mirror of
https://github.com/AppleWin/AppleWin.git
synced 2024-12-28 02:32:08 +00:00
2559 lines
81 KiB
C++
2559 lines
81 KiB
C++
/*
|
|
AppleWin : An Apple //e emulator for Windows
|
|
|
|
Copyright (C) 1994-1996, Michael O'Brien
|
|
Copyright (C) 1999-2001, Oliver Schmidt
|
|
Copyright (C) 2002-2005, Tom Charlesworth
|
|
Copyright (C) 2006-2019, Tom Charlesworth, Michael Pohoreski, Nick Westgate
|
|
|
|
AppleWin is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
AppleWin is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with AppleWin; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/* Description: Disk
|
|
*
|
|
* Author: Various
|
|
*
|
|
* In comments, UTAIIe is an abbreviation for a reference to "Understanding the Apple //e" by James Sather
|
|
*/
|
|
|
|
#include "StdAfx.h"
|
|
|
|
#include "Disk.h"
|
|
|
|
#include "Interface.h"
|
|
#include "Core.h"
|
|
#include "CardManager.h"
|
|
#include "CPU.h"
|
|
#include "DiskImage.h"
|
|
#include "Log.h"
|
|
#include "Memory.h"
|
|
#include "Registry.h"
|
|
#include "SaveState.h"
|
|
#include "YamlHelper.h"
|
|
|
|
#include "../resource/resource.h"
|
|
|
|
// About m_enhanceDisk:
|
|
// . In general m_enhanceDisk==false is used for authentic disk access speed, whereas m_enhanceDisk==true is for enhanced speed.
|
|
// Details:
|
|
// . if false: Used by ImageReadTrack() to skew the sectors in a track (for .do, .dsk, .po 5.25" images).
|
|
// . if true && m_floppyMotorOn, then this is a condition for full-speed (unthrottled) emulation mode.
|
|
// . if false && I/O ReadWrite($C0EC) && drive is spinning, then advance the track buffer's nibble index (to simulate spinning).
|
|
// Also m_enhanceDisk is persisted to the save-state, so it's an attribute of the DiskII interface card.
|
|
|
|
// NB. Non-standard 4&4, with Vol=0x00 and Chk=0x00 (only a few match, eg. Wasteland, Legacy of the Ancients, Planetfall, Border Zone & Wizardry). [*1]
|
|
const BYTE Disk2InterfaceCard::m_T00S00Pattern[] = {0xD5,0xAA,0x96,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xDE};
|
|
|
|
Disk2InterfaceCard::Disk2InterfaceCard(UINT slot) :
|
|
Card(CT_Disk2, slot),
|
|
m_syncEvent(slot, 0, SyncEventCallback) // use slot# as "unique" id for Disk2InterfaceCards
|
|
{
|
|
if (m_slot != 5 && m_slot != 6) // fixme
|
|
ThrowErrorInvalidSlot();
|
|
|
|
ResetSwitches();
|
|
|
|
m_floppyLatch = 0;
|
|
m_saveDiskImage = true; // Save the DiskImage name to Registry
|
|
m_diskLastCycle = 0;
|
|
m_diskLastReadLatchCycle = 0;
|
|
m_enhanceDisk = true;
|
|
m_is13SectorFirmware = false;
|
|
m_force13SectorFirmware = false;
|
|
m_deferredStepperEvent = false;
|
|
m_deferredStepperAddress = 0;
|
|
m_deferredStepperCumulativeCycles = 0;
|
|
|
|
ResetLogicStateSequencer();
|
|
|
|
// Debug:
|
|
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
|
|
m_bLogDisk_NibblesRW = false;
|
|
#endif
|
|
#if LOG_DISK_NIBBLES_WRITE
|
|
m_uWriteLastCycle = 0;
|
|
m_uSyncFFCount = 0;
|
|
#endif
|
|
}
|
|
|
|
Disk2InterfaceCard::~Disk2InterfaceCard(void)
|
|
{
|
|
EjectDiskInternal(DRIVE_1);
|
|
EjectDiskInternal(DRIVE_2);
|
|
|
|
if (m_syncEvent.m_active)
|
|
g_SynchronousEventMgr.Remove(m_syncEvent.m_id);
|
|
}
|
|
|
|
bool Disk2InterfaceCard::GetEnhanceDisk(void) { return m_enhanceDisk; }
|
|
void Disk2InterfaceCard::SetEnhanceDisk(bool bEnhanceDisk) { m_enhanceDisk = bEnhanceDisk; }
|
|
|
|
UINT Disk2InterfaceCard::GetCurrentBitOffset (void) { return m_floppyDrive[m_currDrive].m_disk.m_bitOffset; }
|
|
double Disk2InterfaceCard::GetCurrentExtraCycles(void) { return m_floppyDrive[m_currDrive].m_disk.m_extraCycles; }
|
|
float Disk2InterfaceCard::GetCurrentPhase (void) { return m_floppyDrive[m_currDrive].m_phasePrecise; }
|
|
int Disk2InterfaceCard::GetCurrentDrive (void) { return m_currDrive; }
|
|
BYTE Disk2InterfaceCard::GetCurrentShiftReg (void) { return m_shiftReg; }
|
|
int Disk2InterfaceCard::GetCurrentTrack (void) { return ImagePhaseToTrack(m_floppyDrive[m_currDrive].m_disk.m_imagehandle, m_floppyDrive[m_currDrive].m_phasePrecise, false); }
|
|
|
|
float Disk2InterfaceCard::GetPhase(const int drive) { return m_floppyDrive[drive].m_phasePrecise; }
|
|
int Disk2InterfaceCard::GetTrack(const int drive) { return ImagePhaseToTrack(m_floppyDrive[drive].m_disk.m_imagehandle, m_floppyDrive[drive].m_phasePrecise, false); }
|
|
|
|
std::string Disk2InterfaceCard::FormatIntFracString(float phase, bool hex)
|
|
{
|
|
const UINT phaseInt = (UINT)phase;
|
|
const UINT phaseFrac = (UINT)((phase - (float)phaseInt) * 100 + 0.5);
|
|
|
|
if (hex)
|
|
return StrFormat("%02X.%02d", phaseInt, phaseFrac); // (hex)"NN.nn"
|
|
else
|
|
return StrFormat("%02d.%02d", phaseInt, phaseFrac); // (dec)"NN.nn"
|
|
|
|
}
|
|
|
|
std::string Disk2InterfaceCard::GetCurrentTrackString(void)
|
|
{
|
|
return FormatIntFracString(m_floppyDrive[m_currDrive].m_phasePrecise / 2, true);
|
|
}
|
|
|
|
std::string Disk2InterfaceCard::GetCurrentPhaseString(void)
|
|
{
|
|
return FormatIntFracString(m_floppyDrive[m_currDrive].m_phasePrecise, true);
