AppleWin/source/CPU.cpp
2008-07-07 21:51:50 +00:00

1728 lines
61 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 1994-1996, Michael O'Brien
Copyright (C) 1999-2001, Oliver Schmidt
Copyright (C) 2002-2005, Tom Charlesworth
Copyright (C) 2006-2007, Tom Charlesworth, Michael Pohoreski
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Description: 6502/65C02 emulation
*
* Author: Various
*/
// TO DO:
// . All these CPP macros need to be converted to inline funcs
// TeaRex's Note about illegal opcodes:
// ------------------------------------
// . I've followed the names and descriptions given in
// . "Extra Instructions Of The 65XX Series CPU"
// . by Adam Vardy, dated Sept 27, 1996.
// . The exception is, what he calls "SKB" and "SKW" I call "NOP",
// . for consistency's sake. Several other naming conventions exist.
// . Of course, only the 6502 has illegal opcodes, the 65C02 doesn't.
// . Thus they're not emulated in Enhanced //e mode. Games relying on them
// . don't run on a real Enhanced //e either. The old mixture of 65C02
// . emulation and skipping the right number of bytes for illegal 6502
// . opcodes, while working surprisingly well in practice, was IMHO
// . ill-founded in theory and has thus been removed.
// Note about bSlowerOnPagecross:
// -------------------
// . This is used to determine if a cycle needs to be added for a page-crossing.
//
// Modes that are affected:
// . ABS,X; ABS,Y; (IND),Y
//
// The following opcodes (when indexed) add a cycle if page is crossed:
// . ADC, AND, Bxx, CMP, EOR, LDA, LDX, LDY, ORA, SBC
// . NB. Those opcode that DO NOT write to memory.
// . 65C02: JMP (ABS-INDIRECT): 65C02 fixes JMP ($xxFF) bug but needs extra cycle in that case
// . 65C02: JMP (ABS-INDIRECT,X): Probably. Currently unimplemented.
//
// The following opcodes (when indexed) DO NOT add a cycle if page is crossed:
// . ASL, DEC, INC, LSR, ROL, ROR, STA, STX, STY
// . NB. Those opcode that DO write to memory.
//
// What about these:
// . 65C02: STZ?, TRB?, TSB?
// . Answer: TRB & TSB don't have affected adressing modes
// . STZ probably doesn't add a cycle since otherwise it would be slower than STA which doesn't make sense.
//
// NB. 'Zero-page indexed' opcodes wrap back to zero-page.
// . The same goes for all the zero-page indirect modes.
//
// NB2. bSlowerOnPagecross can't be used for r/w detection, as these
// . opcodes don't init this flag:
// . $EC CPX ABS (since there's no addressing mode of CPY which has variable cycle number)
// . $CC CPY ABS (same)
//
// 65C02 info:
// . Read-modify-write instructions abs indexed in same page take 6 cycles (cf. 7 cycles for 6502)
// . ASL, DEC, INC, LSR, ROL, ROR
// . This should work now (but makes bSlowerOnPagecross even less useful for r/w detection)
//
// . Thanks to Scott Hemphill for the verified CMOS ADC and SBC algorithm! You rock.
// . And thanks to the VICE team for the NMOS ADC and SBC algorithms as well as the
// . algorithms for those illops which involve ADC or SBC. You rock too.
#include "StdAfx.h"
#pragma hdrstop
#include "MouseInterface.h"
#define AF_SIGN 0x80
#define AF_OVERFLOW 0x40
#define AF_RESERVED 0x20
#define AF_BREAK 0x10
#define AF_DECIMAL 0x08
#define AF_INTERRUPT 0x04
#define AF_ZERO 0x02
#define AF_CARRY 0x01
#define SHORTOPCODES 22
#define BENCHOPCODES 33
// What is this 6502 code?
static BYTE benchopcode[BENCHOPCODES] = {0x06,0x16,0x24,0x45,0x48,0x65,0x68,0x76,
0x84,0x85,0x86,0x91,0x94,0xA4,0xA5,0xA6,
0xB1,0xB4,0xC0,0xC4,0xC5,0xE6,
0x19,0x6D,0x8D,0x99,0x9D,0xAD,0xB9,0xBD,
0xDD,0xED,0xEE};
regsrec regs;
unsigned __int64 g_nCumulativeCycles = 0;
static ULONG g_nCyclesSubmitted; // Number of cycles submitted to CpuExecute()
static ULONG g_nCyclesExecuted;
//static signed long g_uInternalExecutedCycles;
// TODO: Use IRQ_CHECK_TIMEOUT=128 when running at full-speed else with IRQ_CHECK_TIMEOUT=1
// - What about when running benchmark?
static const int IRQ_CHECK_TIMEOUT = 128;
static signed int g_nIrqCheckTimeout = IRQ_CHECK_TIMEOUT;
//
// Assume all interrupt sources assert until the device is told to stop:
// - eg by r/w to device's register or a machine reset
static bool g_bCritSectionValid = false; // Deleting CritialSection when not valid causes crash on Win98
static CRITICAL_SECTION g_CriticalSection; // To guard /g_bmIRQ/ & /g_bmNMI/
static volatile UINT32 g_bmIRQ = 0;
static volatile UINT32 g_bmNMI = 0;
static volatile BOOL g_bNmiFlank = FALSE; // Positive going flank on NMI line
/****************************************************************************
*
* GENERAL PURPOSE MACROS
*
***/
#define AF_TO_EF flagc = (regs.ps & AF_CARRY); \
flagn = (regs.ps & AF_SIGN); \
flagv = (regs.ps & AF_OVERFLOW); \
flagz = (regs.ps & AF_ZERO);
#define EF_TO_AF regs.ps = (regs.ps & ~(AF_CARRY | AF_SIGN | \
AF_OVERFLOW | AF_ZERO)) \
| flagc \
| flagn \
| (flagv ? AF_OVERFLOW : 0) \
| (flagz ? AF_ZERO : 0) \
| AF_RESERVED | AF_BREAK;
// CYC(a): This can be optimised, as only certain opcodes will affect uExtraCycles
#define CYC(a) uExecutedCycles += (a)+uExtraCycles; g_nIrqCheckTimeout -= (a)+uExtraCycles;
#define POP (*(mem+((regs.sp >= 0x1FF) ? (regs.sp = 0x100) : ++regs.sp)))
#define PUSH(a) *(mem+regs.sp--) = (a); \
if (regs.sp < 0x100) \
regs.sp = 0x1FF;
#define READ ( \
((addr & 0xF000) == 0xC000) \
? IORead[(addr>>4) & 0xFF](regs.pc,addr,0,0,uExecutedCycles) \
: *(mem+addr) \
)
#define SETNZ(a) { \
flagn = ((a) & 0x80); \
flagz = !((a) & 0xFF); \
}
#define SETZ(a) flagz = !((a) & 0xFF);
#define WRITE(a) { \
memdirty[addr >> 8] = 0xFF; \
LPBYTE page = memwrite[addr >> 8]; \
if (page) \
*(page+(addr & 0xFF)) = (BYTE)(a); \
else if ((addr & 0xF000) == 0xC000) \
IOWrite[(addr>>4) & 0xFF](regs.pc,addr,1,(BYTE)(a),uExecutedCycles); \
}
//
// ExtraCycles:
// +1 if branch taken
// +1 if page boundary crossed
#define BRANCH_TAKEN { \
base = regs.pc; \
regs.pc += addr; \
if ((base ^ regs.pc) & 0xFF00) \
uExtraCycles=2; \
else \
uExtraCycles=1; \
}
//
#define CHECK_PAGE_CHANGE if (bSlowerOnPagecross) { \
if ((base ^ addr) & 0xFF00) \
uExtraCycles=1; \
}
/****************************************************************************
*
* ADDRESSING MODE MACROS
*
***/
#define ABS addr = *(LPWORD)(mem+regs.pc); regs.pc += 2;
#define IABSX addr = *(LPWORD)(mem+(*(LPWORD)(mem+regs.pc))+(WORD)regs.x); regs.pc += 2;
#define ABSX base = *(LPWORD)(mem+regs.pc); addr = base+(WORD)regs.x; regs.pc += 2; CHECK_PAGE_CHANGE;
#define ABSY base = *(LPWORD)(mem+regs.pc); addr = base+(WORD)regs.y; regs.pc += 2; CHECK_PAGE_CHANGE;
