE_IIE_HORZ_CLOCK_OFFSET[g_nVideoClockVert/64][g_nVideoClockHorz] + (g_nHiresPage * 0x2000));
}
// Non-Inline _________________________________________________________
// Build the 4 phase chroma lookup table
// The YI'Q' colors are hard-coded
//===========================================================================
static void initChromaPhaseTables (void)
{
int phase,s,t,n;
real z,y0,y1,c,i,q;
real phi,zz;
float brightness;
double r64,g64,b64;
float r32,g32,b32;
for (phase = 0; phase < 4; ++phase)
{
phi = (phase * RAD_90) + CYCLESTART;
for (s = 0; s < NTSC_NUM_SEQUENCES; ++s)
{
t = s;
y0 = y1 = c = i = q = 0.0;
for (n = 0; n < 12; ++n)
{
z = (real)(0 != (t & 0x800));
t = t << 1;
for(int k = 0; k < 2; k++ )
{
//z = z * 1.25;
zz = initFilterSignal(z);
c = initFilterChroma(zz); // "Mostly" correct _if_ CYCLESTART = PI/4 = 45 degrees
y0 = initFilterLuma0 (zz);
y1 = initFilterLuma1 (zz - c);
c = c * 2.f;
i = i + (c * cos(phi) - i) / 8.f;
q = q + (c * sin(phi) - q) / 8.f;
phi += RAD_45;
} // k
} // samples
brightness = clampZeroOne( (float)z );
g_aBnWMonitor[s].b = (uint8_t)(brightness * 255);
g_aBnWMonitor[s].g = (uint8_t)(brightness * 255);
g_aBnWMonitor[s].r = (uint8_t)(brightness * 255);
g_aBnWMonitor[s].a = 255;
brightness = clampZeroOne( (float)y1);
g_aBnwColorTV[s].b = (uint8_t)(brightness * 255);
g_aBnwColorTV[s].g = (uint8_t)(brightness * 255);
g_aBnwColorTV[s].r = (uint8_t)(brightness * 255);
g_aBnwColorTV[s].a = 255;
/*
YI'V' to RGB
[r g b] = [y i v][ 1 1 1 ]
[0.956 -0.272 -1.105]
[0.621 -0.647 1.702]
[r] [1 0.956 0.621][y]
[g] = [1 -0.272 -0.647][i]
[b] [1 -1.105 1.702][v]
*/
#define I_TO_R 0.956f
#define I_TO_G -0.272f
#define I_TO_B -1.105f
#define Q_TO_R 0.621f
#define Q_TO_G -0.647f
#define Q_TO_B 1.702f
r64 = y0 + (I_TO_R * i) + (Q_TO_R * q);
g64 = y0 + (I_TO_G * i) + (Q_TO_G * q);
b64 = y0 + (I_TO_B * i) + (Q_TO_B * q);
b32 = clampZeroOne( (float)b64);
g32 = clampZeroOne( (float)g64);
r32 = clampZeroOne( (float)r64);
int color = s & 15;
#if NTSC_REMOVE_WHITE_RINGING
if( color == 15 ) // white
{
r32 = 1;
g32 = 1;
b32 = 1;
}
#endif
#if NTSC_REMOVE_BLACK_GHOSTING
if( color == 0 ) // Black
{
r32 = 0;
g32 = 0;
b32 = 0;
}
#endif
#if NTSC_REMOVE_GRAY_CHROMA
if( color == 5 ) // Gray1 & Gray2
{
const float g = (float) 0x83 / (float) 0xFF;
r32 = g;
g32 = g;
b32 = g;
}
if( color == 10 ) // Gray2 & Gray1
{
const float g = (float) 0x78 / (float) 0xFF;
r32 = g;
g32 = g;
b32 = g;
}
#endif
g_aHueMonitor[phase][s].b = (uint8_t)(b32 * 255);
g_aHueMonitor[phase][s].g = (uint8_t)(g32 * 255);
g_aHueMonitor[phase][s].r = (uint8_t)(r32 * 255);
g_aHueMonitor[phase][s].a = 255;
r64 = y1 + (I_TO_R * i) + (Q_TO_R * q);
g64 = y1 + (I_TO_G * i) + (Q_TO_G * q);
b64 = y1 + (I_TO_B * i) + (Q_TO_B * q);
b32 = clampZeroOne( (float)b64 );
g32 = clampZeroOne( (float)g64 );
r32 = clampZeroOne( (float)r64 );
#if NTSC_REMOVE_WHITE_RINGING
if( color == 15 ) // white
{
r32 = 1;
g32 = 1;
b32 = 1;
}
#endif
#if NTSC_REMOVE_BLACK_GHOSTING
if( color == 0 ) // Black
{
r32 = 0;
g32 = 0;
b32 = 0;
}
#endif
g_aHueColorTV[phase][s].b = (uint8_t)(b32 * 255);
g_aHueColorTV[phase][s].g = (uint8_t)(g32 * 255);
g_aHueColorTV[phase][s].r = (uint8_t)(r32 * 255);
g_aHueColorTV[phase][s].a = 255;
}
}
#if DEBUG_PHASE_ZERO
uint8_t *p = (uint8_t*)g_aHueMonitor;
*p++ = 0xFF;
*p++ = 0x00;
*p++ = 0x00;
*p++ = 0xFF;
#endif
}
/*
http://www-users.cs.york.ac.uk/~fisher/mkfilter/trad.html
Sample Rate: ???
Corner Freq 1: ?
Corner Freq 2: ?
double ButterworthLowPass2( double a, double b, double g, double z )
{
const int POLES=2;
static double x[POLES+1];
static double y[POLES+1];
for( int iPole = 0; iPole < POLES; iPole++ )
{
x[iPole] = x[iPole+1];
y[iPole] = y[iPole+1];
}
x[POLES] = z / g;
y[POLES] = x[0] + x[2] + (2.f*x[1]) + (a*y[0]) + (b*y[1]);
return y[2];
}
*/
// What filter is this ??