|
|
}
|
|
|
|
LPCTSTR Disk2InterfaceCard::GetCurrentState(Disk_Status_e& eDiskState_)
|
|
{
|
|
if (m_floppyDrive[m_currDrive].m_disk.m_imagehandle == NULL)
|
|
{
|
|
eDiskState_ = DISK_STATUS_EMPTY;
|
|
}
|
|
else
|
|
if (!m_floppyMotorOn)
|
|
{
|
|
if (m_floppyDrive[m_currDrive].m_spinning > 0)
|
|
{
|
|
eDiskState_ = DISK_STATUS_SPIN;
|
|
}
|
|
else
|
|
{
|
|
eDiskState_ = DISK_STATUS_OFF;
|
|
}
|
|
}
|
|
else if (m_seqFunc.writeMode)
|
|
{
|
|
if (m_floppyDrive[m_currDrive].m_disk.m_bWriteProtected)
|
|
{
|
|
eDiskState_ = DISK_STATUS_PROT;
|
|
}
|
|
else
|
|
{
|
|
eDiskState_ = DISK_STATUS_WRITE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*if (m_seqFunc.loadMode)
|
|
{
|
|
if (m_floppyDrive[m_currDrive].disk.bWriteProtected)
|
|
return "Reading write protect state (write protected)";
|
|
else
|
|
return "Reading write protect state (not write protected)";
|
|
}
|
|
else*/
|
|
{
|
|
eDiskState_ = DISK_STATUS_READ;
|
|
}
|
|
}
|
|
|
|
static const char *aDiskStateMiniDesc[NUM_DISK_STATUS] =
|
|
{
|
|
"Off" // DISK_STATUS_OFF
|
|
,"R" // DISK_STATUS_READ
|
|
,"W" // DISK_STATUS_WRITE
|
|
,"WP" // DISK_STATUS_PROT
|
|
,"n/a" // DISK_STATUS_EMPTY
|
|
,"Spin" // DISK_STATUS_SPIN
|
|
};
|
|
|
|
return aDiskStateMiniDesc[eDiskState_];
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::LoadLastDiskImage(const int drive)
|
|
{
|
|
_ASSERT(drive == DRIVE_1 || drive == DRIVE_2);
|
|
|
|
const std::string regKey = (drive == DRIVE_1)
|
|
? REGVALUE_LAST_DISK_1
|
|
: REGVALUE_LAST_DISK_2;
|
|
|
|
char pathname[MAX_PATH];
|
|
|
|
std::string regSection = RegGetConfigSlotSection(m_slot);
|
|
if (RegLoadString(regSection.c_str(), regKey.c_str(), TRUE, pathname, MAX_PATH, TEXT("")) && (pathname[0] != 0))
|
|
{
|
|
m_saveDiskImage = false;
|
|
ImageError_e error = InsertDisk(drive, pathname, IMAGE_USE_FILES_WRITE_PROTECT_STATUS, IMAGE_DONT_CREATE);
|
|
m_saveDiskImage = true;
|
|
|
|
if (error != eIMAGE_ERROR_NONE)
|
|
{
|
|
NotifyInvalidImage(drive, pathname, error);
|
|
EjectDisk(drive);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::SaveLastDiskImage(const int drive)
|
|
{
|
|
_ASSERT(drive == DRIVE_1 || drive == DRIVE_2);
|
|
|
|
if (!m_saveDiskImage)
|
|
return;
|
|
|
|
std::string regSection = RegGetConfigSlotSection(m_slot);
|
|
RegSaveValue(regSection.c_str(), REGVALUE_CARD_TYPE, TRUE, CT_Disk2);
|
|
|
|
const std::string regKey = (drive == DRIVE_1)
|
|
? REGVALUE_LAST_DISK_1
|
|
: REGVALUE_LAST_DISK_2;
|
|
|
|
const std::string& pathName = DiskGetFullPathName(drive);
|
|
|
|
RegSaveString(regSection.c_str(), regKey.c_str(), TRUE, pathName);
|
|
|
|
//
|
|
|
|
// For now, only update 'Starting Directory' for slot6 & drive1
|
|
// . otherwise you'll get inconsistent results if you set drive1, then drive2 (and the images were in different folders)
|
|
if (m_slot != SLOT6 || drive != DRIVE_1)
|
|
return;
|
|
|
|
const size_t slash = pathName.find_last_of(PATH_SEPARATOR);
|
|
if (slash != std::string::npos)
|
|
{
|
|
const std::string dirName = pathName.substr(0, slash + 1);
|
|
RegSaveString(REG_PREFS, REGVALUE_PREF_START_DIR, 1, dirName);
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
// Called by ControlMotor() & Enable()
|
|
void Disk2InterfaceCard::CheckSpinning(const bool stateChanged, const ULONG uExecutedCycles)
|
|
{
|
|
bool modeChanged = m_floppyMotorOn && !m_floppyDrive[m_currDrive].m_spinning;
|
|
|
|
if (m_floppyMotorOn && IsDriveConnected(m_currDrive))
|
|
m_floppyDrive[m_currDrive].m_spinning = SPINNING_CYCLES;
|
|
|
|
if (modeChanged)
|
|
GetFrame().FrameDrawDiskLEDS();
|
|
|
|
if (modeChanged)
|
|
{
|
|
// Set m_diskLastCycle when motor changes: not spinning (ie. off for 1 sec) -> on
|
|
m_diskLastCycle = g_nCumulativeCycles;
|
|
}
|
|
|
|
if (m_floppyMotorOn && stateChanged)
|
|
{
|
|
// Set m_motorOnCycle when: motor changes to on, or the other drive is enabled (and motor is on)
|
|
m_floppyDrive[m_currDrive].m_motorOnCycle = g_nCumulativeCycles;
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
bool Disk2InterfaceCard::IsDriveValid(const int drive)
|
|
{
|
|
return (drive >= 0 && drive < NUM_DRIVES);
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::AllocTrack(const int drive, const UINT minSize/*=NIBBLES_PER_TRACK*/)
|
|
{
|
|
FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk;
|
|
const UINT maxNibblesPerTrack = ImageGetMaxNibblesPerTrack(m_floppyDrive[drive].m_disk.m_imagehandle);
|
|
pFloppy->m_trackimage = new BYTE[ MAX(minSize,maxNibblesPerTrack) ];
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::ReadTrack(const int drive, ULONG uExecutedCycles)
|
|
{
|
|
if (!IsDriveValid( drive ))
|
|
return;
|
|
|
|
FloppyDrive* pDrive = &m_floppyDrive[ drive ];
|
|
FloppyDisk* pFloppy = &pDrive->m_disk;
|
|
|
|
if (ImagePhaseToTrack(pFloppy->m_imagehandle, pDrive->m_phasePrecise, false) >= ImageGetNumTracks(pFloppy->m_imagehandle))
|
|
{
|
|
_ASSERT(0); // What can cause this? Add a comment to replace this assert.