#define IABSCMOS base = *(LPWORD)(mem+regs.pc); \
addr = *(LPWORD)(mem+base); \
if ((base & 0xFF) == 0xFF) uExtraCycles=1; \
regs.pc += 2;
#define IABSNMOS base = *(LPWORD)(mem+regs.pc); \
if ((base & 0xFF) == 0xFF) \
addr = *(mem+base)+((WORD)*(mem+(base&0xFF00))<<8);\
else \
addr = *(LPWORD)(mem+base); \
regs.pc += 2;
#define IMM addr = regs.pc++;
#define INDX base = ((*(mem+regs.pc++))+regs.x) & 0xFF; \
if (base == 0xFF) \
addr = *(mem+0xFF)+(((WORD)*mem)<<8); \
else \
addr = *(LPWORD)(mem+base);
#define INDY if (*(mem+regs.pc) == 0xFF) \
base = *(mem+0xFF)+(((WORD)*mem)<<8); \
else \
base = *(LPWORD)(mem+*(mem+regs.pc)); \
regs.pc++; \
addr = base+(WORD)regs.y; \
CHECK_PAGE_CHANGE;
#define IZPG base = *(mem+regs.pc++); \
if (base == 0xFF) \
addr = *(mem+0xFF)+(((WORD)*mem)<<8); \
else \
addr = *(LPWORD)(mem+base);
#define REL addr = (signed char)*(mem+regs.pc++);
// Optimiation note:
// . Opcodes that generate zero-page addresses can't be accessing $C000..$CFFF
// so they could be paired with special READZP/WRITEZP macros (instead of READ/WRITE)
#define ZPG addr = *(mem+regs.pc++);
#define ZPGX addr = ((*(mem+regs.pc++))+regs.x) & 0xFF;
#define ZPGY addr = ((*(mem+regs.pc++))+regs.y) & 0xFF;
/****************************************************************************
*
* INSTRUCTION MACROS
*
***/
#define ADC_NMOS bSlowerOnPagecross = 1; \
temp = READ; \
if (regs.ps & AF_DECIMAL) { \
val = (regs.a & 0x0F) + (temp & 0x0F) + flagc; \
if (val > 0x09) \
val += 0x06; \
if (val <= 0x0F) \
val = (val & 0x0F) + (regs.a & 0xF0) + (temp & 0xF0); \
else \
val = (val & 0x0F) + (regs.a & 0xF0) + (temp & 0xF0) + 0x10;\
flagz = !((regs.a + temp + flagc) & 0xFF); \
flagn = (val & 0x80); \
flagv = ((regs.a ^ val) & 0x80) && !((regs.a ^ temp) & 0x80);\
if ((val & 0x1F0) > 0x90) \
val += 0x60; \
flagc = ((val & 0xFF0) > 0xF0); \
regs.a = val & 0xFF; \
} \
else { \
val = regs.a + temp + flagc; \
flagc = (val > 0xFF); \
flagv = (((regs.a & 0x80) == (temp & 0x80)) && \
((regs.a & 0x80) != (val & 0x80))); \
regs.a = val & 0xFF; \
SETNZ(regs.a); \
}
#define ADC_CMOS bSlowerOnPagecross = 1; \
temp = READ; \
flagv = !((regs.a ^ temp) & 0x80); \
if (regs.ps & AF_DECIMAL) { \
uExtraCycles++; \
val = (regs.a & 0x0f) + (temp & 0x0f) + flagc; \
if (val >= 0x0A) \
val = 0x10 | ((val + 6) & 0x0f); \
val += (regs.a & 0xf0) + (temp & 0xf0); \
if (val >= 0xA0) { \
flagc = 1; \
if (val >= 0x180) \
flagv = 0; \
val += 0x60; \
} \
else { \
flagc = 0; \
if (val < 0x80) \
flagv = 0; \
} \
} \
else { \
val = regs.a + temp + flagc; \
if (val >= 0x100) { \
flagc = 1; \
if (val >= 0x180) flagv = 0; \
} \
else { \
flagc = 0; \
if (val < 0x80) flagv = 0; \
} \
} \
regs.a = val & 0xFF; \
SETNZ(regs.a)
#define ALR regs.a &= READ; \
flagc = (regs.a & 1); \
flagn = 0; \
regs.a >>= 1; \
SETZ(regs.a)
#define AND bSlowerOnPagecross = 1; \
regs.a &= READ; \
SETNZ(regs.a)
#define ANC regs.a &= READ; \
SETNZ(regs.a) \
flagc = !!flagn;
#define ARR temp = regs.a & READ; /* Yes, this is sick */ \
if (regs.ps & AF_DECIMAL) { \
val = temp; \
val |= (flagc ? 0x100 : 0); \
val >>= 1; \
flagn = (flagc ? 0x80 : 0); \
SETZ(val) \
flagv = ((val ^ temp) & 0x40); \
if (((val & 0x0F) + (val & 0x01)) > 0x05) \
val = (val & 0xF0) | ((val + 0x06) & 0x0F); \
if (((val & 0xF0) + (val & 0x10)) > 0x50) { \
val = (val & 0x0F) | ((val + 0x60) & 0xF0); \
flagc = 1; \
} \
else \
flagc = 0; \
regs.a = (val & 0xFF); \
} \
else { \
val = temp | (flagc ? 0x100 : 0); \
val >>= 1; \
SETNZ(val) \
flagc = !!(val & 0x40); \
flagv = ((val & 0x40) ^ ((val & 0x20) << 1)); \
regs.a = (val & 0xFF); \
}
#define ASL_NMOS bSlowerOnPagecross = 0; \
val = READ << 1; \
flagc = (val > 0xFF); \
SETNZ(val) \
WRITE(val)
#define ASL_CMOS bSlowerOnPagecross = 1; \
val = READ << 1; \
flagc = (val > 0xFF); \
SETNZ(val) \
WRITE(val)
#define ASLA val = regs.a << 1; \
flagc = (val > 0xFF); \
SETNZ(val) \
regs.a = (BYTE)val;
#define ASO bSlowerOnPagecross = 0; \
val = READ << 1; \
flagc = (val > 0xFF); \
WRITE(val) \
regs.a |= val; \
SETNZ(regs.a)
#define AXA bSlowerOnPagecross = 0;/*FIXME: $93 case is still unclear*/ \
val = regs.a & regs.x & (((base >> 8) + 1) & 0xFF); \
WRITE(val)
#define AXS bSlowerOnPagecross = 0; \
WRITE(regs.a & regs.x)
#define BCC if (!flagc) BRANCH_TAKEN;
#define BCS if ( flagc) BRANCH_TAKEN;
#define BEQ if ( flagz) BRANCH_TAKEN;
#define BIT bSlowerOnPagecross = 1; \
val = READ; \
flagz = !(regs.a & val); \
flagn = val & 0x80; \
flagv = val & 0x40;
#define BITI flagz = !(regs.a & READ);
#define BMI if ( flagn) BRANCH_TAKEN;
#define BNE if (!flagz) BRANCH_TAKEN;
#define BPL if (!flagn) BRANCH_TAKEN;
#define BRA BRANCH_TAKEN;
#define BRK regs.pc++; \
PUSH(regs.pc >> 8) \
PUSH(regs.pc & 0xFF) \
EF_TO_AF \
PUSH(regs.ps); \
regs.ps |= AF_INTERRUPT; \
regs.pc = *(LPWORD)(mem+0xFFFE);
#define BVC if (!flagv) BRANCH_TAKEN;
#define BVS if ( flagv) BRANCH_TAKEN;
#define CLC flagc = 0;
#define CLD regs.ps &= ~AF_DECIMAL;
#define CLI regs.ps &= ~AF_INTERRUPT;
#define CLV flagv = 0;
#define CMP bSlowerOnPagecross = 1; \
val = READ; \
flagc = (regs.a >= val); \
val = regs.a-val; \
SETNZ(val)
#define CPX val = READ; \
flagc = (regs.x >= val); \
val = regs.x-val; \
SETNZ(val)
#define CPY val = READ; \
flagc = (regs.y >= val); \
val = regs.y-val; \
SETNZ(val)
#define DCM bSlowerOnPagecross = 0; \
val = READ-1; \
WRITE(val) \
flagc = (regs.a >= val); \
val = regs.a-val; \
SETNZ(val)
#define DEA --regs.a; \
SETNZ(regs.a)
#define DEC_NMOS bSlowerOnPagecross = 0; \
val = READ-1; \
SETNZ(val) \
WRITE(val)
#define DEC_CMOS bSlowerOnPagecross = 1; \
val = READ-1; \
SETNZ(val) \
WRITE(val)
#define DEX --regs.x; \
SETNZ(regs.x)
#define DEY --regs.y; \
SETNZ(regs.y)
#define EOR bSlowerOnPagecross = 1; \
regs.a ^= READ; \
SETNZ(regs.a)
#define HLT regs.bJammed = 1; \
--regs.pc;
#define INA ++regs.a; \
SETNZ(regs.a)
#define INC_NMOS bSlowerOnPagecross = 0; \
val = READ+1; \
SETNZ(val) \
WRITE(val)
#define INC_CMOS bSlowerOnPagecross = 1; \
val = READ+1; \
SETNZ(val) \
WRITE(val)
#define INS bSlowerOnPagecross = 0; \
val = READ+1; \
WRITE(val) \
temp = val; \
temp2 = regs.a - temp - !flagc; \
if (regs.ps & AF_DECIMAL) { \
val = (regs.a & 0x0F) - (temp & 0x0F) - !flagc; \
if (val & 0x10) \
val = ((val - 0x06) & 0x0F) | ((regs.a & 0xF0) - (temp & 0xF0) - 0x10);\
else \
val = (val & 0x0F) | ((regs.a & 0xF0) - (temp & 0xF0));\
if (val & 0x100) \
val -= 0x60; \
flagc = (temp2 < 0x100); \
SETNZ(temp2 & 0xFF); \
flagv = ((regs.a ^ temp2) & 0x80) && ((regs.a ^ temp) & 0x80);\