// Filter Order: 2 -> poles for low pass
//===========================================================================
static real initFilterChroma (real z)
{
static real x[CHROMA_ZEROS + 1] = {0,0,0};
static real y[CHROMA_POLES + 1] = {0,0,0};
x[0] = x[1]; x[1] = x[2]; x[2] = z / CHROMA_GAIN;
y[0] = y[1]; y[1] = y[2]; y[2] = -x[0] + x[2] + (CHROMA_0*y[0]) + (CHROMA_1*y[1]); // inverted x[0]
return y[2];
}
// Butterworth Lowpass digital filter
// Filter Order: 2 -> poles for low pass
//===========================================================================
static real initFilterLuma0 (real z)
{
static real x[LUMA_ZEROS + 1] = { 0,0,0 };
static real y[LUMA_POLES + 1] = { 0,0,0 };
x[0] = x[1]; x[1] = x[2]; x[2] = z / LUMA_GAIN;
y[0] = y[1]; y[1] = y[2]; y[2] = x[0] + x[2] + (2.f*x[1]) + (LUMA_0*y[0]) + (LUMA_1*y[1]);
return y[2];
}
// Butterworth Lowpass digital filter
// Filter Order: 2 -> poles for low pass
//===========================================================================
static real initFilterLuma1 (real z)
{
static real x[LUMA_ZEROS + 1] = { 0,0,0};
static real y[LUMA_POLES + 1] = { 0,0,0};
x[0] = x[1]; x[1] = x[2]; x[2] = z / LUMA_GAIN;
y[0] = y[1]; y[1] = y[2]; y[2] = x[0] + x[2] + (2.f*x[1]) + (LUMA_0*y[0]) + (LUMA_1*y[1]);
return y[2];
}
// Butterworth Lowpass digital filter
// Filter Order: 2 -> poles for low pass
//===========================================================================
static real initFilterSignal (real z)
{
static real x[SIGNAL_ZEROS + 1] = { 0,0,0 };
static real y[SIGNAL_POLES + 1] = { 0,0,0 };
x[0] = x[1]; x[1] = x[2]; x[2] = z / SIGNAL_GAIN;
y[0] = y[1]; y[1] = y[2]; y[2] = x[0] + x[2] + (2.f*x[1]) + (SIGNAL_0*y[0]) + (SIGNAL_1*y[1]);
return y[2];
}
//===========================================================================
static void initPixelDoubleMasks (void)
{
/*
Convert 7-bit monochrome luminance to 14-bit double pixel luminance
Chroma will be applied later based on the color phase in updatePixelHueMonitorDoubleScanline( luminanceBit )
0x001 -> 0x0003
0x002 -> 0x000C
0x004 -> 0x0030
0x008 -> 0x00C0
: -> :
0x100 -> 0x4000
*/
for (uint8_t byte = 0; byte < 0x80; byte++ ) // Optimization: hgrbits second 128 entries are mirror of first 128
for (uint8_t bits = 0; bits < 7; bits++ ) // high bit = half pixel shift; pre-optimization: bits < 8
if (byte & (1 << bits)) // pow2 mask
g_aPixelDoubleMaskHGR[byte] |= 3 << (bits*2);
for ( uint16_t color = 0; color < 16; color++ )
g_aPixelMaskGR[ color ] = (color << 12) | (color << 8) | (color << 4) | (color << 0);
}
//===========================================================================
void updateMonochromeTables( uint16_t r, uint16_t g, uint16_t b )
{
for( int iSample = 0; iSample < NTSC_NUM_SEQUENCES; iSample++ )
{
g_aBnWMonitorCustom[ iSample ].b = (g_aBnWMonitor[ iSample ].b * b) >> 8;
g_aBnWMonitorCustom[ iSample ].g = (g_aBnWMonitor[ iSample ].g * g) >> 8;
g_aBnWMonitorCustom[ iSample ].r = (g_aBnWMonitor[ iSample ].r * r) >> 8;
g_aBnWMonitorCustom[ iSample ].a = 0xFF;
g_aBnWColorTVCustom[ iSample ].b = (g_aBnwColorTV[ iSample ].b * b) >> 8;
g_aBnWColorTVCustom[ iSample ].g = (g_aBnwColorTV[ iSample ].g * g) >> 8;
g_aBnWColorTVCustom[ iSample ].r = (g_aBnwColorTV[ iSample ].r * r) >> 8;
g_aBnWColorTVCustom[ iSample ].a = 0xFF;
}
}
//===========================================================================
static void updatePixelBnWMonitorSingleScanline (uint16_t compositeSignal)
{
updateFramebufferMonitorSingleScanline(compositeSignal, g_aBnWMonitorCustom);
updateColorPhase(); // Maintain color-phase, as could be switching graphics/text video modes mid-scanline
}
//===========================================================================
static void updatePixelBnWMonitorDoubleScanline (uint16_t compositeSignal)
{
updateFramebufferMonitorDoubleScanline(compositeSignal, g_aBnWMonitorCustom);
updateColorPhase(); // Maintain color-phase, as could be switching graphics/text video modes mid-scanline
}
//===========================================================================
static void updatePixelBnWColorTVSingleScanline (uint16_t compositeSignal)
{
updateFramebufferTVSingleScanline(compositeSignal, g_aBnWColorTVCustom);
updateColorPhase(); // Maintain color-phase, as could be switching graphics/text video modes mid-scanline
}
//===========================================================================
static void updatePixelBnWColorTVDoubleScanline (uint16_t compositeSignal)
{
updateFramebufferTVDoubleScanline(compositeSignal, g_aBnWColorTVCustom);
updateColorPhase(); // Maintain color-phase, as could be switching graphics/text video modes mid-scanline
}
//===========================================================================
static void updatePixelHueColorTVSingleScanline (uint16_t compositeSignal)
{
updateFramebufferTVSingleScanline(compositeSignal, g_aHueColorTV[g_nColorPhaseNTSC]);
updateColorPhase();
}
//===========================================================================
static void updatePixelHueColorTVDoubleScanline (uint16_t compositeSignal)
{
updateFramebufferTVDoubleScanline(compositeSignal, g_aHueColorTV[g_nColorPhaseNTSC]);
updateColorPhase();
}
//===========================================================================
static void updatePixelHueMonitorSingleScanline (uint16_t compositeSignal)
{
updateFramebufferMonitorSingleScanline(compositeSignal, g_aHueMonitor[g_nColorPhaseNTSC]);
updateColorPhase();
}
//===========================================================================
static void updatePixelHueMonitorDoubleScanline (uint16_t compositeSignal)
{
updateFramebufferMonitorDoubleScanline(compositeSignal, g_aHueMonitor[g_nColorPhaseNTSC]);
updateColorPhase();
}
//===========================================================================
void updateScreenDoubleHires40 (long cycles6502) // wsUpdateVideoHires0
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressHGR();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t *pMain = MemGetMainPtr(addr);
uint8_t m = pMain[0];
uint16_t bits = g_aPixelDoubleMaskHGR[m & 0x7F]; // Optimization: hgrbits second 128 entries are mirror of first 128
updatePixels( bits );
// NB. No zeroPixel0_14M(), since no color phase shift (or use of g_nLastColumnPixelNTSC)
}
}
updateVideoScannerHorzEOL();
}
}
//===========================================================================
void updateScreenDoubleHires80Simplified(long cycles6502) // wsUpdateVideoDblHires
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen(cycles6502);
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressHGR();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint16_t addr = getVideoScannerAddressHGR();
uint8_t a = *MemGetAuxPtr(addr);
uint8_t m = *MemGetMainPtr(addr);
UpdateDHiResCell(g_nVideoClockHorz - VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress, true, true);
g_pVideoAddress += 14;
}
}
updateVideoScannerHorzEOLSimple();
}
}
//===========================================================================
void updateScreenDoubleHires80RGB (long cycles6502 ) // wsUpdateVideoDblHires
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressHGR();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint16_t addr = getVideoScannerAddressHGR();
uint8_t a = *MemGetAuxPtr(addr);
uint8_t m = *MemGetMainPtr(addr);
if (RGB_IsMixModeInvertBit7()) // Invert high bit? (GH#633)
{