|
|
// Boot with DOS 3.3 Master in D1
|
|
// Create a blank disk in D2
|
|
// INIT HELLO,D2
|
|
// RUN HELLO
|
|
// F2 to reboot DOS 3.3 Master
|
|
// RUN HELLO,D2
|
|
pFloppy->m_trackimagedata = false;
|
|
return;
|
|
}
|
|
|
|
if (!pFloppy->m_trackimage)
|
|
AllocTrack( drive );
|
|
|
|
if (pFloppy->m_trackimage && pFloppy->m_imagehandle)
|
|
{
|
|
if (ImageIsWOZ(pFloppy->m_imagehandle))
|
|
{
|
|
// Update bitStream position for *current* track before re-calc'ing position for new track
|
|
UINT bitCellDelta = GetBitCellDelta(uExecutedCycles);
|
|
UpdateBitStreamPosition(*pFloppy, bitCellDelta);
|
|
}
|
|
|
|
if (ImageIsWOZ(pFloppy->m_imagehandle) && (pFloppy->m_bitCount == 0))
|
|
{
|
|
// WOZ: m_bitCount only ever 0 on initial power on
|
|
pFloppy->m_bitOffset = 0;
|
|
pFloppy->m_bitCount = 8;
|
|
}
|
|
|
|
const UINT32 currentBitPosition = pFloppy->m_bitOffset;
|
|
const UINT32 currentBitTrackLength = pFloppy->m_bitCount;
|
|
|
|
ImageReadTrack(
|
|
pFloppy->m_imagehandle,
|
|
pDrive->m_phasePrecise,
|
|
pFloppy->m_trackimage,
|
|
&pFloppy->m_nibbles,
|
|
&pFloppy->m_bitCount,
|
|
m_enhanceDisk);
|
|
|
|
if (!ImageIsWOZ(pFloppy->m_imagehandle))
|
|
{
|
|
pFloppy->m_byte = 0;
|
|
}
|
|
else
|
|
{
|
|
// NB. This function is only called for a new track when there's a latch read, ie. only for *even* DEVICE SELECT I/O accesses.
|
|
// . So when seeking across tracks (ie. sequencing through the magnet phases), then not all (quarter) tracks will need reading.
|
|
// . eg. for 'Balance of Power'(GH#1022), for seek T00->T35: this only reads: 00.00, 00.25, 00.75, 01.25, 01.75, ... 34.25, 34.75, 35.00 (skipping the NN.00, NN.50 tracks).
|
|
// . And so the bitOffset "round-up" below isn't called for every track.
|
|
// TODO: consider forcing this function be be called for every track (and appropriately adjust the "round-up" amount - ie. halve it)
|
|
|
|
_ASSERT(pFloppy->m_nibbles && pFloppy->m_bitCount);
|
|
if (pFloppy->m_nibbles == 0 || pFloppy->m_bitCount == 0)
|
|
{
|
|
pFloppy->m_nibbles = 1;
|
|
pFloppy->m_bitCount = 8;
|
|
}
|
|
|
|
pFloppy->m_bitOffset = (currentBitPosition * pFloppy->m_bitCount) / currentBitTrackLength; // Ref: WOZ-1.01
|
|
pFloppy->m_bitOffset += 7; // Round-up for sensitive cross-track sync check (GH#1022)
|
|
|
|
if (pFloppy->m_bitOffset >= pFloppy->m_bitCount)
|
|
pFloppy->m_bitOffset = 0;
|
|
#if LOG_DISK_WOZ_READTRACK
|
|
LOG_DISK("T%05.2f: %04X->%04X, Len=%04X\n", pDrive->m_phasePrecise / 2, currentBitPosition, pFloppy->m_bitOffset, pFloppy->m_bitCount);
|
|
#endif
|
|
|
|
pFloppy->m_byte = pFloppy->m_bitOffset / 8;
|
|
pFloppy->m_bitMask = 1 << (7 - (pFloppy->m_bitOffset % 8));
|
|
|
|
pFloppy->m_extraCycles = 0.0;
|
|
pDrive->m_headWindow = 0;
|
|
|
|
FindTrackSeamWOZ(*pFloppy, pDrive->m_phasePrecise/2);
|
|
}
|
|
|
|
pFloppy->m_trackimagedata = (pFloppy->m_nibbles != 0);
|
|
|
|
pFloppy->m_initialBitOffset = pFloppy->m_bitOffset;
|
|
pFloppy->m_revs = 0;
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::EjectDiskInternal(const int drive)
|
|
{
|
|
FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk;
|
|
|
|
if (pFloppy->m_imagehandle)
|
|
{
|
|
FlushCurrentTrack(drive);
|
|
|
|
ImageClose(pFloppy->m_imagehandle);
|
|
pFloppy->m_imagehandle = NULL;
|
|
}
|
|
|
|
if (pFloppy->m_trackimage)
|
|
{
|
|
delete [] pFloppy->m_trackimage;
|
|
pFloppy->m_trackimage = NULL;
|
|
pFloppy->m_trackimagedata = false;
|
|
}
|
|
|
|
pFloppy->m_imagename.clear();
|
|
pFloppy->m_fullname.clear();
|
|
pFloppy->m_strFilenameInZip = "";
|
|
}
|
|
|
|
void Disk2InterfaceCard::EjectDisk(const int drive)
|
|
{
|
|
if (!IsDriveValid(drive))
|
|
return;
|
|
|
|
EjectDiskInternal(drive);
|
|
Snapshot_UpdatePath();
|
|
|
|
SaveLastDiskImage(drive);
|
|
GetFrame().Video_ResetScreenshotCounter("");
|
|
}
|
|
|
|
void Disk2InterfaceCard::UnplugDrive(const int drive)
|
|
{
|
|
if (!IsDriveValid(drive))
|
|
return;
|
|
|
|
EjectDisk(drive);
|
|
|
|
m_floppyDrive[drive].m_isConnected = false;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::WriteTrack(const int drive)
|
|
{
|
|
FloppyDrive* pDrive = &m_floppyDrive[ drive ];
|
|
FloppyDisk* pFloppy = &pDrive->m_disk;
|
|
|
|