regs.a = val & 0xFF; \
} \
else { \
val = temp2; \
flagc = (val < 0x100); \
flagv = (((regs.a & 0x80) != (temp & 0x80)) && \
((regs.a & 0x80) != (val & 0x80))); \
regs.a = val & 0xFF; \
SETNZ(regs.a); \
}
#define INX ++regs.x; \
SETNZ(regs.x)
#define INY ++regs.y; \
SETNZ(regs.y)
#define JMP regs.pc = addr;
#define JSR --regs.pc; \
PUSH(regs.pc >> 8) \
PUSH(regs.pc & 0xFF) \
regs.pc = addr;
#define LAS bSlowerOnPagecross = 1; \
val = (BYTE)(READ & regs.sp); \
regs.a = regs.x = (BYTE) val; \
regs.sp = val | 0x100; \
SETNZ(val)
#define LAX bSlowerOnPagecross = 1; \
regs.a = regs.x = READ; \
SETNZ(regs.a)
#define LDA bSlowerOnPagecross = 1; \
regs.a = READ; \
SETNZ(regs.a)
#define LDX bSlowerOnPagecross = 1; \
regs.x = READ; \
SETNZ(regs.x)
#define LDY bSlowerOnPagecross = 1; \
regs.y = READ; \
SETNZ(regs.y)
#define LSE bSlowerOnPagecross = 0; \
val = READ; \
flagc = (val & 1); \
val >>= 1; \
WRITE(val) \
regs.a ^= val; \
SETNZ(regs.a)
#define LSR_NMOS bSlowerOnPagecross = 0; \
val = READ; \
flagc = (val & 1); \
flagn = 0; \
val >>= 1; \
SETZ(val) \
WRITE(val)
#define LSR_CMOS bSlowerOnPagecross = 1; \
val = READ; \
flagc = (val & 1); \
flagn = 0; \
val >>= 1; \
SETZ(val) \
WRITE(val)
#define LSRA flagc = (regs.a & 1); \
flagn = 0; \
regs.a >>= 1; \
SETZ(regs.a)
#define NOP bSlowerOnPagecross = 1;
#define OAL regs.a |= 0xEE; \
regs.a &= READ; \
regs.x = regs.a; \
SETNZ(regs.a)
#define ORA bSlowerOnPagecross = 1; \
regs.a |= READ; \
SETNZ(regs.a)
#define PHA PUSH(regs.a)
#define PHP EF_TO_AF \
PUSH(regs.ps)
#define PHX PUSH(regs.x)
#define PHY PUSH(regs.y)
#define PLA regs.a = POP; \
SETNZ(regs.a)
#define PLP regs.ps = POP | AF_RESERVED | AF_BREAK; \
AF_TO_EF
#define PLX regs.x = POP; \
SETNZ(regs.x)
#define PLY regs.y = POP; \
SETNZ(regs.y)
#define RLA bSlowerOnPagecross = 0; \
val = (READ << 1) | flagc; \
flagc = (val > 0xFF); \
WRITE(val) \
regs.a &= val; \
SETNZ(regs.a)
#define ROL_NMOS bSlowerOnPagecross = 0; \
val = (READ << 1) | flagc; \
flagc = (val > 0xFF); \
SETNZ(val) \
WRITE(val)
#define ROL_CMOS bSlowerOnPagecross = 1; \
val = (READ << 1) | flagc; \
flagc = (val > 0xFF); \
SETNZ(val) \
WRITE(val)
#define ROLA val = (((WORD)regs.a) << 1) | flagc; \
flagc = (val > 0xFF); \
regs.a = val & 0xFF; \
SETNZ(regs.a);
#define ROR_NMOS bSlowerOnPagecross = 0; \
temp = READ; \
val = (temp >> 1) | (flagc ? 0x80 : 0); \
flagc = (temp & 1); \
SETNZ(val) \
WRITE(val)
#define ROR_CMOS bSlowerOnPagecross = 1; \
temp = READ; \
val = (temp >> 1) | (flagc ? 0x80 : 0); \
flagc = (temp & 1); \
SETNZ(val) \
WRITE(val)
#define RORA val = (((WORD)regs.a) >> 1) | (flagc ? 0x80 : 0); \
flagc = (regs.a & 1); \
regs.a = val & 0xFF; \
SETNZ(regs.a)
#define RRA bSlowerOnPagecross = 0; \
temp = READ; \
val = (temp >> 1) | (flagc ? 0x80 : 0); \
flagc = (temp & 1); \
WRITE(val) \
temp = val; \
if (regs.ps & AF_DECIMAL) { \
val = (regs.a & 0x0F) + (temp & 0x0F) + flagc; \
if (val > 0x09) \
val += 0x06; \
if (val <= 0x0F) \
val = (val & 0x0F) + (regs.a & 0xF0) + (temp & 0xF0); \
else \
val = (val & 0x0F) + (regs.a & 0xF0) + (temp & 0xF0) + 0x10;\
flagz = !((regs.a + temp + flagc) & 0xFF); \
flagn = (val & 0x80); \
flagv = ((regs.a ^ val) & 0x80) && !((regs.a ^ temp) & 0x80);\
if ((val & 0x1F0) > 0x90) \
val += 0x60; \
flagc = ((val & 0xFF0) > 0xF0); \
regs.a = val & 0xFF; \
} \
else { \
val = regs.a + temp + flagc; \
flagc = (val > 0xFF); \
flagv = (((regs.a & 0x80) == (temp & 0x80)) && \
((regs.a & 0x80) != (val & 0x80))); \
regs.a = val & 0xFF; \
SETNZ(regs.a); \
}
#define RTI regs.ps = POP | AF_RESERVED | AF_BREAK; \
AF_TO_EF \
regs.pc = POP; \
regs.pc |= (((WORD)POP) << 8);
#define RTS regs.pc = POP; \
regs.pc |= (((WORD)POP) << 8); \
++regs.pc;
#define SAX temp = regs.a & regs.x; \
val = READ; \
flagc = (temp >= val); \
regs.x = temp-val; \
SETNZ(regs.x)
#define SAY bSlowerOnPagecross = 0; \
val = regs.y & (((base >> 8) + 1) & 0xFF); \
WRITE(val)
#define SBC_NMOS bSlowerOnPagecross = 1; \
temp = READ; \
temp2 = regs.a - temp - !flagc; \
if (regs.ps & AF_DECIMAL) { \
val = (regs.a & 0x0F) - (temp & 0x0F) - !flagc; \
if (val & 0x10) \
val = ((val - 0x06) & 0x0F) | ((regs.a & 0xF0) - (temp & 0xF0) - 0x10);\
else \
val = (val & 0x0F) | ((regs.a & 0xF0) - (temp & 0xF0));\
if (val & 0x100) \
val -= 0x60; \
flagc = (temp2 < 0x100); \
SETNZ(temp2 & 0xFF); \
flagv = ((regs.a ^ temp2) & 0x80) && ((regs.a ^ temp) & 0x80);\
regs.a = val & 0xFF; \
} \
else { \
val = temp2; \
flagc = (val < 0x100); \
flagv = (((regs.a & 0x80) != (temp & 0x80)) && \
((regs.a & 0x80) != (val & 0x80))); \
regs.a = val & 0xFF; \
SETNZ(regs.a); \
}
#define SBC_CMOS bSlowerOnPagecross = 1; \
temp = READ; \
flagv = ((regs.a ^ temp) & 0x80); \
if (regs.ps & AF_DECIMAL) { \
uExtraCycles++; \
temp2 = 0x0F + (regs.a & 0x0F) - (temp & 0x0F) + flagc; \
if (temp2 < 0x10) { \
val = 0; \
temp2 -= 0x06; \
} \
else { \
val = 0x10; \
temp2 -= 0x10; \
} \
val += 0xF0 + (regs.a & 0xF0) - (temp & 0xF0); \
if (val < 0x100) { \
flagc = 0; \
if (val < 0x80) \
flagv = 0; \
val -= 0x60; \
} \
else { \
flagc = 1; \
if (val >= 0x180) \
flagv = 0; \
} \
val += temp2; \
} \
else { \
val = 0xff + regs.a - temp + flagc; \
if (val < 0x100) { \
flagc = 0; \
if (val < 0x80) \
flagv = 0; \
} \
else { \
flagc = 1; \
if (val >= 0x180) \
flagv = 0; \
} \
} \
regs.a = val & 0xFF; \
SETNZ(regs.a)
#define SEC flagc = 1;
#define SED regs.ps |= AF_DECIMAL;
#define SEI regs.ps |= AF_INTERRUPT;
#define STA bSlowerOnPagecross = 0; \
WRITE(regs.a)
#define STX bSlowerOnPagecross = 0; \
WRITE(regs.x)
#define STY bSlowerOnPagecross = 0; \
WRITE(regs.y)
#define STZ bSlowerOnPagecross = 0; \
WRITE(0)
#define TAS bSlowerOnPagecross = 0; \
val = regs.a & regs.x; \
regs.sp = 0x100 | val; \
val &= (((base >> 8) + 1) & 0xFF); \
WRITE(val)
#define TAX regs.x = regs.a; \
SETNZ(regs.x)
#define TAY regs.y = regs.a; \
SETNZ(regs.y)
#define TRB bSlowerOnPagecross = 0; \
val = READ; \
flagz = !(regs.a & val); \
val &= ~regs.a; \
WRITE(val)
#define TSB bSlowerOnPagecross = 0; \
val = READ; \
flagz = !(regs.a & val); \
val |= regs.a; \
WRITE(val)
#define TSX regs.x = regs.sp & 0xFF; \
SETNZ(regs.x)
#define TXA regs.a = regs.x; \
SETNZ(regs.a)
#define TXS regs.sp = 0x100 | regs.x;
#define TYA regs.a = regs.y; \
SETNZ(regs.a)
#define XAA regs.a = regs.x; \
regs.a &= READ; \
SETNZ(regs.a)
#define XAS bSlowerOnPagecross = 0; \
val = regs.x & (((base >> 8) + 1) & 0xFF); \
WRITE(val)
void RequestDebugger()
{
// BUG: This causes DebugBegin to constantly be called.