a ^= 0x80;
m ^= 0x80;
}
if (RGB_Is160Mode())
{
int width = UpdateDHiRes160Cell(g_nVideoClockHorz-VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress);
g_pVideoAddress += width;
}
else if (RGB_Is560Mode())
{
update7MonoPixels(a);
update7MonoPixels(m);
}
else
{
UpdateDHiResCellRGB(g_nVideoClockHorz - VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress, RGB_IsMixMode(), RGB_IsMixModeInvertBit7());
g_pVideoAddress += 14;
}
}
}
updateVideoScannerHorzEOLSimple();
}
}
void updateScreenDoubleHires80 (long cycles6502 ) // wsUpdateVideoDblHires
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressHGR();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t *pMain = MemGetMainPtr(addr);
uint8_t *pAux = MemGetAuxPtr (addr);
uint8_t m = pMain[0];
uint8_t a = pAux [0];
uint16_t bits = ((m & 0x7f) << 7) | (a & 0x7f);
bits = (bits << 1) | g_nLastColumnPixelNTSC;
updatePixels( bits );
g_nLastColumnPixelNTSC = (bits >> 14) & 1;
}
}
updateVideoScannerHorzEOL();
}
}
//===========================================================================
void updateScreenDoubleLores40 (long cycles6502) // wsUpdateVideo7MLores
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressTXT();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t *pMain = MemGetMainPtr(addr);
uint8_t m = pMain[0];
uint16_t lo = getLoResBits( m );
uint16_t bits = g_aPixelDoubleMaskHGR[(0xFF & lo >> ((1 - (g_nVideoClockHorz & 1)) * 2)) & 0x7F]; // Optimization: hgrbits
updatePixels( bits );
// NB. No zeroPixel0_14M(), since no color phase shift (or use of g_nLastColumnPixelNTSC)
}
}
updateVideoScannerHorzEOL();
}
}
//===========================================================================
static void updateScreenDoubleLores80Simplified (long cycles6502) // wsUpdateVideoDblLores
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressTXT();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint16_t addr = getVideoScannerAddressTXT();
UpdateDLoResCell(g_nVideoClockHorz-VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress);
g_pVideoAddress += 14;
}
}
updateVideoScannerHorzEOLSimple();
}
}
void updateScreenDoubleLores80 (long cycles6502) // wsUpdateVideoDblLores
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressTXT();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t *pMain = MemGetMainPtr(addr);
uint8_t *pAux = MemGetAuxPtr (addr);
uint8_t m = pMain[0];
uint8_t a = pAux [0];
uint16_t lo = getLoResBits( m );
uint16_t hi = getLoResBits( a );
uint16_t main = lo >> (((1 - (g_nVideoClockHorz & 1)) * 2) + 3);
uint16_t aux = hi >> (((1 - (g_nVideoClockHorz & 1)) * 2) + 3);
uint16_t bits = (main << 7) | (aux & 0x7f);
updatePixels( bits );
g_nLastColumnPixelNTSC = (bits >> 14) & 1;
}
}
updateVideoScannerHorzEOL();
}
}
//===========================================================================
// Handles both the "SingleHires40" & "DoubleHires40" cases, via UpdateHiResCell()
static void updateScreenHires40Simplified (long cycles6502)
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint16_t addr = getVideoScannerAddressHGR();
UpdateHiResCell(g_nVideoClockHorz-VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress);
g_pVideoAddress += 14;
}
}
updateVideoScannerHorzEOLSimple();
}
}
//===========================================================================
static void updateScreenSingleHires40Duochrome(long cycles6502)
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen(cycles6502);
return;
}
for (; cycles6502 > 0; --cycles6502)
{
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint16_t addr = getVideoScannerAddressHGR();
UpdateHiResDuochromeCell(g_nVideoClockHorz - VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress);
g_pVideoAddress += 14;
}
}
updateVideoScannerHorzEOLSimple();
}
}
//===========================================================================
static void updateScreenSingleHires40RGB(long cycles6502)
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen(cycles6502);
return;
}
for (; cycles6502 > 0; --cycles6502)
{
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint16_t addr = getVideoScannerAddressHGR();
UpdateHiResRGBCell(g_nVideoClockHorz - VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress);
g_pVideoAddress += 14;
}
}
updateVideoScannerHorzEOLSimple();
}
}
//===========================================================================
void updateScreenSingleHires40 (long cycles6502)
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressHGR();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t *pMain = MemGetMainPtr(addr);
uint8_t m = pMain[0];
uint16_t bits = g_aPixelDoubleMaskHGR[m & 0x7F]; // Optimization: hgrbits second 128 entries are mirror of first 128
if (m & 0x80)
bits = (bits << 1) | g_nLastColumnPixelNTSC;
updatePixels( bits );
// For last hpos && bit6=1: (GH#555)
// * if bit7=0 (no shift) then clear g_nLastColumnPixelNTSC to prevent a 3rd 14M (aka DHGR) pixel being drawn
// . even though this is off-screen, it still has an on-screen affect (making the green dot more white on the screen edge).
// * if bit7=1 (half-dot shift) then also clear g_nLastColumnPixelNTSC
// . not sure if this is correct though
if (g_nVideoClockHorz == (VIDEO_SCANNER_MAX_HORZ-1))
g_nLastColumnPixelNTSC = 0;
}
}
updateVideoScannerHorzEOL();
}
}
//===========================================================================
static void updateScreenSingleLores40Simplified (long cycles6502)
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressTXT();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint16_t addr = getVideoScannerAddressTXT();
UpdateLoResCell(g_nVideoClockHorz-VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress);
g_pVideoAddress += 14;
}
}
updateVideoScannerHorzEOLSimple();
}
}
void updateScreenSingleLores40 (long cycles6502)
{
if (g_nVideoMixed && g_nVideoClockVert >= VIDEO_SCANNER_Y_MIXED)
{
g_pFuncUpdateTextScreen( cycles6502 );
return;
}
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressTXT();
if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
g_nColorBurstPixels = 1024;
}
else if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t *pMain = MemGetMainPtr(addr);
uint8_t m = pMain[0];
uint16_t lo = getLoResBits( m );
uint16_t bits = lo >> ((1 - (g_nVideoClockHorz & 1)) * 2);
updatePixels( bits );
}
}
updateVideoScannerHorzEOL();
}
}
//===========================================================================
void updateScreenText40 (long cycles6502)
{
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressTXT();
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
if (g_nColorBurstPixels > 0)
g_nColorBurstPixels -= 1;
}
else if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t *pMain = MemGetMainPtr(addr);
uint8_t m = pMain[0];
uint8_t c = getCharSetBits(m);
uint16_t bits = g_aPixelDoubleMaskHGR[c & 0x7F]; // Optimization: hgrbits second 128 entries are mirror of first 128
if (0 == g_nVideoCharSet && 0x40 == (m & 0xC0)) // Flash only if mousetext not active
bits ^= g_nTextFlashMask;
updatePixels( bits );
}
}
updateVideoScannerHorzEOL();
}
}
//===========================================================================
void updateScreenText40RGB(long cycles6502)
{
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressTXT();
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
if (g_nColorBurstPixels > 0)
g_nColorBurstPixels -= 1;
}