if (ImagePhaseToTrack(pFloppy->m_imagehandle, pDrive->m_phasePrecise, false) >= ImageGetNumTracks(pFloppy->m_imagehandle))
|
|
{
|
|
_ASSERT(0); // What can cause this? Add a comment to replace this assert.
|
|
return;
|
|
}
|
|
|
|
if (pFloppy->m_bWriteProtected)
|
|
return;
|
|
|
|
if (pFloppy->m_trackimage && pFloppy->m_imagehandle)
|
|
{
|
|
#if LOG_DISK_TRACKS
|
|
LOG_DISK("track $%s write\r\n", GetCurrentTrackString().c_str());
|
|
#endif
|
|
ImageWriteTrack(
|
|
pFloppy->m_imagehandle,
|
|
pDrive->m_phasePrecise,
|
|
pFloppy->m_trackimage,
|
|
pFloppy->m_nibbles);
|
|
}
|
|
|
|
pFloppy->m_trackimagedirty = false;
|
|
}
|
|
|
|
void Disk2InterfaceCard::FlushCurrentTrack(const int drive)
|
|
{
|
|
FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk;
|
|
|
|
if (pFloppy->m_trackimage && pFloppy->m_trackimagedirty)
|
|
WriteTrack(drive);
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::Boot(void)
|
|
{
|
|
// THIS FUNCTION RELOADS A PROGRAM IMAGE IF ONE IS LOADED IN DRIVE ONE.
|
|
// IF A DISK IMAGE OR NO IMAGE IS LOADED IN DRIVE ONE, IT DOES NOTHING.
|
|
if (m_floppyDrive[0].m_disk.m_imagehandle && ImageBoot(m_floppyDrive[0].m_disk.m_imagehandle))
|
|
m_floppyMotorOn = 0;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void __stdcall Disk2InterfaceCard::ControlMotor(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
|
|
{
|
|
BOOL newState = address & 1;
|
|
bool stateChanged = (newState != m_floppyMotorOn);
|
|
|
|
// "2. [...] (DRIVES OFF forces the control flip-flops to clear.)" (UTAIIe page 9-12)
|
|
// - so m_magnetStates = 0.
|
|
// "5. Causes the ENABLE1' or the ENABLE2' signal to go low depending on which drive is selected by the drive1/drive2 switch."
|
|
// - so m_currDrive not affected.
|
|
// TODO: what about m_seqFunc.function?
|
|
if (newState == FALSE)
|
|
{
|
|
m_magnetStates = 0; // GH#926, GH#1315
|
|
ControlStepperLogging(address, g_nCumulativeCycles);
|
|
}
|
|
|
|
if (stateChanged)
|
|
{
|
|
m_floppyMotorOn = newState;
|
|
m_formatTrack.DriveNotWritingTrack();
|
|
}
|
|
|
|
// NB. Motor off doesn't reset the Command Decoder like reset. (UTAIIe figures 9.7 & 9.8 chip C2)
|
|
// - so it doesn't reset this state: m_seqFunc, m_magnetStates
|
|
#if LOG_DISK_MOTOR
|
|
LOG_DISK("%08X: motor %s\r\n", (UINT32)g_nCumulativeCycles, (m_floppyMotorOn) ? "on" : "off");
|
|
#endif
|
|
CheckSpinning(stateChanged, uExecutedCycles);
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void __stdcall Disk2InterfaceCard::ControlStepper(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
|
|
{
|
|
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
|
|
|
|
if (!m_floppyMotorOn) // GH#525
|
|
{
|
|
if (!pDrive->m_spinning)
|
|
{
|
|
#if LOG_DISK_PHASES
|
|
LOG_DISK("stepper accessed whilst motor is off and not spinning\r\n");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
#if LOG_DISK_PHASES
|
|
LOG_DISK("stepper accessed whilst motor is off, but still spinning\r\n");
|
|
#endif
|
|
}
|
|
|
|
// update phases (magnet states)
|
|
{
|
|
const int phase = (address >> 1) & 3;
|
|
const int phase_bit = (1 << phase);
|
|
|
|
// update the magnet states
|
|
if (address & 1)
|
|
m_magnetStates |= phase_bit; // phase on
|
|
else
|
|
m_magnetStates &= ~phase_bit; // phase off
|
|
}
|
|
|
|
if (!GetCardMgr().GetDisk2CardMgr().IsStepperDeferred())
|
|
{
|
|
m_deferredStepperAddress = address;
|
|
m_deferredStepperCumulativeCycles = g_nCumulativeCycles;
|
|
ControlStepperDeferred();
|
|
return;
|
|
}
|
|
|
|
if (m_syncEvent.m_active)
|
|
{
|
|
// Check for adjacent magnets being turned off/on in a very short interval (10 cycles is purely based on A2osX). (GH#1110)
|
|
g_SynchronousEventMgr.Remove(m_syncEvent.m_id);
|
|
m_deferredStepperEvent = false;
|
|
|
|
int addrDelta = (m_deferredStepperAddress & 7) - (address & 7);
|
|
if (addrDelta < 0) addrDelta = -addrDelta;
|
|
if (addrDelta == 2 || addrDelta == 6) // adjacent magnets: both turned off or both turned on
|
|
{
|
|
if ((address & 1) == 0) // adjacent magnets off
|
|
{
|
|
// 2 adjacent magnets off in quick succession don't move the cog (GH#1110)
|
|
// . also DOS3.2, Pascal and ProDOS rapidly turning off all 4 magnets.