// It's as if the WM_KEYUP are auto-repeating?
// FrameWndProc()
// ProcessButtonClick()
// DebugBegin()
// PostMessage( g_hFrameWindow, WM_KEYDOWN, DEBUG_TOGGLE_KEY, 0 );
// PostMessage( g_hFrameWindow, WM_KEYUP , DEBUG_TOGGLE_KEY, 0 );
// Not a valid solution, since hitting F7 (to exit) debugger gets the debugger out of sync
// due to EnterMessageLoop() calling ContinueExecution() after the mode has changed to DEBUG.
// DebugBegin();
FrameWndProc( g_hFrameWindow, WM_KEYDOWN, DEBUG_TOGGLE_KEY, 0 );
FrameWndProc( g_hFrameWindow, WM_KEYUP , DEBUG_TOGGLE_KEY, 0 );
}
bool CheckDebugBreak( int iOpcode )
{
if (g_bDebugDelayBreakCheck)
{
g_bDebugDelayBreakCheck = false;
return false;
}
// Running at full speed? (debugger not running)
if ((g_nAppMode != MODE_DEBUG) && (g_nAppMode != MODE_STEPPING))
{
if (((iOpcode == 0) && IsDebugBreakOnInvalid(0)) ||
((g_iDebugOnOpcode) && (g_iDebugOnOpcode == iOpcode))) // User wants to enter debugger on opcode?
{
RequestDebugger();
return true;
}
}
return false;
}
// Break into debugger on invalid opcodes
#define INV if (IsDebugBreakOnInvalid(1)) { RequestDebugger(); bBreakOnInvalid = true; }
/****************************************************************************
*
* OPCODE TABLE
*
***/
unsigned __int64 g_nCycleIrqStart;
unsigned __int64 g_nCycleIrqEnd;
UINT g_nCycleIrqTime;
UINT g_nIdx = 0;
const UINT BUFFER_SIZE = 4096; // 80 secs
UINT g_nBuffer[BUFFER_SIZE];
UINT g_nMean = 0;
UINT g_nMin = 0xFFFFFFFF;
UINT g_nMax = 0;
static __forceinline void DoIrqProfiling(DWORD uCycles)
{
#ifdef _DEBUG
if(regs.ps & AF_INTERRUPT)
return; // Still in Apple's ROM
g_nCycleIrqEnd = g_nCumulativeCycles + uCycles;
g_nCycleIrqTime = (UINT) (g_nCycleIrqEnd - g_nCycleIrqStart);
if(g_nCycleIrqTime > g_nMax) g_nMax = g_nCycleIrqTime;
if(g_nCycleIrqTime < g_nMin) g_nMin = g_nCycleIrqTime;
if(g_nIdx == BUFFER_SIZE)
return;
g_nBuffer[g_nIdx] = g_nCycleIrqTime;
g_nIdx++;
if(g_nIdx == BUFFER_SIZE)
{
UINT nTotal = 0;
for(UINT i=0; i<BUFFER_SIZE; i++)
nTotal += g_nBuffer[i];
g_nMean = nTotal / BUFFER_SIZE;
}
#endif
}
//===========================================================================
static __forceinline int Fetch(BYTE& iOpcode, ULONG uExecutedCycles)
{
//g_uInternalExecutedCycles = uExecutedCycles;
// iOpcode = *(mem+regs.pc);
iOpcode = ((regs.pc & 0xF000) == 0xC000)
? IORead[(regs.pc>>4) & 0xFF](regs.pc,regs.pc,0,0,uExecutedCycles) // Fetch opcode from I/O memory, but params are still from mem[]
: *(mem+regs.pc);
if (CheckDebugBreak( iOpcode ))
return 0;
regs.pc++;
return 1;
}
//#define ENABLE_NMI_SUPPORT // Not used - so don't enable
static __forceinline void NMI(ULONG& uExecutedCycles, UINT& uExtraCycles, BOOL& flagc, BOOL& flagn, BOOL& flagv, BOOL& flagz)
{
#ifdef ENABLE_NMI_SUPPORT
if(g_bNmiFlank)
{
// NMI signals are only serviced once
g_bNmiFlank = FALSE;
g_nCycleIrqStart = g_nCumulativeCycles + uExecutedCycles;
PUSH(regs.pc >> 8)
PUSH(regs.pc & 0xFF)
EF_TO_AF
PUSH(regs.ps & ~AF_BREAK)
regs.ps = regs.ps | AF_INTERRUPT & ~AF_DECIMAL;
regs.pc = * (WORD*) (mem+0xFFFA);
CYC(7)
}
#endif
}
static __forceinline void IRQ(ULONG& uExecutedCycles, UINT& uExtraCycles, BOOL& flagc, BOOL& flagn, BOOL& flagv, BOOL& flagz)
{
if(g_bmIRQ && !(regs.ps & AF_INTERRUPT))
{
// IRQ signals are deasserted when a specific r/w operation is done on device
g_nCycleIrqStart = g_nCumulativeCycles + uExecutedCycles;
PUSH(regs.pc >> 8)
PUSH(regs.pc & 0xFF)
EF_TO_AF
PUSH(regs.ps & ~AF_BREAK)
regs.ps = regs.ps | AF_INTERRUPT & ~AF_DECIMAL;
regs.pc = * (WORD*) (mem+0xFFFE);
CYC(7)
}
}
static __forceinline void CheckInterruptSources(ULONG uExecutedCycles)
{
if (g_nIrqCheckTimeout < 0)
{
MB_UpdateCycles(uExecutedCycles);
sg_Mouse.SetVBlank(VideoGetVbl(uExecutedCycles));
g_nIrqCheckTimeout = IRQ_CHECK_TIMEOUT;
}
}
//===========================================================================
static DWORD Cpu65C02 (DWORD uTotalCycles)
{
// Optimisation:
// . Copy the global /regs/ vars to stack-based local vars
// (Oliver Schmidt says this gives a performance gain, see email - The real deal: "1.10.5")
WORD addr;
BOOL flagc; // must always be 0 or 1, no other values allowed
BOOL flagn; // must always be 0 or 0x80.