else if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t* pMain = MemGetMainPtr(addr);
uint8_t m = pMain[0];
uint8_t c = getCharSetBits(m);
if (0 == g_nVideoCharSet && 0x40 == (m & 0xC0)) // Flash only if mousetext not active
c ^= g_nTextFlashMask;
UpdateText40ColorCell(g_nVideoClockHorz - VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress, c, m);
g_pVideoAddress += 14;
}
}
updateVideoScannerHorzEOLSimple();
}
}
//===========================================================================
void updateScreenText80 (long cycles6502)
{
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressTXT();
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
if (g_nColorBurstPixels > 0)
g_nColorBurstPixels -= 1;
}
else if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t *pMain = MemGetMainPtr(addr);
uint8_t *pAux = MemGetAuxPtr (addr);
uint8_t m = pMain[0];
uint8_t a = pAux [0];
uint16_t main = getCharSetBits( m );
uint16_t aux = getCharSetBits( a );
if ((0 == g_nVideoCharSet) && 0x40 == (m & 0xC0)) // Flash only if mousetext not active
main ^= g_nTextFlashMask;
if ((0 == g_nVideoCharSet) && 0x40 == (a & 0xC0)) // Flash only if mousetext not active
aux ^= g_nTextFlashMask;
uint16_t bits = (main << 7) | (aux & 0x7f);
if ((GetVideo().GetVideoType() != VT_COLOR_IDEALIZED) // No extra 14M bit needed for VT_COLOR_IDEALIZED
&& (GetVideo().GetVideoType() != VT_COLOR_VIDEOCARD_RGB))
bits = (bits << 1) | g_nLastColumnPixelNTSC; // GH#555: Align TEXT80 chars with DHGR
updatePixels( bits );
g_nLastColumnPixelNTSC = (bits >> 14) & 1;
}
}
updateVideoScannerHorzEOL();
}
}
//===========================================================================
void updateScreenText80RGB(long cycles6502)
{
for (; cycles6502 > 0; --cycles6502)
{
uint16_t addr = getVideoScannerAddressTXT();
if ((g_nVideoClockHorz < VIDEO_SCANNER_HORZ_COLORBURST_END) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_COLORBURST_BEG))
{
if (g_nColorBurstPixels > 0)
g_nColorBurstPixels -= 1;
}
else if (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY)
{
if (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START)
{
uint8_t* pMain = MemGetMainPtr(addr);
uint8_t* pAux = MemGetAuxPtr(addr);
uint8_t m = pMain[0];
uint8_t a = pAux[0];
uint16_t main = getCharSetBits(m);
uint16_t aux = getCharSetBits(a);
if ((0 == g_nVideoCharSet) && 0x40 == (m & 0xC0)) // Flash only if mousetext not active
main ^= g_nTextFlashMask;
if ((0 == g_nVideoCharSet) && 0x40 == (a & 0xC0)) // Flash only if mousetext not active
aux ^= g_nTextFlashMask;
UpdateText80ColorCell(g_nVideoClockHorz - VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress, (uint8_t)aux, a);
g_pVideoAddress += 7;
UpdateText80ColorCell(g_nVideoClockHorz - VIDEO_SCANNER_HORZ_START, g_nVideoClockVert, addr, g_pVideoAddress, (uint8_t)main, m);
g_pVideoAddress += 7;
uint16_t bits = (main << 7) | (aux & 0x7f);
g_nLastColumnPixelNTSC = (bits >> 14) & 1;
}
}
updateVideoScannerHorzEOL();
}
}
// Functions (Public) _____________________________________________________________________________
//===========================================================================
uint32_t*NTSC_VideoGetChromaTable( bool bHueTypeMonochrome, bool bMonitorTypeColorTV )
{
if( bHueTypeMonochrome )
{
g_nChromaSize = sizeof( g_aBnwColorTV );
if( bMonitorTypeColorTV )
return (uint32_t*) g_aBnwColorTV;
else
return (uint32_t*) g_aBnWMonitor;
} else {
g_nChromaSize = sizeof( g_aHueColorTV );
if( bMonitorTypeColorTV )
return (uint32_t*) g_aHueColorTV;
else
#if ALT_TABLE
g_nChromaSize = sizeof(T_NTSC);
return (uint32_t*)T_NTSC;
#endif
return (uint32_t*) g_aHueMonitor;
}
}
//===========================================================================
void NTSC_VideoClockResync(const DWORD dwCyclesThisFrame)
{
g_nVideoClockVert = (uint16_t)(dwCyclesThisFrame / VIDEO_SCANNER_MAX_HORZ) % g_videoScannerMaxVert;
g_nVideoClockHorz = (uint16_t)(dwCyclesThisFrame % VIDEO_SCANNER_MAX_HORZ);
}
//===========================================================================
uint16_t NTSC_VideoGetScannerAddress ( const ULONG uExecutedCycles )
{
if (g_bFullSpeed)
{
// Ensure that NTSC video-scanner gets updated during full-speed, so video-dependent Apple II code doesn't hang
NTSC_VideoClockResync( CpuGetCyclesThisVideoFrame(uExecutedCycles) );
}
const uint16_t currVideoClockVert = g_nVideoClockVert;
const uint16_t currVideoClockHorz = g_nVideoClockHorz;
// Required for ANSI STORY (end credits) vert scrolling mid-scanline mixed mode: DGR80, TEXT80, DGR80
g_nVideoClockHorz -= 1;
if ((SHORT)g_nVideoClockHorz < 0)
{
g_nVideoClockHorz += VIDEO_SCANNER_MAX_HORZ;
g_nVideoClockVert -= 1;
if ((SHORT)g_nVideoClockVert < 0)
g_nVideoClockVert = g_videoScannerMaxVert-1;
}
uint16_t addr;
bool bHires = (GetVideo().GetVideoMode() & VF_HIRES) && !(GetVideo().GetVideoMode() & VF_TEXT); // SW_HIRES && !SW_TEXT
if( bHires )
addr = getVideoScannerAddressHGR();
else
addr = getVideoScannerAddressTXT();
g_nVideoClockVert = currVideoClockVert;
g_nVideoClockHorz = currVideoClockHorz;
return addr;
}
uint16_t NTSC_VideoGetScannerAddressForDebugger(void)
{
ResetCyclesExecutedForDebugger(); // if in full-speed, then reset cycles so that CpuCalcCycles() doesn't ASSERT
return NTSC_VideoGetScannerAddress(0);
}
//===========================================================================
void NTSC_SetVideoTextMode( int cols )
{
if (GetVideo().GetVideoType() == VT_COLOR_VIDEOCARD_RGB)
{
if (cols == 40)
g_pFuncUpdateTextScreen = updateScreenText40RGB;
else
g_pFuncUpdateTextScreen = updateScreenText80RGB;
}
else if( cols == 40 )
g_pFuncUpdateTextScreen = updateScreenText40;
else
g_pFuncUpdateTextScreen = updateScreenText80;
}
//===========================================================================
void NTSC_SetVideoMode( uint32_t uVideoModeFlags, bool bDelay/*=false*/ )
{
if (bDelay && !g_bFullSpeed)
{
// (GH#670) NB. if g_bFullSpeed then NTSC_VideoUpdateCycles() won't be called on the next 6502 opcode.
// - Instead it's called when !g_bFullSpeed (eg. drive motor off), then the stale g_uNewVideoModeFlags will get used for NTSC_SetVideoMode()!
g_bDelayVideoMode = true;
g_uNewVideoModeFlags = uVideoModeFlags;
return;
}
g_nVideoMixed = uVideoModeFlags & VF_MIXED;
g_nVideoCharSet = GetVideo().VideoGetSWAltCharSet() ? 1 : 0;
RGB_DisableTextFB();
g_nTextPage = 1;
g_nHiresPage = 1;
if (uVideoModeFlags & VF_PAGE2)
{
// Apple IIe, Technical Notes, #3: Double High-Resolution Graphics
// 80STORE must be OFF to display page 2
if (0 == (uVideoModeFlags & VF_80STORE))
{
g_nTextPage = 2;
g_nHiresPage = 2;
}
}
if (GetVideo().GetVideoRefreshRate() == VR_50HZ && g_pVideoAddress) // GH#763 / NB. g_pVideoAddress==NULL when called via VideoResetState()
{
if (uVideoModeFlags & VF_TEXT)
{
g_nColorBurstPixels = 0; // (For mid-line video mode change) Instantaneously kill color-burst! (not correct as TV's can take many lines)
// Switching mid-line from graphics to TEXT
if (GetVideo().GetVideoType() == VT_COLOR_MONITOR_NTSC &&
g_pFuncUpdateGraphicsScreen != updateScreenText40 && g_pFuncUpdateGraphicsScreen != updateScreenText40RGB
&& g_pFuncUpdateGraphicsScreen != updateScreenText80 && g_pFuncUpdateGraphicsScreen != updateScreenText80RGB)
{
*(uint32_t*)&g_pVideoAddress[0] = 0; // blank out any stale pixel data, eg. ANSI STORY (at end credits)
*(uint32_t*)&g_pVideoAddress[1] = 0;
g_pVideoAddress += 2; // eg. FT's TRIBU demo & ANSI STORY (at "turn the disk over!")