|
|
ControlStepperLogging(m_deferredStepperAddress, m_deferredStepperCumulativeCycles);
|
|
ControlStepperLogging(address, g_nCumulativeCycles);
|
|
return;
|
|
}
|
|
else // adjacent magnets turned on
|
|
{
|
|
// take no action - can't find any titles that ever do this!
|
|
const std::string msg = "Disk: ControlStepper() - adjacent magnets turned on\n";
|
|
LogOutput("%s", msg.c_str());
|
|
LogFileOutput("%s", msg.c_str());
|
|
}
|
|
}
|
|
|
|
// complete the deferred stepper event
|
|
// eg. Glutton, EDD III - both just combinations of turning off all 4 magnets
|
|
ControlStepperDeferred();
|
|
}
|
|
|
|
// defer the effect of changing the phase
|
|
m_deferredStepperAddress = address;
|
|
m_deferredStepperCumulativeCycles = g_nCumulativeCycles;
|
|
InsertSyncEvent();
|
|
m_deferredStepperEvent = true;
|
|
}
|
|
|
|
void Disk2InterfaceCard::InsertSyncEvent(void)
|
|
{
|
|
m_syncEvent.m_cyclesRemaining = 10; // NB. same cycle delay for magnet off and on - but perhaps they take different times?
|
|
g_SynchronousEventMgr.Insert(&m_syncEvent);
|
|
}
|
|
|
|
int Disk2InterfaceCard::SyncEventCallback(int id, int cycles, ULONG uExecutedCycles)
|
|
{
|
|
Disk2InterfaceCard& disk2Card = dynamic_cast<Disk2InterfaceCard&>(GetCardMgr().GetRef(id));
|
|
disk2Card.ControlStepperDeferred();
|
|
return 0; // Don't repeat event
|
|
}
|
|
|
|
void Disk2InterfaceCard::ControlStepperDeferred(void)
|
|
{
|
|
m_deferredStepperEvent = false;
|
|
const WORD address = m_deferredStepperAddress;
|
|
|
|
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
|
|
FloppyDisk* pFloppy = &pDrive->m_disk;
|
|
|
|
// check for any stepping effect from a magnet
|
|
// - move only when the magnet opposite the cog is off
|
|
// - move in the direction of an adjacent magnet if one is on
|
|
// - do not move if both adjacent magnets are on (ie. quarter track)
|
|
// - timing is accounted for in the case when "two phases [are] turned off in rapid sequence" (UTAIIe page 9-13) (GH#1110)
|
|
// momentum is not accounted for ... maybe one day!
|
|
int direction = 0;
|
|
if (m_magnetStates & (1 << ((pDrive->m_phase + 1) & 3)))
|
|
direction += 1;
|
|
if (m_magnetStates & (1 << ((pDrive->m_phase + 3) & 3)))
|
|
direction -= 1;
|
|
|
|
// Only calculate quarterDirection for WOZ, as NIB/DSK don't support half phases.
|
|
int quarterDirection = 0;
|
|
if (ImageIsWOZ(pFloppy->m_imagehandle))
|
|
{
|
|
if ((m_magnetStates == 0xC || // 1100
|
|
m_magnetStates == 0x6 || // 0110
|
|
m_magnetStates == 0x3 || // 0011
|
|
m_magnetStates == 0x9)) // 1001
|
|
{
|
|
quarterDirection = direction;
|
|
direction = 0;
|
|
}
|
|
}
|
|
|
|
pDrive->m_phase = MAX(0, MIN(79, pDrive->m_phase + direction));
|
|
float newPhasePrecise = (float)(pDrive->m_phase) + (float)quarterDirection * 0.5f;
|
|
if (newPhasePrecise < 0)
|
|
newPhasePrecise = 0;
|
|
|
|
// apply magnet step, if any
|
|
if (newPhasePrecise != pDrive->m_phasePrecise)
|
|
{
|
|
FlushCurrentTrack(m_currDrive);
|
|
pDrive->m_phasePrecise = newPhasePrecise;
|
|
pFloppy->m_trackimagedata = false;
|
|
m_formatTrack.DriveNotWritingTrack();
|
|
GetFrame().FrameDrawDiskStatus(); // Show track status (GH#201)
|
|
}
|
|
|
|
ControlStepperLogging(address, m_deferredStepperCumulativeCycles);
|
|
}
|
|
|
|
void Disk2InterfaceCard::ControlStepperLogging(WORD address, unsigned __int64 cumulativeCycles)
|
|
{
|
|
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
|
|
|
|
#if LOG_DISK_PHASES
|
|
const ULONG cycleDelta = (ULONG)(cumulativeCycles - pDrive->m_lastStepperCycle);
|
|
#endif
|
|
pDrive->m_lastStepperCycle = cumulativeCycles; // NB. Persisted to save-state
|
|
|
|
#if LOG_DISK_PHASES
|
|
LOG_DISK("%08X: track $%s magnet-states %d%d%d%d phase %d %s address $%4X last-stepper %.3fms\r\n",
|
|
(UINT32)cumulativeCycles,
|
|
GetCurrentTrackString().c_str(),
|
|
(m_magnetStates >> 3) & 1,
|
|
(m_magnetStates >> 2) & 1,
|
|
(m_magnetStates >> 1) & 1,
|
|
(m_magnetStates >> 0) & 1,
|
|
(address >> 1) & 3, // phase
|
|