BOOL flagv; // any value allowed
BOOL flagz; // any value allowed
WORD temp;
WORD temp2;
WORD val;
AF_TO_EF
ULONG uExecutedCycles = 0;
BOOL bSlowerOnPagecross; // Set if opcode writes to memory (eg. ASL, STA)
WORD base;
bool bBreakOnInvalid = false;
do
{
UINT uExtraCycles = 0;
BYTE iOpcode;
if (!Fetch(iOpcode, uExecutedCycles))
break;
switch (iOpcode)
{
case 0x00: BRK CYC(7) break;
case 0x01: INDX ORA CYC(6) break;
case 0x02: INV IMM NOP CYC(2) break;
case 0x03: INV NOP CYC(2) break;
case 0x04: ZPG TSB CYC(5) break;
case 0x05: ZPG ORA CYC(3) break;
case 0x06: ZPG ASL_CMOS CYC(5) break;
case 0x07: INV NOP CYC(2) break;
case 0x08: PHP CYC(3) break;
case 0x09: IMM ORA CYC(2) break;
case 0x0A: ASLA CYC(2) break;
case 0x0B: INV NOP CYC(2) break;
case 0x0C: ABS TSB CYC(6) break;
case 0x0D: ABS ORA CYC(4) break;
case 0x0E: ABS ASL_CMOS CYC(6) break;
case 0x0F: INV NOP CYC(2) break;
case 0x10: REL BPL CYC(2) break;
case 0x11: INDY ORA CYC(5) break;
case 0x12: IZPG ORA CYC(5) break;
case 0x13: INV NOP CYC(2) break;
case 0x14: ZPG TRB CYC(5) break;
case 0x15: ZPGX ORA CYC(4) break;
case 0x16: ZPGX ASL_CMOS CYC(6) break;
case 0x17: INV NOP CYC(2) break;
case 0x18: CLC CYC(2) break;
case 0x19: ABSY ORA CYC(4) break;
case 0x1A: INA CYC(2) break;
case 0x1B: INV NOP CYC(2) break;
case 0x1C: ABS TRB CYC(6) break;
case 0x1D: ABSX ORA CYC(4) break;
case 0x1E: ABSX ASL_CMOS CYC(6) break;
case 0x1F: INV NOP CYC(2) break;
case 0x20: ABS JSR CYC(6) break;
case 0x21: INDX AND CYC(6) break;
case 0x22: INV IMM NOP CYC(2) break;
case 0x23: INV NOP CYC(2) break;
case 0x24: ZPG BIT CYC(3) break;
case 0x25: ZPG AND CYC(3) break;
case 0x26: ZPG ROL_CMOS CYC(5) break;
case 0x27: INV NOP CYC(2) break;
case 0x28: PLP CYC(4) break;
case 0x29: IMM AND CYC(2) break;
case 0x2A: ROLA CYC(2) break;
case 0x2B: INV NOP CYC(2) break;
case 0x2C: ABS BIT CYC(4) break;
case 0x2D: ABS AND CYC(2) break;
case 0x2E: ABS ROL_CMOS CYC(6) break;
case 0x2F: INV NOP CYC(2) break;
case 0x30: REL BMI CYC(2) break;
case 0x31: INDY AND CYC(5) break;
case 0x32: IZPG AND CYC(5) break;
case 0x33: INV NOP CYC(2) break;
case 0x34: ZPGX BIT CYC(4) break;
case 0x35: ZPGX AND CYC(4) break;
case 0x36: ZPGX ROL_CMOS CYC(6) break;
case 0x37: INV NOP CYC(2) break;
case 0x38: SEC CYC(2) break;
case 0x39: ABSY AND CYC(4) break;
case 0x3A: DEA CYC(2) break;
case 0x3B: INV NOP CYC(2) break;
case 0x3C: ABSX BIT CYC(4) break;
case 0x3D: ABSX AND CYC(4) break;
case 0x3E: ABSX ROL_CMOS CYC(6) break;
case 0x3F: INV NOP CYC(2) break;
case 0x40: RTI CYC(6) DoIrqProfiling(uExecutedCycles); break;
case 0x41: INDX EOR CYC(6) break;
case 0x42: INV IMM NOP CYC(2) break;
case 0x43: INV NOP CYC(2) break;
case 0x44: INV ZPG NOP CYC(3) break;
case 0x45: ZPG EOR CYC(3) break;
case 0x46: ZPG LSR_CMOS CYC(5) break;
case 0x47: INV NOP CYC(2) break;
case 0x48: PHA CYC(3) break;
case 0x49: IMM EOR CYC(2) break;
case 0x4A: LSRA CYC(2) break;
case 0x4B: INV NOP CYC(2) break;
case 0x4C: ABS JMP CYC(3) break;
case 0x4D: ABS EOR CYC(4) break;
case 0x4E: ABS LSR_CMOS CYC(6) break;
case 0x4F: INV NOP CYC(2) break;
case 0x50: REL BVC CYC(2) break;
case 0x51: INDY EOR CYC(5) break;
case 0x52: IZPG EOR CYC(5) break;
case 0x53: INV NOP CYC(2) break;
case 0x54: INV ZPGX NOP CYC(4) break;
case 0x55: ZPGX EOR CYC(4) break;
case 0x56: ZPGX LSR_CMOS CYC(6) break;
case 0x57: INV NOP CYC(2) break;
case 0x58: CLI CYC(2) break;
case 0x59: ABSY EOR CYC(4) break;
case 0x5A: PHY CYC(3) break;
case 0x5B: INV NOP CYC(2) break;
case 0x5C: INV ABSX NOP CYC(8) break;
case 0x5D: ABSX EOR CYC(4) break;
case 0x5E: ABSX LSR_CMOS CYC(6) break;
case 0x5F: INV NOP CYC(2) break;
case 0x60: RTS CYC(6) break;
case 0x61: INDX ADC_CMOS CYC(6) break;
case 0x62: INV IMM NOP CYC(2) break;
case 0x63: INV NOP CYC(2) break;
case 0x64: ZPG STZ CYC(3) break;
case 0x65: ZPG ADC_CMOS CYC(3) break;
case 0x66: ZPG ROR_CMOS CYC(5) break;
case 0x67: INV NOP CYC(2) break;
case 0x68: PLA CYC(4) break;
case 0x69: IMM ADC_CMOS CYC(2) break;
case 0x6A: RORA CYC(2) break;
case 0x6B: INV NOP CYC(2) break;
case 0x6C: IABSCMOS JMP CYC(6) break;
case 0x6D: ABS ADC_CMOS CYC(4) break;
case 0x6E: ABS ROR_CMOS CYC(6) break;
case 0x6F: INV NOP CYC(2) break;
case 0x70: REL BVS CYC(2) break;
case 0x71: INDY ADC_CMOS CYC(5) break;
case 0x72: IZPG ADC_CMOS CYC(5) break;
case 0x73: INV NOP CYC(2) break;
case 0x74: ZPGX STZ CYC(4) break;
case 0x75: ZPGX ADC_CMOS CYC(4) break;
case 0x76: ZPGX ROR_CMOS CYC(6) break;
case 0x77: INV NOP CYC(2) break;
case 0x78: SEI CYC(2) break;
case 0x79: ABSY ADC_CMOS CYC(4) break;
case 0x7A: PLY CYC(4) break;
case 0x7B: INV NOP CYC(2) break;
case 0x7C: IABSX JMP CYC(6) break;
case 0x7D: ABSX ADC_CMOS CYC(4) break;
case 0x7E: ABSX ROR_CMOS CYC(6) break;
case 0x7F: INV NOP CYC(2) break;
case 0x80: REL BRA CYC(2) break;
case 0x81: INDX STA CYC(6) break;
case 0x82: INV IMM NOP CYC(2) break;
case 0x83: INV NOP CYC(2) break;
case 0x84: ZPG STY CYC(3) break;
case 0x85: ZPG STA CYC(3) break;
case 0x86: ZPG STX CYC(3) break;
case 0x87: INV NOP CYC(2) break;
case 0x88: DEY CYC(2) break;
case 0x89: IMM BITI CYC(2) break;
case 0x8A: TXA CYC(2) break;
case 0x8B: INV NOP CYC(2) break;
case 0x8C: ABS STY CYC(4) break;
case 0x8D: ABS STA CYC(4) break;
case 0x8E: ABS STX CYC(4) break;
case 0x8F: INV NOP CYC(2) break;
case 0x90: REL BCC CYC(2) break;
case 0x91: INDY STA CYC(6) break;
case 0x92: IZPG STA CYC(5) break;
case 0x93: INV NOP CYC(2) break;
case 0x94: ZPGX STY CYC(4) break;
case 0x95: ZPGX STA CYC(4) break;
case 0x96: ZPGY STX CYC(4) break;
case 0x97: INV NOP CYC(2) break;
case 0x98: TYA CYC(2) break;
case 0x99: ABSY STA CYC(5) break;
case 0x9A: TXS CYC(2) break;
case 0x9B: INV NOP CYC(2) break;
case 0x9C: ABS STZ CYC(4) break;
case 0x9D: ABSX STA CYC(5) break;
case 0x9E: ABSX STZ CYC(5) break;
case 0x9F: INV NOP CYC(2) break;
case 0xA0: IMM LDY CYC(2) break;
case 0xA1: INDX LDA CYC(6) break;
case 0xA2: IMM LDX CYC(2) break;
case 0xA3: INV NOP CYC(2) break;
case 0xA4: ZPG LDY CYC(3) break;
case 0xA5: ZPG LDA CYC(3) break;
case 0xA6: ZPG LDX CYC(3) break;
case 0xA7: INV NOP CYC(2) break;
case 0xA8: TAY CYC(2) break;
case 0xA9: IMM LDA CYC(2) break;
case 0xAA: TAX CYC(2) break;
case 0xAB: INV NOP CYC(2) break;
case 0xAC: ABS LDY CYC(4) break;
case 0xAD: ABS LDA CYC(4) break;
case 0xAE: ABS LDX CYC(4) break;