}
}
else
{
g_nColorBurstPixels = 1024; // (For mid-line video mode change)
// Switching mid-line from TEXT to graphics
if (GetVideo().GetVideoType() == VT_COLOR_MONITOR_NTSC &&
(g_pFuncUpdateGraphicsScreen == updateScreenText40 || g_pFuncUpdateGraphicsScreen == updateScreenText40RGB
|| g_pFuncUpdateGraphicsScreen == updateScreenText80 || g_pFuncUpdateGraphicsScreen == updateScreenText80RGB))
{
g_pVideoAddress -= 2; // eg. FT's TRIBU demo & ANSI STORY (at "turn the disk over!")
}
}
}
// Video7_SL7 extra RGB modes handling
if (GetVideo().GetVideoType() == VT_COLOR_VIDEOCARD_RGB
&& RGB_GetVideocard() == RGB_Videocard_e::Video7_SL7
// Exclude following modes (fallback through regular NTSC rendering with RGB text)
// VF_DHIRES = 1 -> regular Apple IIe modes
// VF_DHIRES = 0 and VF_TEXT=0, VF_DHIRES=1, VF_80COL=1 -> DHIRES modes, setup by F1/F2
&& !(!(uVideoModeFlags & VF_DHIRES) ||
((uVideoModeFlags & VF_DHIRES) && !(uVideoModeFlags & VF_TEXT) && (uVideoModeFlags & VF_DHIRES) && (uVideoModeFlags & VF_80COL))
)
)
{
RGB_EnableTextFB(); // F/B text only shows in 40col mode anyway
// ----- Video-7 SL7 extra modes ----- (from the videocard manual)
// AN3 TEXT HIRES 80COL
// 0 1 ? 0 F/B Text
// 0 1 ? 1 80 col Text
// 0 0 0 0 LoRes (mixed with F/B Text)
// 0 0 0 1 DLoRes (mixed with 80 col. Text)
// 0 0 1 0 F/B HiRes (mixed with F/B Text)
if (uVideoModeFlags & VF_TEXT)
{
if (uVideoModeFlags & VF_80COL)
{
// 80 col text
g_pFuncUpdateGraphicsScreen = updateScreenText80RGB;
}
else
{
g_pFuncUpdateGraphicsScreen = updateScreenText40RGB;
}
}
else if (uVideoModeFlags & VF_HIRES)
{
// F/B HiRes
g_pFuncUpdateGraphicsScreen = updateScreenSingleHires40Duochrome;
g_pFuncUpdateTextScreen = updateScreenText40RGB;
}
else if (uVideoModeFlags & VF_80COL)
{
// DLoRes
g_pFuncUpdateGraphicsScreen = updateScreenDoubleLores80Simplified;
g_pFuncUpdateTextScreen = updateScreenText80RGB;
}
else
{
// LoRes + F/B Text
g_pFuncUpdateGraphicsScreen = updateScreenSingleLores40Simplified;
g_pFuncUpdateTextScreen = updateScreenText40RGB;
}
}
// Regular NTSC modes
else if (uVideoModeFlags & VF_TEXT)
{
if (uVideoModeFlags & VF_80COL)
{
if (GetVideo().GetVideoType() == VT_COLOR_VIDEOCARD_RGB)
g_pFuncUpdateGraphicsScreen = updateScreenText80RGB;
else
g_pFuncUpdateGraphicsScreen = updateScreenText80;
}
else if (GetVideo().GetVideoType() == VT_COLOR_VIDEOCARD_RGB)
g_pFuncUpdateGraphicsScreen = updateScreenText40RGB;
else
g_pFuncUpdateGraphicsScreen = updateScreenText40;
}
else if (uVideoModeFlags & VF_HIRES)
{
if (uVideoModeFlags & VF_DHIRES)
{
if (uVideoModeFlags & VF_80COL)
{
if (GetVideo().GetVideoType() == VT_COLOR_IDEALIZED)
g_pFuncUpdateGraphicsScreen = updateScreenDoubleHires80Simplified;
else if (GetVideo().GetVideoType() == VT_COLOR_VIDEOCARD_RGB)
g_pFuncUpdateGraphicsScreen = updateScreenDoubleHires80RGB;
else
g_pFuncUpdateGraphicsScreen = updateScreenDoubleHires80;
}
else
{
if (GetVideo().GetVideoType() == VT_COLOR_IDEALIZED)
g_pFuncUpdateGraphicsScreen = updateScreenHires40Simplified; // handles both Single/Double Hires40 (EG. FT's DIGIDREAM demo)
// else if (GetVideo().GetVideoType() == VT_COLOR_VIDEOCARD_RGB)
// // TODO
else
g_pFuncUpdateGraphicsScreen = updateScreenDoubleHires40;
}
}
else
{
if (GetVideo().GetVideoType() == VT_COLOR_IDEALIZED)
g_pFuncUpdateGraphicsScreen = updateScreenHires40Simplified;
else if (GetVideo().GetVideoType() == VT_COLOR_VIDEOCARD_RGB)
g_pFuncUpdateGraphicsScreen = updateScreenSingleHires40RGB;
else
g_pFuncUpdateGraphicsScreen = updateScreenSingleHires40;
}
}
else
{
if (uVideoModeFlags & VF_DHIRES)
{
if (uVideoModeFlags & VF_80COL)
{
if ((GetVideo().GetVideoType() == VT_COLOR_IDEALIZED) || (GetVideo().GetVideoType() == VT_COLOR_VIDEOCARD_RGB))
g_pFuncUpdateGraphicsScreen = updateScreenDoubleLores80Simplified;
else
g_pFuncUpdateGraphicsScreen = updateScreenDoubleLores80;
}
else
{
g_pFuncUpdateGraphicsScreen = updateScreenDoubleLores40;
}
}
else
{
if ((GetVideo().GetVideoType() == VT_COLOR_IDEALIZED) || (GetVideo().GetVideoType() == VT_COLOR_VIDEOCARD_RGB))
g_pFuncUpdateGraphicsScreen = updateScreenSingleLores40Simplified;
else
g_pFuncUpdateGraphicsScreen = updateScreenSingleLores40;
}
}
}
//===========================================================================
void NTSC_SetVideoStyle(void)
{
const bool half = GetVideo().IsVideoStyle(VS_HALF_SCANLINES);
const VideoRefreshRate_e refresh = GetVideo().GetVideoRefreshRate();
uint8_t r, g, b;
switch ( GetVideo().GetVideoType() )
{
case VT_COLOR_TV:
r = 0xFF;
g = 0xFF;
b = 0xFF;
updateMonochromeTables( r, g, b );
if (half)
{
g_pFuncUpdateBnWPixel = updatePixelBnWColorTVSingleScanline;
g_pFuncUpdateHuePixel = updatePixelHueColorTVSingleScanline;
}
else
{
g_pFuncUpdateBnWPixel = updatePixelBnWColorTVDoubleScanline;
g_pFuncUpdateHuePixel = updatePixelHueColorTVDoubleScanline;
}
break;