(address & 1) ? "on " : "off",
|
|
address,
|
|
((float)cycleDelta) / (CLK_6502_NTSC / 1000.0));
|
|
#endif
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::Destroy(void)
|
|
{
|
|
m_saveDiskImage = false;
|
|
EjectDisk(DRIVE_1);
|
|
|
|
m_saveDiskImage = false;
|
|
EjectDisk(DRIVE_2);
|
|
|
|
m_saveDiskImage = true;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
bool __stdcall Disk2InterfaceCard::Enable(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
|
|
{
|
|
WORD newDrive = address & 1;
|
|
bool stateChanged = (newDrive != m_currDrive);
|
|
|
|
m_currDrive = newDrive;
|
|
#if LOG_DISK_ENABLE_DRIVE
|
|
LOG_DISK("%08X: enable drive: %d\r\n", (UINT32)g_nCumulativeCycles, m_currDrive);
|
|
#endif
|
|
m_floppyDrive[!m_currDrive].m_spinning = 0;
|
|
m_floppyDrive[!m_currDrive].m_writelight = 0;
|
|
CheckSpinning(stateChanged, uExecutedCycles);
|
|
|
|
return ImageIsWOZ(m_floppyDrive[m_currDrive].m_disk.m_imagehandle); // Drive may've changed, so image-type may've changed
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
// Return the filename
|
|
// . Used by Drive Buttons' tooltips
|
|
const std::string & Disk2InterfaceCard::GetFullDiskFilename(const int drive)
|
|
{
|
|
if (!m_floppyDrive[drive].m_disk.m_strFilenameInZip.empty())
|
|
return m_floppyDrive[drive].m_disk.m_strFilenameInZip;
|
|
|
|
return GetFullName(drive);
|
|
}
|
|
|
|
// Return the file or zip name
|
|
// . Used by Property Sheet Page (Disk)
|
|
const std::string & Disk2InterfaceCard::GetFullName(const int drive)
|
|
{
|
|
return m_floppyDrive[drive].m_disk.m_fullname;
|
|
}
|
|
|
|
// Return the imagename
|
|
// . Used by Drive Button's icons & Property Sheet Page (Save snapshot)
|
|
const std::string & Disk2InterfaceCard::GetBaseName(const int drive)
|
|
{
|
|
return m_floppyDrive[drive].m_disk.m_imagename;
|
|
}
|
|
|
|
void Disk2InterfaceCard::GetFilenameAndPathForSaveState(std::string& filename, std::string& path)
|
|
{
|
|
filename = "";
|
|
path = "";
|
|
|
|
for (UINT i=DRIVE_1; i<=DRIVE_2; i++)
|
|
{
|
|
if (IsDriveEmpty(i))
|
|
continue;
|
|
|
|
filename = GetBaseName(i);
|
|
std::string pathname = DiskGetFullPathName(i);
|
|
|
|
int idx = pathname.find_last_of(PATH_SEPARATOR);
|
|
if (idx >= 0 && idx+1 < (int)pathname.length()) // path exists?
|
|
{
|
|
path = pathname.substr(0, idx+1);
|
|
return;
|
|
}
|
|
|
|
_ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
const std::string & Disk2InterfaceCard::DiskGetFullPathName(const int drive)
|
|
{
|
|
return ImageGetPathname(m_floppyDrive[drive].m_disk.m_imagehandle);
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
Disk_Status_e Disk2InterfaceCard::GetDriveLightStatus(const int drive)
|
|
{
|
|
if (IsDriveValid( drive ))
|
|
{
|
|
FloppyDrive* pDrive = &m_floppyDrive[ drive ];
|
|
|
|
if (pDrive->m_spinning)
|
|
{
|
|
if (pDrive->m_disk.m_bWriteProtected)
|
|
return DISK_STATUS_PROT;
|
|
|
|
if (pDrive->m_writelight)
|
|
return DISK_STATUS_WRITE;
|
|
else
|
|
return DISK_STATUS_READ;
|
|
}
|
|
else
|
|
{
|
|
return DISK_STATUS_OFF;
|
|
}
|
|
}
|
|
|
|
return DISK_STATUS_EMPTY;
|
|
}
|
|
|
|
void Disk2InterfaceCard::GetLightStatus(Disk_Status_e *pDisk1Status, Disk_Status_e *pDisk2Status)
|
|
{
|
|
if (pDisk1Status)
|
|
*pDisk1Status = GetDriveLightStatus(DRIVE_1);
|
|
|
|
if (pDisk2Status)
|
|
*pDisk2Status = GetDriveLightStatus(DRIVE_2);
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
// Pre: pathname likely to include path (but can also just be filename)
|
|
ImageError_e Disk2InterfaceCard::InsertDisk(const int drive, const std::string& pathname, const bool bForceWriteProtected, const bool bCreateIfNecessary)
|
|
{
|
|
FloppyDrive* pDrive = &m_floppyDrive[drive];
|
|
FloppyDisk* pFloppy = &pDrive->m_disk;
|
|
|
|
if (pFloppy->m_imagehandle)
|
|
EjectDisk(drive);
|
|
|
|
// Reset the disk's attributes, but preserve the drive's attributes (GH#138/Platoon, GH#640)
|
|
// . Changing the disk (in the drive) doesn't affect the drive's attributes.