case 0xAF: INV NOP CYC(2) break;
case 0xB0: REL BCS CYC(2) break;
case 0xB1: INDY LDA CYC(5) break;
case 0xB2: IZPG LDA CYC(5) break;
case 0xB3: INV NOP CYC(2) break;
case 0xB4: ZPGX LDY CYC(4) break;
case 0xB5: ZPGX LDA CYC(4) break;
case 0xB6: ZPGY LDX CYC(4) break;
case 0xB7: INV NOP CYC(2) break;
case 0xB8: CLV CYC(2) break;
case 0xB9: ABSY LDA CYC(4) break;
case 0xBA: TSX CYC(2) break;
case 0xBB: INV NOP CYC(2) break;
case 0xBC: ABSX LDY CYC(4) break;
case 0xBD: ABSX LDA CYC(4) break;
case 0xBE: ABSY LDX CYC(4) break;
case 0xBF: INV NOP CYC(2) break;
case 0xC0: IMM CPY CYC(2) break;
case 0xC1: INDX CMP CYC(6) break;
case 0xC2: INV IMM NOP CYC(2) break;
case 0xC3: INV NOP CYC(2) break;
case 0xC4: ZPG CPY CYC(3) break;
case 0xC5: ZPG CMP CYC(3) break;
case 0xC6: ZPG DEC_CMOS CYC(5) break;
case 0xC7: INV NOP CYC(2) break;
case 0xC8: INY CYC(2) break;
case 0xC9: IMM CMP CYC(2) break;
case 0xCA: DEX CYC(2) break;
case 0xCB: INV NOP CYC(2) break;
case 0xCC: ABS CPY CYC(4) break;
case 0xCD: ABS CMP CYC(4) break;
case 0xCE: ABS DEC_CMOS CYC(5) break;
case 0xCF: INV NOP CYC(2) break;
case 0xD0: REL BNE CYC(2) break;
case 0xD1: INDY CMP CYC(5) break;
case 0xD2: IZPG CMP CYC(5) break;
case 0xD3: INV NOP CYC(2) break;
case 0xD4: INV ZPGX NOP CYC(4) break;
case 0xD5: ZPGX CMP CYC(4) break;
case 0xD6: ZPGX DEC_CMOS CYC(6) break;
case 0xD7: INV NOP CYC(2) break;
case 0xD8: CLD CYC(2) break;
case 0xD9: ABSY CMP CYC(4) break;
case 0xDA: PHX CYC(3) break;
case 0xDB: INV NOP CYC(2) break;
case 0xDC: INV ABSX NOP CYC(4) break;
case 0xDD: ABSX CMP CYC(4) break;
case 0xDE: ABSX DEC_CMOS CYC(6) break;
case 0xDF: INV NOP CYC(2) break;
case 0xE0: IMM CPX CYC(2) break;
case 0xE1: INDX SBC_CMOS CYC(6) break;
case 0xE2: INV IMM NOP CYC(2) break;
case 0xE3: INV NOP CYC(2) break;
case 0xE4: ZPG CPX CYC(3) break;
case 0xE5: ZPG SBC_CMOS CYC(3) break;
case 0xE6: ZPG INC_CMOS CYC(5) break;
case 0xE7: INV NOP CYC(2) break;
case 0xE8: INX CYC(2) break;
case 0xE9: IMM SBC_CMOS CYC(2) break;
case 0xEA: NOP CYC(2) break;
case 0xEB: INV NOP CYC(2) break;
case 0xEC: ABS CPX CYC(4) break;
case 0xED: ABS SBC_CMOS CYC(4) break;
case 0xEE: ABS INC_CMOS CYC(6) break;
case 0xEF: INV NOP CYC(2) break;
case 0xF0: REL BEQ CYC(2) break;
case 0xF1: INDY SBC_CMOS CYC(5) break;
case 0xF2: IZPG SBC_CMOS CYC(5) break;
case 0xF3: INV NOP CYC(2) break;
case 0xF4: INV ZPGX NOP CYC(4) break;
case 0xF5: ZPGX SBC_CMOS CYC(4) break;
case 0xF6: ZPGX INC_CMOS CYC(6) break;
case 0xF7: INV NOP CYC(2) break;
case 0xF8: SED CYC(2) break;
case 0xF9: ABSY SBC_CMOS CYC(4) break;
case 0xFA: PLX CYC(4) break;
case 0xFB: INV NOP CYC(2) break;
case 0xFC: INV ABSX NOP CYC(4) break;
case 0xFD: ABSX SBC_CMOS CYC(4) break;
case 0xFE: ABSX INC_CMOS CYC(6) break;
case 0xFF: INV NOP CYC(2) break;
}
CheckInterruptSources(uExecutedCycles);
NMI(uExecutedCycles, uExtraCycles, flagc, flagn, flagv, flagz);
IRQ(uExecutedCycles, uExtraCycles, flagc, flagn, flagv, flagz);
if (bBreakOnInvalid)
break;
} while (uExecutedCycles < uTotalCycles);
EF_TO_AF
return uExecutedCycles;
}
//===========================================================================
static DWORD Cpu6502 (DWORD uTotalCycles)
{
WORD addr;
BOOL flagc; // must always be 0 or 1, no other values allowed
BOOL flagn; // must always be 0 or 0x80.
BOOL flagv; // any value allowed
BOOL flagz; // any value allowed
WORD temp;
WORD temp2;
WORD val;
AF_TO_EF
ULONG uExecutedCycles = 0;
BOOL bSlowerOnPagecross; // Set if opcode writes to memory (eg. ASL, STA)
WORD base;
bool bBreakOnInvalid = false;
do
{
UINT uExtraCycles = 0;
BYTE iOpcode;
if (!Fetch(iOpcode, uExecutedCycles))
break;
switch (iOpcode)
{
case 0x00: BRK CYC(7) break;
case 0x01: INDX ORA CYC(6) break;
case 0x02: INV HLT CYC(2) break;
case 0x03: INV INDX ASO CYC(8) break;
case 0x04: INV ZPG NOP CYC(3) break;
case 0x05: ZPG ORA CYC(3) break;
case 0x06: ZPG ASL_NMOS CYC(5) break;
case 0x07: INV ZPG ASO CYC(5) break;
case 0x08: PHP CYC(3) break;
case 0x09: IMM ORA CYC(2) break;
case 0x0A: ASLA CYC(2) break;
case 0x0B: INV IMM ANC CYC(2) break;
case 0x0C: INV ABSX NOP CYC(4) break;
case 0x0D: ABS ORA CYC(4) break;
case 0x0E: ABS ASL_NMOS CYC(6) break;
case 0x0F: INV ABS ASO CYC(6) break;
case 0x10: REL BPL CYC(2) break;
case 0x11: INDY ORA CYC(5) break;
case 0x12: INV HLT CYC(2) break;
case 0x13: INV INDY ASO CYC(8) break;
case 0x14: INV ZPGX NOP CYC(4) break;
case 0x15: ZPGX ORA CYC(4) break;
case 0x16: ZPGX ASL_NMOS CYC(6) break;
case 0x17: INV ZPGX ASO CYC(6) break;
case 0x18: CLC CYC(2) break;
case 0x19: ABSY ORA CYC(4) break;
case 0x1A: INV NOP CYC(2) break;
case 0x1B: INV ABSY ASO CYC(7) break;
case 0x1C: INV ABSX NOP CYC(4) break;
case 0x1D: ABSX ORA CYC(4) break;
case 0x1E: ABSX ASL_NMOS CYC(6) break;
case 0x1F: INV ABSX ASO CYC(7) break;
case 0x20: ABS JSR CYC(6) break;
case 0x21: INDX AND CYC(6) break;
case 0x22: INV HLT CYC(2) break;
case 0x23: INV INDX RLA CYC(8) break;
case 0x24: ZPG BIT CYC(3) break;
case 0x25: ZPG AND CYC(3) break;
case 0x26: ZPG ROL_NMOS CYC(5) break;
case 0x27: INV ZPG RLA CYC(5) break;
case 0x28: PLP CYC(4) break;
case 0x29: IMM AND CYC(2) break;
case 0x2A: ROLA CYC(2) break;
case 0x2B: INV IMM ANC CYC(2) break;
case 0x2C: ABS BIT CYC(4) break;
case 0x2D: ABS AND CYC(2) break;
case 0x2E: ABS ROL_NMOS CYC(6) break;
case 0x2F: INV ABS RLA CYC(6) break;
case 0x30: REL BMI CYC(2) break;
case 0x31: INDY AND CYC(5) break;
case 0x32: INV HLT CYC(2) break;
case 0x33: INV INDY RLA CYC(8) break;
case 0x34: INV ZPGX NOP CYC(4) break;
case 0x35: ZPGX AND CYC(4) break;
case 0x36: ZPGX ROL_NMOS CYC(6) break;
case 0x37: INV ZPGX RLA CYC(6) break;
case 0x38: SEC CYC(2) break;
case 0x39: ABSY AND CYC(4) break;
case 0x3A: INV NOP CYC(2) break;
case 0x3B: INV ABSY RLA CYC(7) break;
case 0x3C: INV ABSX NOP CYC(4) break;
case 0x3D: ABSX AND CYC(4) break;
case 0x3E: ABSX ROL_NMOS CYC(6) break;
case 0x3F: INV ABSX RLA CYC(7) break;
case 0x40: RTI CYC(6) DoIrqProfiling(uExecutedCycles); break;
case 0x41: INDX EOR CYC(6) break;
case 0x42: INV HLT CYC(2) break;
case 0x43: INV INDX LSE CYC(8) break;
case 0x44: INV ZPG NOP CYC(3) break;
case 0x45: ZPG EOR CYC(3) break;
case 0x46: ZPG LSR_NMOS CYC(5) break;
case 0x47: INV ZPG LSE CYC(5) break;
case 0x48: PHA CYC(3) break;
case 0x49: IMM EOR CYC(2) break;