case VT_COLOR_MONITOR_NTSC:
default:
r = 0xFF;
g = 0xFF;
b = 0xFF;
updateMonochromeTables( r, g, b );
if (half)
{
g_pFuncUpdateBnWPixel = updatePixelBnWMonitorSingleScanline;
g_pFuncUpdateHuePixel = updatePixelHueMonitorSingleScanline;
}
else
{
g_pFuncUpdateBnWPixel = updatePixelBnWMonitorDoubleScanline;
g_pFuncUpdateHuePixel = updatePixelHueMonitorDoubleScanline;
}
break;
case VT_MONO_TV:
r = 0xFF;
g = 0xFF;
b = 0xFF;
updateMonochromeTables( r, g, b ); // Custom Monochrome color
if (half)
g_pFuncUpdateBnWPixel = g_pFuncUpdateHuePixel = updatePixelBnWColorTVSingleScanline;
else
g_pFuncUpdateBnWPixel = g_pFuncUpdateHuePixel = updatePixelBnWColorTVDoubleScanline;
break;
case VT_MONO_AMBER:
r = 0xFF;
g = 0x80;
b = 0x00;
goto _mono;
case VT_MONO_GREEN:
r = 0x00;
g = 0xC0;
b = 0x00;
goto _mono;
case VT_COLOR_IDEALIZED:
case VT_COLOR_VIDEOCARD_RGB:
case VT_MONO_WHITE:
r = 0xFF;
g = 0xFF;
b = 0xFF;
goto _mono;
case VT_MONO_CUSTOM:
// From WinGDI.h
// #define RGB(r,g,b) ((COLORREF)(((BYTE)(r)|((WORD)((BYTE)(g))<<8))|(((DWORD)(BYTE)(b))<<16)))
//#define GetRValue(rgb) (LOBYTE(rgb))
//#define GetGValue(rgb) (LOBYTE(((WORD)(rgb)) >> 8))
//#define GetBValue(rgb) (LOBYTE((rgb)>>16))
r = (GetVideo().GetMonochromeRGB() >> 0) & 0xFF;
g = (GetVideo().GetMonochromeRGB() >> 8) & 0xFF;
b = (GetVideo().GetMonochromeRGB() >> 16) & 0xFF;
_mono:
updateMonochromeTables( r, g, b ); // Custom Monochrome color
if (half)
g_pFuncUpdateBnWPixel = g_pFuncUpdateHuePixel = updatePixelBnWMonitorSingleScanline;
else
g_pFuncUpdateBnWPixel = g_pFuncUpdateHuePixel = updatePixelBnWMonitorDoubleScanline;
break;
}
}
//===========================================================================
static void GenerateVideoTables( void );
static void GenerateBaseColors(baseColors_t pBaseNtscColors);
void NTSC_Destroy(void)
{
// After a VM restart, this will point to an old FrameBuffer
// - if it's now unmapped then this can cause a crash in NTSC_SetVideoMode()!
g_pVideoAddress = 0;
}
void NTSC_VideoInit( uint8_t* pFramebuffer ) // wsVideoInit
{
make_csbits();
GenerateVideoTables();
initPixelDoubleMasks();
initChromaPhaseTables();
updateMonochromeTables( 0xFF, 0xFF, 0xFF );
for (int y = 0; y < (VIDEO_SCANNER_Y_DISPLAY*2); y++)
{
uint32_t offset = sizeof(bgra_t) * GetVideo().GetFrameBufferWidth()
* ((GetVideo().GetFrameBufferHeight() - 1) - y - GetVideo().GetFrameBufferBorderHeight())
+ (sizeof(bgra_t) * GetVideo().GetFrameBufferBorderWidth());
g_pScanLines[y] = (bgra_t*) (GetVideo().GetFrameBuffer() + offset);
}
g_pVideoAddress = g_pScanLines[0];
g_pFuncUpdateTextScreen = updateScreenText40;
g_pFuncUpdateGraphicsScreen = updateScreenText40;
GetVideo().VideoReinitialize(); // Setup g_pFunc_ntsc*Pixel()
bgra_t baseColors[kNumBaseColors];
GenerateBaseColors(&baseColors);
VideoInitializeOriginal(&baseColors);
#if HGR_TEST_PATTERN
// Init HGR to almost all-possible-combinations
// CALL-151
// C050 C053 C057
unsigned char b = 0;
unsigned char *main, *aux;
uint16_t ad;
for( unsigned page = 0; page < 2; page++ )
{
// for( unsigned w = 0; w < 2; w++ ) // 16 cols
{
for( unsigned z = 0; z < 2; z++ ) // 8 cols
{
b = 0; // 4 columns * 64 rows
for( unsigned x = 0; x < 4; x++ ) // 4 cols
{
for( unsigned y = 0; y < 64; y++ ) // 1 col
{
unsigned y2 = y*2;
ad = 0x2000 + (y2&7)*0x400 + ((y2/8)&7)*0x80 + (y2/64)*0x28 + 2*x + 10*z; // + 20*w;
ad += 0x2000*page;
main = MemGetMainPtr(ad);
aux = MemGetAuxPtr (ad);
main[0] = b; main[1] = z + page*0x80;
aux [0] = z; aux [1] = 0;
if( page == 1 )
{
// Columns = # of consecutive pixels
// x = 0, 1, 2, 3
// # = 3, 5, 7, 9
// b = 3, 7, 15, 31
// = (4 << x) - 1
main[0+z] = (0x80*(y/32) + (((4 << x) - 1) << (y/8))); // (3 | 3+x*2)
main[1+z] = (0x80*(y/32) + (((4 << x) - 1) << (y/8))) >> 8;
}
y2 = y*2 + 1;
ad = 0x2000 + (y2&7)*0x400 + ((y2/8)&7)*0x80 + (y2/64)*0x28 + 2*x + 10*z; // + 20*w;
ad += 0x2000*page;
main = MemGetMainPtr(ad);
aux = MemGetAuxPtr (ad);
main[0] = 0; main[1] = z + page*0x80;
aux [0] = b; aux [1] = 0;
b++;
}
}
}
}
}
#endif
}
//===========================================================================
void NTSC_VideoReinitialize( DWORD cyclesThisFrame, bool bInitVideoScannerAddress )
{
if (cyclesThisFrame >= g_videoScanner6502Cycles)
{
// Possible, since ContinueExecution() loop waits until: cycles > g_videoScanner6502Cycles && VBL
cyclesThisFrame %= g_videoScanner6502Cycles;
}
g_nVideoClockVert = (uint16_t) (cyclesThisFrame / VIDEO_SCANNER_MAX_HORZ);
g_nVideoClockHorz = cyclesThisFrame % VIDEO_SCANNER_MAX_HORZ;
if (bInitVideoScannerAddress) // GH#611
updateVideoScannerAddress(); // Pre-condition: g_nVideoClockVert
}
//===========================================================================
void NTSC_VideoInitAppleType ()
{
int model = GetApple2Type();
// anything other than low bit set means not II/II+ (TC: include Pravets machines too?)