|
|
pFloppy->clear();
|
|
|
|
const DWORD dwAttributes = GetFileAttributes(pathname.c_str());
|
|
if (dwAttributes == INVALID_FILE_ATTRIBUTES)
|
|
pFloppy->m_bWriteProtected = false; // Assume this is a new file to create (so it must be write-enabled to allow it to be formatted)
|
|
else
|
|
pFloppy->m_bWriteProtected = bForceWriteProtected ? true : (dwAttributes & FILE_ATTRIBUTE_READONLY);
|
|
|
|
// Check if image is being used by the other drive, and if so remove it in order so it can be swapped
|
|
{
|
|
const std::string & pszOtherPathname = DiskGetFullPathName(!drive);
|
|
|
|
char szCurrentPathname[MAX_PATH];
|
|
DWORD uNameLen = GetFullPathName(pathname.c_str(), MAX_PATH, szCurrentPathname, NULL);
|
|
if (uNameLen == 0 || uNameLen >= MAX_PATH)
|
|
strcpy_s(szCurrentPathname, MAX_PATH, pathname.c_str());
|
|
|
|
if (!strcmp(pszOtherPathname.c_str(), szCurrentPathname))
|
|
{
|
|
EjectDisk(!drive);
|
|
GetFrame().FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES | DRAW_DISK_STATUS);
|
|
}
|
|
}
|
|
|
|
ImageError_e Error = ImageOpen(pathname,
|
|
&pFloppy->m_imagehandle,
|
|
&pFloppy->m_bWriteProtected,
|
|
bCreateIfNecessary,
|
|
pFloppy->m_strFilenameInZip);
|
|
|
|
if (Error == eIMAGE_ERROR_NONE && ImageIsMultiFileZip(pFloppy->m_imagehandle))
|
|
{
|
|
std::string strText = StrFormat("Only the first file in a multi-file zip is supported\n"
|
|
"Use disk image '%s' ?",
|
|
pFloppy->m_strFilenameInZip.c_str());
|
|
int nRes = GetFrame().FrameMessageBox(strText.c_str(), "Multi-Zip Warning", MB_ICONWARNING | MB_YESNO | MB_SETFOREGROUND);
|
|
if (nRes == IDNO)
|
|
{
|
|
EjectDisk(drive);
|
|
Error = eIMAGE_ERROR_REJECTED_MULTI_ZIP;
|
|
}
|
|
}
|
|
|
|
if (Error == eIMAGE_ERROR_NONE)
|
|
{
|
|
GetImageTitle(pathname.c_str(), pFloppy->m_imagename, pFloppy->m_fullname);
|
|
Snapshot_UpdatePath();
|
|
|
|
GetFrame().Video_ResetScreenshotCounter(pFloppy->m_imagename);
|
|
|
|
if (g_nAppMode == MODE_LOGO)
|
|
InitFirmware(GetCxRomPeripheral());
|
|
}
|
|
else
|
|
{
|
|
GetFrame().Video_ResetScreenshotCounter("");
|
|
}
|
|
|
|
SaveLastDiskImage(drive);
|
|
|
|
return Error;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
bool Disk2InterfaceCard::IsConditionForFullSpeed(void)
|
|
{
|
|
return m_floppyMotorOn && m_enhanceDisk;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::NotifyInvalidImage(const int drive, const std::string & szImageFilename, const ImageError_e Error)
|
|
{
|
|
std::string strText;
|
|
const char * pszImageFilename = szImageFilename.c_str();
|
|
|
|
switch (Error)
|
|
{
|
|
case eIMAGE_ERROR_UNABLE_TO_OPEN:
|
|
case eIMAGE_ERROR_UNABLE_TO_OPEN_GZ:
|
|
case eIMAGE_ERROR_UNABLE_TO_OPEN_ZIP:
|
|
strText = StrFormat("Unable to open the file %s.",
|
|
pszImageFilename);
|
|
break;
|
|
|
|
case eIMAGE_ERROR_BAD_SIZE:
|
|
strText = StrFormat("Unable to use the file %s\n"
|
|
"because the disk image is an unsupported size.",
|
|
pszImageFilename);
|
|
break;
|
|
|
|
case eIMAGE_ERROR_BAD_FILE:
|
|
strText = StrFormat("Unable to use the file %s\n"
|
|
"because the OS can't access it.",
|
|
pszImageFilename);
|
|
break;
|
|
|
|
case eIMAGE_ERROR_UNSUPPORTED:
|
|
strText = StrFormat("Unable to use the file %s\n"
|
|
"because the disk image format is not recognized.",
|
|
pszImageFilename);
|
|
break;
|
|
|
|
case eIMAGE_ERROR_UNSUPPORTED_HDV:
|
|
strText = StrFormat("Unable to use the file %s\n"
|
|
"because this UniDisk 3.5/Apple IIGS/hard-disk image is not supported.\n"
|
|
"Try inserting as a hard-disk image instead.",
|
|
pszImageFilename);
|
|
break;
|
|
|
|
case eIMAGE_ERROR_GZ:
|
|
case eIMAGE_ERROR_ZIP:
|
|
strText = StrFormat("Unable to use the compressed file %s\n"
|
|
"because the compressed disk image is corrupt/unsupported.",
|
|
pszImageFilename);
|
|
break;
|
|
|
|
case eIMAGE_ERROR_FAILED_TO_GET_PATHNAME:
|
|
strText = StrFormat("Unable to GetFullPathName() for the file: %s.",
|
|
pszImageFilename);
|
|
break;
|
|
|
|
case eIMAGE_ERROR_ZEROLENGTH_WRITEPROTECTED:
|
|
strText = StrFormat("Unsupported zero-length write-protected file: %s.",
|
|
pszImageFilename);
|
|
break;
|
|
|
|
case eIMAGE_ERROR_FAILED_TO_INIT_ZEROLENGTH:
|
|
strText = StrFormat("Failed to resize the zero-length file: %s.",
|
|
pszImageFilename);
|
|
break;
|
|
|
|
default:
|
|
// IGNORE OTHER ERRORS SILENTLY
|
|
return;
|
|
}
|
|
|
|
GetFrame().FrameMessageBox(strText.c_str(),
|
|
g_pAppTitle.c_str(),
|
|
MB_ICONEXCLAMATION | MB_SETFOREGROUND);
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
bool Disk2InterfaceCard::GetProtect(const int drive)