case 0x4A: LSRA CYC(2) break;
case 0x4B: INV IMM ALR CYC(2) break;
case 0x4C: ABS JMP CYC(3) break;
case 0x4D: ABS EOR CYC(4) break;
case 0x4E: ABS LSR_NMOS CYC(6) break;
case 0x4F: INV ABS LSE CYC(6) break;
case 0x50: REL BVC CYC(2) break;
case 0x51: INDY EOR CYC(5) break;
case 0x52: INV HLT CYC(2) break;
case 0x53: INV INDY LSE CYC(8) break;
case 0x54: INV ZPGX NOP CYC(4) break;
case 0x55: ZPGX EOR CYC(4) break;
case 0x56: ZPGX LSR_NMOS CYC(6) break;
case 0x57: INV ZPGX LSE CYC(6) break;
case 0x58: CLI CYC(2) break;
case 0x59: ABSY EOR CYC(4) break;
case 0x5A: INV NOP CYC(2) break;
case 0x5B: INV ABSY LSE CYC(7) break;
case 0x5C: INV ABSX NOP CYC(4) break;
case 0x5D: ABSX EOR CYC(4) break;
case 0x5E: ABSX LSR_NMOS CYC(6) break;
case 0x5F: INV ABSX LSE CYC(7) break;
case 0x60: RTS CYC(6) break;
case 0x61: INDX ADC_NMOS CYC(6) break;
case 0x62: INV HLT CYC(2) break;
case 0x63: INV INDX RRA CYC(8) break;
case 0x64: INV ZPG NOP CYC(3) break;
case 0x65: ZPG ADC_NMOS CYC(3) break;
case 0x66: ZPG ROR_NMOS CYC(5) break;
case 0x67: INV ZPG RRA CYC(5) break;
case 0x68: PLA CYC(4) break;
case 0x69: IMM ADC_NMOS CYC(2) break;
case 0x6A: RORA CYC(2) break;
case 0x6B: INV IMM ARR CYC(2) break;
case 0x6C: IABSNMOS JMP CYC(6) break;
case 0x6D: ABS ADC_NMOS CYC(4) break;
case 0x6E: ABS ROR_NMOS CYC(6) break;
case 0x6F: INV ABS RRA CYC(6) break;
case 0x70: REL BVS CYC(2) break;
case 0x71: INDY ADC_NMOS CYC(5) break;
case 0x72: INV HLT CYC(2) break;
case 0x73: INV INDY RRA CYC(8) break;
case 0x74: INV ZPGX NOP CYC(4) break;
case 0x75: ZPGX ADC_NMOS CYC(4) break;
case 0x76: ZPGX ROR_NMOS CYC(6) break;
case 0x77: INV ZPGX RRA CYC(6) break;
case 0x78: SEI CYC(2) break;
case 0x79: ABSY ADC_NMOS CYC(4) break;
case 0x7A: INV NOP CYC(2) break;
case 0x7B: INV ABSY RRA CYC(7) break;
case 0x7C: INV ABSX NOP CYC(4) break;
case 0x7D: ABSX ADC_NMOS CYC(4) break;
case 0x7E: ABSX ROR_NMOS CYC(6) break;
case 0x7F: INV ABSX RRA CYC(7) break;
case 0x80: INV IMM NOP CYC(2) break;
case 0x81: INDX STA CYC(6) break;
case 0x82: INV IMM NOP CYC(2) break;
case 0x83: INV INDX AXS CYC(6) break;
case 0x84: ZPG STY CYC(3) break;
case 0x85: ZPG STA CYC(3) break;
case 0x86: ZPG STX CYC(3) break;
case 0x87: INV ZPG AXS CYC(3) break;
case 0x88: DEY CYC(2) break;
case 0x89: INV IMM NOP CYC(2) break;
case 0x8A: TXA CYC(2) break;
case 0x8B: INV IMM XAA CYC(2) break;
case 0x8C: ABS STY CYC(4) break;
case 0x8D: ABS STA CYC(4) break;
case 0x8E: ABS STX CYC(4) break;
case 0x8F: INV ABS AXS CYC(4) break;
case 0x90: REL BCC CYC(2) break;
case 0x91: INDY STA CYC(6) break;
case 0x92: INV HLT CYC(2) break;
case 0x93: INV INDY AXA CYC(6) break;
case 0x94: ZPGX STY CYC(4) break;
case 0x95: ZPGX STA CYC(4) break;
case 0x96: ZPGY STX CYC(4) break;
case 0x97: INV ZPGY AXS CYC(4) break;
case 0x98: TYA CYC(2) break;
case 0x99: ABSY STA CYC(5) break;
case 0x9A: TXS CYC(2) break;
case 0x9B: INV ABSY TAS CYC(5) break;
case 0x9C: INV ABSX SAY CYC(5) break;
case 0x9D: ABSX STA CYC(5) break;
case 0x9E: INV ABSY XAS CYC(5) break;
case 0x9F: INV ABSY AXA CYC(5) break;
case 0xA0: IMM LDY CYC(2) break;
case 0xA1: INDX LDA CYC(6) break;
case 0xA2: IMM LDX CYC(2) break;
case 0xA3: INV INDX LAX CYC(6) break;
case 0xA4: ZPG LDY CYC(3) break;
case 0xA5: ZPG LDA CYC(3) break;
case 0xA6: ZPG LDX CYC(3) break;
case 0xA7: INV ZPG LAX CYC(3) break;
case 0xA8: TAY CYC(2) break;
case 0xA9: IMM LDA CYC(2) break;
case 0xAA: TAX CYC(2) break;
case 0xAB: INV IMM OAL CYC(2) break;
case 0xAC: ABS LDY CYC(4) break;
case 0xAD: ABS LDA CYC(4) break;
case 0xAE: ABS LDX CYC(4) break;
case 0xAF: INV ABS LAX CYC(4) break;
case 0xB0: REL BCS CYC(2) break;
case 0xB1: INDY LDA CYC(5) break;
case 0xB2: INV HLT CYC(2) break;
case 0xB3: INV INDY LAX CYC(5) break;
case 0xB4: ZPGX LDY CYC(4) break;
case 0xB5: ZPGX LDA CYC(4) break;
case 0xB6: ZPGY LDX CYC(4) break;
case 0xB7: INV ZPGY LAX CYC(4) break;
case 0xB8: CLV CYC(2) break;
case 0xB9: ABSY LDA CYC(4) break;
case 0xBA: TSX CYC(2) break;
case 0xBB: INV ABSY LAS CYC(4) break;
case 0xBC: ABSX LDY CYC(4) break;
case 0xBD: ABSX LDA CYC(4) break;
case 0xBE: ABSY LDX CYC(4) break;
case 0xBF: INV ABSY LAX CYC(4) break;
case 0xC0: IMM CPY CYC(2) break;
case 0xC1: INDX CMP CYC(6) break;
case 0xC2: INV IMM NOP CYC(2) break;
case 0xC3: INV INDX DCM CYC(8) break;
case 0xC4: ZPG CPY CYC(3) break;
case 0xC5: ZPG CMP CYC(3) break;
case 0xC6: ZPG DEC_NMOS CYC(5) break;
case 0xC7: INV ZPG DCM CYC(5) break;
case 0xC8: INY CYC(2) break;
case 0xC9: IMM CMP CYC(2) break;
case 0xCA: DEX CYC(2) break;
case 0xCB: INV IMM SAX CYC(2) break;
case 0xCC: ABS CPY CYC(4) break;
case 0xCD: ABS CMP CYC(4) break;
case 0xCE: ABS DEC_NMOS CYC(5) break;
case 0xCF: INV ABS DCM CYC(6) break;
case 0xD0: REL BNE CYC(2) break;
case 0xD1: INDY CMP CYC(5) break;
case 0xD2: INV HLT CYC(2) break;
case 0xD3: INV INDY DCM CYC(8) break;
case 0xD4: INV ZPGX NOP CYC(4) break;
case 0xD5: ZPGX CMP CYC(4) break;
case 0xD6: ZPGX DEC_NMOS CYC(6) break;
case 0xD7: INV ZPGX DCM CYC(6) break;
case 0xD8: CLD CYC(2) break;
case 0xD9: ABSY CMP CYC(4) break;
case 0xDA: INV NOP CYC(2) break;
case 0xDB: INV ABSY DCM CYC(7) break;
case 0xDC: INV ABSX NOP CYC(4) break;
case 0xDD: ABSX CMP CYC(4) break;
case 0xDE: ABSX DEC_NMOS CYC(6) break;
case 0xDF: INV ABSX DCM CYC(7) break;
case 0xE0: IMM CPX CYC(2) break;
case 0xE1: INDX SBC_NMOS CYC(6) break;
case 0xE2: INV IMM NOP CYC(2) break;
case 0xE3: INV INDX INS CYC(8) break;
case 0xE4: ZPG CPX CYC(3) break;
case 0xE5: ZPG SBC_NMOS CYC(3) break;
case 0xE6: ZPG INC_NMOS CYC(5) break;
case 0xE7: INV ZPG INS CYC(5) break;
case 0xE8: INX CYC(2) break;
case 0xE9: IMM SBC_NMOS CYC(2) break;
case 0xEA: NOP CYC(2) break;
case 0xEB: INV IMM SBC_NMOS CYC(2) break;
case 0xEC: ABS CPX CYC(4) break;
case 0xED: ABS SBC_NMOS CYC(4) break;
case 0xEE: ABS INC_NMOS CYC(6) break;
case 0xEF: INV ABS INS CYC(6) break;
case 0xF0: REL BEQ CYC(2) break;
case 0xF1: INDY SBC_NMOS CYC(5) break;
case 0xF2: INV HLT CYC(2) break;
case 0xF3: INV INDY INS CYC(8) break;
case 0xF4: INV ZPGX NOP CYC(4) break;
case 0xF5: ZPGX SBC_NMOS CYC(4) break;
case 0xF6: ZPGX INC_NMOS CYC(6) break;
case 0xF7: INV ZPGX INS CYC(6) break;
case 0xF8: SED CYC(2) break;
case 0xF9: ABSY SBC_NMOS CYC(4) break;
case 0xFA: INV NOP CYC(2) break;
case 0xFB: INV ABSY INS CYC(7) break;