if (model & 0xFFFE)
g_pHorzClockOffset = APPLE_IIE_HORZ_CLOCK_OFFSET;
else
g_pHorzClockOffset = APPLE_IIP_HORZ_CLOCK_OFFSET;
set_csbits();
}
//===========================================================================
void NTSC_VideoInitChroma()
{
initChromaPhaseTables();
}
//===========================================================================
// NB. NTSC video-scanner doesn't get updated during full-speed, so video-dependent Apple II code can hang
//bool NTSC_VideoIsVbl ()
//{
// return (g_nVideoClockVert >= VIDEO_SCANNER_Y_DISPLAY) && (g_nVideoClockVert < VIDEO_SCANNER_MAX_VERT);
//}
//===========================================================================
// Pre: cyclesLeftToUpdate = [0...g_videoScanner6502Cycles]
// . 2-14: After one emulated 6502/65C02 opcode (optionally with IRQ)
// . ~1000: After 1ms of Z80 emulation
// . 17030: From NTSC_VideoRedrawWholeScreen()
static void VideoUpdateCycles( int cyclesLeftToUpdate )
{
const int cyclesToEndOfLine = VIDEO_SCANNER_MAX_HORZ - g_nVideoClockHorz;
if (g_nVideoClockVert < VIDEO_SCANNER_Y_MIXED)
{
const int cyclesToLine160 = VIDEO_SCANNER_MAX_HORZ * (VIDEO_SCANNER_Y_MIXED - g_nVideoClockVert - 1) + cyclesToEndOfLine;
int cycles = cyclesLeftToUpdate < cyclesToLine160 ? cyclesLeftToUpdate : cyclesToLine160;
g_pFuncUpdateGraphicsScreen(cycles); // lines [currV...159]
cyclesLeftToUpdate -= cycles;
const int cyclesFromLine160ToLine261 = g_videoScanner6502Cycles - (VIDEO_SCANNER_MAX_HORZ * VIDEO_SCANNER_Y_MIXED);
cycles = cyclesLeftToUpdate < cyclesFromLine160ToLine261 ? cyclesLeftToUpdate : cyclesFromLine160ToLine261;
g_pFuncUpdateGraphicsScreen(cycles); // lines [160..191..261]
cyclesLeftToUpdate -= cycles;
// Any remaining cyclesLeftToUpdate: lines [0...currV)
}
else
{
const int cyclesToLine262 = VIDEO_SCANNER_MAX_HORZ * (g_videoScannerMaxVert - g_nVideoClockVert - 1) + cyclesToEndOfLine;
int cycles = cyclesLeftToUpdate < cyclesToLine262 ? cyclesLeftToUpdate : cyclesToLine262;
g_pFuncUpdateGraphicsScreen(cycles); // lines [currV...261]
cyclesLeftToUpdate -= cycles;
const int cyclesFromLine0ToLine159 = VIDEO_SCANNER_MAX_HORZ * VIDEO_SCANNER_Y_MIXED;
cycles = cyclesLeftToUpdate < cyclesFromLine0ToLine159 ? cyclesLeftToUpdate : cyclesFromLine0ToLine159;
g_pFuncUpdateGraphicsScreen(cycles); // lines [0..159]
cyclesLeftToUpdate -= cycles;
// Any remaining cyclesLeftToUpdate: lines [160...currV)
}
if (cyclesLeftToUpdate)
g_pFuncUpdateGraphicsScreen(cyclesLeftToUpdate);
}
//===========================================================================
void NTSC_VideoUpdateCycles( UINT cycles6502 )
{
#ifdef LOG_PERF_TIMINGS
extern UINT64 g_timeVideo;
PerfMarker perfMarker(g_timeVideo);
#endif
_ASSERT(cycles6502 && cycles6502 < g_videoScanner6502Cycles); // Use NTSC_VideoRedrawWholeScreen() instead
if (g_bDelayVideoMode)
{
VideoUpdateCycles(1); // Video mode change is delayed by 1 cycle
g_bDelayVideoMode = false;
NTSC_SetVideoMode(g_uNewVideoModeFlags);
cycles6502--;
if (!cycles6502)
return;
}
VideoUpdateCycles(cycles6502);
}
//===========================================================================
void NTSC_VideoRedrawWholeScreen( void )
{
#ifdef _DEBUG
const uint16_t currVideoClockVert = g_nVideoClockVert;
const uint16_t currVideoClockHorz = g_nVideoClockHorz;
#endif
// (GH#405) For full-speed: whole screen updates will occur periodically
// . The V/H pos will have been recalc'ed, so won't be continuous from previous (whole screen) update
// . So the redraw must start at H-pos=0 & with the usual reinit for the start of a new line
const uint16_t horz = g_nVideoClockHorz;
g_nVideoClockHorz = 0;
updateVideoScannerAddress();
VideoUpdateCycles(g_videoScanner6502Cycles);
VideoUpdateCycles(horz); // Finally update to get to correct H-pos
#ifdef _DEBUG
_ASSERT(currVideoClockVert == g_nVideoClockVert);
_ASSERT(currVideoClockHorz == g_nVideoClockHorz);
#endif
}
//===========================================================================
static bool CheckVideoTables2( eApple2Type type, uint32_t mode )
{
SetApple2Type(type);
NTSC_VideoInitAppleType();
GetVideo().SetVideoMode(mode);
g_dwCyclesThisFrame = 0;
g_nVideoClockHorz = g_nVideoClockVert = 0;
for (DWORD cycles=0; cycles<VIDEO_SCANNER_MAX_VERT*VIDEO_SCANNER_MAX_HORZ; cycles++)
{
WORD addr1 = GetVideo().VideoGetScannerAddress(cycles);
WORD addr2 = GetVideo().GetVideoMode() & VF_TEXT ? getVideoScannerAddressTXT()
: getVideoScannerAddressHGR();
_ASSERT(addr1 == addr2);
if (addr1 != addr2)
{
char str[80];
sprintf(str, "vpos=%04X, hpos=%02X, Video_adr=$%04X, NTSC_adr=$%04X\n", g_nVideoClockVert, g_nVideoClockHorz, addr1, addr2);
OutputDebugString(str);
return false;
}
g_nVideoClockHorz++;
if (g_nVideoClockHorz == VIDEO_SCANNER_MAX_HORZ)
{
g_nVideoClockHorz = 0;
g_nVideoClockVert++;
}
}
return true;
}
static void CheckVideoTables( void )
{
CheckVideoTables2(A2TYPE_APPLE2PLUS, VF_HIRES);
CheckVideoTables2(A2TYPE_APPLE2PLUS, VF_TEXT);
CheckVideoTables2(A2TYPE_APPLE2E, VF_HIRES);
CheckVideoTables2(A2TYPE_APPLE2E, VF_TEXT);
}
static bool IsNTSC(void)
{
return g_videoScannerMaxVert == VIDEO_SCANNER_MAX_VERT;
}
static void GenerateVideoTables( void )
{
eApple2Type currentApple2Type = GetApple2Type();
uint32_t currentVideoMode = GetVideo().GetVideoMode();
int currentHiresPage = g_nHiresPage;
int currentTextPage = g_nTextPage;
g_nHiresPage = g_nTextPage = 1;
//
// g_aClockVertOffsetsHGR[]
//
GetVideo().SetVideoMode(VF_HIRES);
{
UINT i = 0, cycle = VIDEO_SCANNER_HORZ_START;
for (; i < VIDEO_SCANNER_MAX_VERT; i++, cycle += VIDEO_SCANNER_MAX_HORZ)
{
g_aClockVertOffsetsHGR[i] = GetVideo().VideoGetScannerAddress(cycle, Video::VS_PartialAddrV);
if (IsNTSC()) _ASSERT(g_aClockVertOffsetsHGR[i] == g_kClockVertOffsetsHGR[i]);
}
if (!IsNTSC())
{
for (; i < VIDEO_SCANNER_MAX_VERT_PAL; i++, cycle += VIDEO_SCANNER_MAX_HORZ)
g_aClockVertOffsetsHGR[i] = GetVideo().VideoGetScannerAddress(cycle, Video::VS_PartialAddrV);
}
}
//
// g_aClockVertOffsetsTXT[]
//
GetVideo().SetVideoMode(VF_TEXT);
{
UINT i = 0, cycle = VIDEO_SCANNER_HORZ_START;
for (; i < (256 + 8) / 8; i++, cycle += VIDEO_SCANNER_MAX_HORZ * 8)
{
g_aClockVertOffsetsTXT[i] = GetVideo().VideoGetScannerAddress(cycle, Video::VS_PartialAddrV);
if (IsNTSC()) _ASSERT(g_aClockVertOffsetsTXT[i] == g_kClockVertOffsetsTXT[i]);
}
if (!IsNTSC())
{
for (; i < VIDEO_SCANNER_MAX_VERT_PAL / 8; i++, cycle += VIDEO_SCANNER_MAX_HORZ * 8)
g_aClockVertOffsetsTXT[i] = GetVideo().VideoGetScannerAddress(cycle, Video::VS_PartialAddrV);
}
}
//
// APPLE_IIP_HORZ_CLOCK_OFFSET[]
//
GetVideo().SetVideoMode(VF_TEXT);
SetApple2Type(A2TYPE_APPLE2PLUS);
for (UINT j=0; j<5; j++)
{
for (UINT i=0, cycle=j*64*VIDEO_SCANNER_MAX_HORZ; i<VIDEO_SCANNER_MAX_HORZ; i++, cycle++)
{
APPLE_IIP_HORZ_CLOCK_OFFSET[j][i] = GetVideo().VideoGetScannerAddress(cycle, Video::VS_PartialAddrH);
if (IsNTSC()) _ASSERT(APPLE_IIP_HORZ_CLOCK_OFFSET[j][i] == kAPPLE_IIP_HORZ_CLOCK_OFFSET[j][i]);
}
}
//
// APPLE_IIE_HORZ_CLOCK_OFFSET[]
//
GetVideo().SetVideoMode(VF_TEXT);
SetApple2Type(A2TYPE_APPLE2E);
for (UINT j=0; j<5; j++)
{
for (UINT i=0, cycle=j*64*VIDEO_SCANNER_MAX_HORZ; i<VIDEO_SCANNER_MAX_HORZ; i++, cycle++)
{
APPLE_IIE_HORZ_CLOCK_OFFSET[j][i] = GetVideo().VideoGetScannerAddress(cycle, Video::VS_PartialAddrH);
if (IsNTSC()) _ASSERT(APPLE_IIE_HORZ_CLOCK_OFFSET[j][i] == kAPPLE_IIE_HORZ_CLOCK_OFFSET[j][i]);
}
}
//
CheckVideoTables();
SetApple2Type(currentApple2Type);
GetVideo().SetVideoMode(currentVideoMode);
g_nHiresPage = currentHiresPage;
g_nTextPage = currentTextPage;
}
static void GenerateBaseColors(baseColors_t pBaseNtscColors)
{
for (UINT i=0; i<16; i++)
{
g_nColorPhaseNTSC = INITIAL_COLOR_PHASE;
g_nSignalBitsNTSC = 0;
// 12 iterations for colour to "stabilise", then 4 iterations to calc the average
// - after colour "stabilises" then it repeats through 4 phases (with different RGB values for each phase)
uint32_t bits = (i<<12) | (i<<8) | (i<<4) | i; // 16 bits
uint32_t colors[4];
for (UINT j=0; j<16; j++)
{
colors[j&3] = getScanlineColor(bits & 1, g_aHueColorTV[g_nColorPhaseNTSC]);
bits >>= 1;
updateColorPhase();
}
int r = (((colors[0]>>16)&0xff) + ((colors[1]>>16)&0xff) + ((colors[2]>>16)&0xff) + ((colors[3]>>16)&0xff)) / 4;
int g = (((colors[0]>> 8)&0xff) + ((colors[1]>> 8)&0xff) + ((colors[2]>> 8)&0xff) + ((colors[3]>> 8)&0xff)) / 4;
int b = (((colors[0] )&0xff) + ((colors[1] )&0xff) + ((colors[2] )&0xff) + ((colors[3] )&0xff)) / 4;
uint32_t color = ((r<<16) | (g<<8) | b) | ALPHA32_MASK;
(*pBaseNtscColors)[i] = * (bgra_t*) &color;
}
}
//===========================================================================
void NTSC_SetRefreshRate(VideoRefreshRate_e rate)
{
if (rate == VR_50HZ)
{
g_videoScannerMaxVert = VIDEO_SCANNER_MAX_VERT_PAL;
g_videoScanner6502Cycles = VIDEO_SCANNER_6502_CYCLES_PAL;
}
else
{
g_videoScannerMaxVert = VIDEO_SCANNER_MAX_VERT;
g_videoScanner6502Cycles = VIDEO_SCANNER_6502_CYCLES;
}
GenerateVideoTables();
}
UINT NTSC_GetCyclesPerFrame(void)
{
return g_videoScanner6502Cycles;
}
UINT NTSC_GetCyclesPerLine(void)
{
return VIDEO_SCANNER_MAX_HORZ;
}
UINT NTSC_GetVideoLines(void)
{
return (GetVideo().GetVideoRefreshRate() == VR_50HZ) ? VIDEO_SCANNER_MAX_VERT_PAL : VIDEO_SCANNER_MAX_VERT;
}
// Get # cycles until rising Vbl edge: !VBl -> VBl at (0,192)
// . NB. Called from CMouseInterface::SyncEventCallback(), which occurs *before* NTSC_VideoUpdateCycles()
// therefore g_nVideoClockVert/Horz will be behind, so correct 'cycleCurrentPos' by adding 'cycles'.
UINT NTSC_GetCyclesUntilVBlank(int cycles)
{
const UINT cyclesPerFrames = NTSC_GetCyclesPerFrame();
if (g_bFullSpeed)
return cyclesPerFrames; // g_nVideoClockVert/Horz not correct & accuracy isn't important: so just wait a frame's worth of cycles
const UINT cycleVBl = VIDEO_SCANNER_Y_DISPLAY * VIDEO_SCANNER_MAX_HORZ;
const UINT cycleCurrentPos = (g_nVideoClockVert * VIDEO_SCANNER_MAX_HORZ + g_nVideoClockHorz + cycles) % cyclesPerFrames;
return (cycleCurrentPos < cycleVBl) ?
(cycleVBl - cycleCurrentPos) :
(cyclesPerFrames - cycleCurrentPos + cycleVBl);
}
bool NTSC_IsVisible(void)
{
return (g_nVideoClockVert < VIDEO_SCANNER_Y_DISPLAY) && (g_nVideoClockHorz >= VIDEO_SCANNER_HORZ_START);
}