case 0xFC: INV ABSX NOP CYC(4) break;
case 0xFD: ABSX SBC_NMOS CYC(4) break;
case 0xFE: ABSX INC_NMOS CYC(6) break;
case 0xFF: INV ABSX INS CYC(7) break;
}
CheckInterruptSources(uExecutedCycles);
NMI(uExecutedCycles, uExtraCycles, flagc, flagn, flagv, flagz);
IRQ(uExecutedCycles, uExtraCycles, flagc, flagn, flagv, flagz);
if (bBreakOnInvalid)
break;
} while (uExecutedCycles < uTotalCycles);
EF_TO_AF
return uExecutedCycles;
}
//===========================================================================
static DWORD InternalCpuExecute (DWORD uTotalCycles)
{
if (IS_APPLE2 || (g_Apple2Type == A2TYPE_APPLE2E))
return Cpu6502(uTotalCycles); // Apple ][, ][+, //e
else
return Cpu65C02(uTotalCycles); // Enhanced Apple //e
}
//
// ----- ALL GLOBALLY ACCESSIBLE FUNCTIONS ARE BELOW THIS LINE -----
//
//===========================================================================
void CpuDestroy ()
{
if (g_bCritSectionValid)
{
DeleteCriticalSection(&g_CriticalSection);
g_bCritSectionValid = false;
}
}
//===========================================================================
// Pre:
// Call this when an IO-reg is access & accurate cycle info is needed
// Post:
// g_nCyclesExecuted
// g_nCumulativeCycles
//
void CpuCalcCycles(ULONG nExecutedCycles)
{
// Calc # of cycles executed since this func was last called
ULONG nCycles = nExecutedCycles - g_nCyclesExecuted;
_ASSERT( (LONG)nCycles >= 0 );
g_nCyclesExecuted += nCycles;
g_nCumulativeCycles += nCycles;
}
//===========================================================================
// Old method with g_uInternalExecutedCycles runs faster!
// Old vs New
// - 68.0,69.0MHz vs 66.7, 67.2MHz (with check for VBL IRQ every opcode)
// - 89.6,88.9MHz vs 87.2, 87.9MHz (without check for VBL IRQ)
// - 75.9, 78.5MHz (with check for VBL IRQ every 128 cycles)
// - 137.9,135.6MHz (with check for VBL IRQ & MB_Update every 128 cycles)
#if 0 // TODO: Measure perf increase by using this new method
ULONG CpuGetCyclesThisFrame(ULONG) // Old func using g_uInternalExecutedCycles
{
CpuCalcCycles(g_uInternalExecutedCycles);
return g_dwCyclesThisFrame + g_nCyclesExecuted;
}
#else
ULONG CpuGetCyclesThisFrame(ULONG nExecutedCycles)
{
CpuCalcCycles(nExecutedCycles);
return g_dwCyclesThisFrame + g_nCyclesExecuted;
}
#endif
//===========================================================================
DWORD CpuExecute (DWORD uCycles)
{
DWORD uExecutedCycles = 0;
g_nCyclesSubmitted = uCycles;
g_nCyclesExecuted = 0;
//
MB_StartOfCpuExecute();
if (uCycles == 0) // Do single step
uExecutedCycles = InternalCpuExecute(0);
else // Do multi-opcode emulation
uExecutedCycles = InternalCpuExecute(uCycles);
MB_UpdateCycles(uExecutedCycles); // Update 6522s (NB. Do this before updating g_nCumulativeCycles below)
//
UINT nRemainingCycles = uExecutedCycles - g_nCyclesExecuted;
g_nCumulativeCycles += nRemainingCycles;
return uExecutedCycles;
}
//===========================================================================
void CpuInitialize ()
{
CpuDestroy();
regs.a = regs.x = regs.y = regs.ps = 0xFF;
regs.sp = 0x01FF;
CpuReset(); // Init's ps & pc. Updates sp
InitializeCriticalSection(&g_CriticalSection);
g_bCritSectionValid = true;
CpuIrqReset();
CpuNmiReset();
}
//===========================================================================
void CpuSetupBenchmark ()
{
regs.a = 0;
regs.x = 0;
regs.y = 0;
regs.pc = 0x300;
regs.sp = 0x1FF;
// CREATE CODE SEGMENTS CONSISTING OF GROUPS OF COMMONLY-USED OPCODES
{
int addr = 0x300;
int opcode = 0;
do
{
*(mem+addr++) = benchopcode[opcode];
*(mem+addr++) = benchopcode[opcode];
if (opcode >= SHORTOPCODES)
*(mem+addr++) = 0;
if ((++opcode >= BENCHOPCODES) || ((addr & 0x0F) >= 0x0B))
{
*(mem+addr++) = 0x4C;
*(mem+addr++) = (opcode >= BENCHOPCODES) ? 0x00 : ((addr >> 4)+1) << 4;
*(mem+addr++) = 0x03;
while (addr & 0x0F)
++addr;
}
} while (opcode < BENCHOPCODES);
}
}
//===========================================================================
void CpuIrqReset()
{
_ASSERT(g_bCritSectionValid);
if (g_bCritSectionValid) EnterCriticalSection(&g_CriticalSection);
g_bmIRQ = 0;
if (g_bCritSectionValid) LeaveCriticalSection(&g_CriticalSection);
}
void CpuIrqAssert(eIRQSRC Device)
{
_ASSERT(g_bCritSectionValid);
if (g_bCritSectionValid) EnterCriticalSection(&g_CriticalSection);
g_bmIRQ |= 1<<Device;
if (g_bCritSectionValid) LeaveCriticalSection(&g_CriticalSection);
}
void CpuIrqDeassert(eIRQSRC Device)
{
_ASSERT(g_bCritSectionValid);
if (g_bCritSectionValid) EnterCriticalSection(&g_CriticalSection);
g_bmIRQ &= ~(1<<Device);
if (g_bCritSectionValid) LeaveCriticalSection(&g_CriticalSection);
}
//===========================================================================
void CpuNmiReset()
{
_ASSERT(g_bCritSectionValid);
if (g_bCritSectionValid) EnterCriticalSection(&g_CriticalSection);
g_bmNMI = 0;
g_bNmiFlank = FALSE;
if (g_bCritSectionValid) LeaveCriticalSection(&g_CriticalSection);
}
void CpuNmiAssert(eIRQSRC Device)
{
_ASSERT(g_bCritSectionValid);
if (g_bCritSectionValid) EnterCriticalSection(&g_CriticalSection);
if (g_bmNMI == 0) // NMI line is just becoming active
g_bNmiFlank = TRUE;
g_bmNMI |= 1<<Device;
if (g_bCritSectionValid) LeaveCriticalSection(&g_CriticalSection);
}
void CpuNmiDeassert(eIRQSRC Device)
{
_ASSERT(g_bCritSectionValid);
if (g_bCritSectionValid) EnterCriticalSection(&g_CriticalSection);
g_bmNMI &= ~(1<<Device);
if (g_bCritSectionValid) LeaveCriticalSection(&g_CriticalSection);
}
//===========================================================================
void CpuReset()
{
// 7 cycles
regs.ps = (regs.ps | AF_INTERRUPT) & ~AF_DECIMAL;
regs.pc = * (WORD*) (mem+0xFFFC);
regs.sp = 0x0100 | ((regs.sp - 3) & 0xFF);
regs.bJammed = 0;
}
//===========================================================================
DWORD CpuGetSnapshot(SS_CPU6502* pSS)
{
pSS->A = regs.a;
pSS->X = regs.x;
pSS->Y = regs.y;
pSS->P = regs.ps | AF_RESERVED | AF_BREAK;
pSS->S = (BYTE) (regs.sp & 0xff);
pSS->PC = regs.pc;
pSS->g_nCumulativeCycles = g_nCumulativeCycles;
return 0;
}
DWORD CpuSetSnapshot(SS_CPU6502* pSS)
{
regs.a = pSS->A;
regs.x = pSS->X;
regs.y = pSS->Y;
regs.ps = pSS->P | AF_RESERVED | AF_BREAK;
regs.sp = (USHORT)pSS->S | 0x100;
regs.pc = pSS->PC;
CpuIrqReset();
CpuNmiReset();
g_nCumulativeCycles = pSS->g_nCumulativeCycles;
return 0;
}