|
|
{
|
|
if (!IsDriveValid(drive))
|
|
return true;
|
|
|
|
return m_floppyDrive[drive].m_disk.m_bWriteProtected;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::SetProtect(const int drive, const bool bWriteProtect)
|
|
{
|
|
if (!IsDriveValid(drive))
|
|
return;
|
|
|
|
m_floppyDrive[drive].m_disk.m_bWriteProtected = bWriteProtect;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
bool Disk2InterfaceCard::IsDriveEmpty(const int drive)
|
|
{
|
|
if (!IsDriveValid(drive))
|
|
return true;
|
|
|
|
return m_floppyDrive[drive].m_disk.m_imagehandle == NULL;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
bool Disk2InterfaceCard::IsWozImageInDrive(const int drive)
|
|
{
|
|
if (!IsDriveValid(drive))
|
|
return false;
|
|
|
|
return ImageIsWOZ(m_floppyDrive[drive].m_disk.m_imagehandle);
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
#if LOG_DISK_NIBBLES_WRITE
|
|
bool Disk2InterfaceCard::LogWriteCheckSyncFF(ULONG& uCycleDelta)
|
|
{
|
|
bool bIsSyncFF = false;
|
|
|
|
if (m_uWriteLastCycle == 0) // Reset to 0 when write mode is enabled
|
|
{
|
|
uCycleDelta = 0;
|
|
if (m_floppyLatch == 0xFF)
|
|
{
|
|
m_uSyncFFCount = 0;
|
|
bIsSyncFF = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
uCycleDelta = (ULONG) (g_nCumulativeCycles - m_uWriteLastCycle);
|
|
if (m_floppyLatch == 0xFF && uCycleDelta > 32)
|
|
{
|
|
m_uSyncFFCount++;
|
|
bIsSyncFF = true;
|
|
}
|
|
}
|
|
|
|
m_uWriteLastCycle = g_nCumulativeCycles;
|
|
return bIsSyncFF;
|
|
}
|
|
#endif
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::UpdateLatchForEmptyDrive(FloppyDrive* pDrive)
|
|
{
|
|
if (!pDrive->m_isConnected)
|
|
{
|
|
m_floppyLatch = 0x80; // GH#864
|
|
return;
|
|
}
|
|
|
|
// Drive connected
|
|
|
|
if ((g_nCumulativeCycles - pDrive->m_motorOnCycle) < MOTOR_ON_UNTIL_LSS_STABLE_CYCLES)
|
|
m_floppyLatch = 0x80; // GH#864
|
|
else
|
|
m_floppyLatch = rand() & 0xFF; // GH#748
|
|
}
|
|
|
|
void __stdcall Disk2InterfaceCard::ReadWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG uExecutedCycles)
|
|
{
|
|
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
|
|
FloppyDisk* pFloppy = &pDrive->m_disk;
|
|
|
|
if (!pFloppy->m_trackimagedata && pFloppy->m_imagehandle)
|
|
ReadTrack(m_currDrive, uExecutedCycles);
|
|
|
|
if (!pFloppy->m_trackimagedata)
|
|
return UpdateLatchForEmptyDrive(pDrive);
|
|
|
|
// Improve precision of "authentic" drive mode - GH#125
|
|
UINT uSpinNibbleCount = 0;
|
|
|
|
if (!m_enhanceDisk && pDrive->m_spinning)
|
|
{
|
|
const ULONG nCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastCycle);
|
|
m_diskLastCycle = g_nCumulativeCycles;
|
|
|
|
if (nCycleDiff > 40)
|
|
{
|
|
// 40 cycles for a write of a 10-bit 0xFF sync byte
|
|
uSpinNibbleCount = nCycleDiff >> 5; // ...but divide by 32 (not 40)
|
|
|
|
ULONG uWrapOffset = uSpinNibbleCount % pFloppy->m_nibbles;
|
|
pFloppy->m_byte += uWrapOffset;
|
|
if (pFloppy->m_byte >= pFloppy->m_nibbles)
|
|
pFloppy->m_byte -= pFloppy->m_nibbles;
|
|
|
|
#if LOG_DISK_NIBBLES_SPIN
|
|
UINT uCompleteRevolutions = uSpinNibbleCount / pFloppy->m_nibbles;
|
|
LOG_DISK("spin: revs=%d, nibbles=%d\r\n", uCompleteRevolutions, uWrapOffset);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (!m_seqFunc.writeMode)
|
|
{
|
|
// Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13)
|
|
// "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12)
|
|
// Note: Sherwood Forest sets shift mode and reads with the drive off.
|
|
if (!pDrive->m_spinning) // GH#599
|
|
return;
|
|
|
|
const ULONG nReadCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastReadLatchCycle);
|
|
|
|
// Support partial nibble read if disk reads are very close: (GH#582)
|
|
// . 6 cycles (1st->2nd read) for DOS 3.3 / $BD34: "read with delays to see if disk is spinning." (Beneath Apple DOS)
|
|
// . 6 cycles (1st->2nd read) for Curse of the Azure Bonds (loop to see if disk is spinning)
|
|
// . 25 cycles or higher fails for Legacy of the Ancients (GH#733)
|
|
// . 31 cycles is the max for a partial 8-bit nibble
|
|
const ULONG kReadAccessThreshold = 6; // Same for enhanced/authentic modes
|
|
|
|
if (nReadCycleDiff <= kReadAccessThreshold)
|
|
{
|
|
UINT invalidBits = 8 - (nReadCycleDiff / 4); // 4 cycles per bit-cell
|
|
m_floppyLatch = *(pFloppy->m_trackimage + pFloppy->m_byte) >> invalidBits;
|
|
return; // Early return so don't update: m_diskLastReadLatchCycle & pFloppy->byte
|
|
}
|
|
|
|
m_floppyLatch = *(pFloppy->m_trackimage + pFloppy->m_byte);
|
|
m_diskLastReadLatchCycle = g_nCumulativeCycles;
|
|
|
|
#if LOG_DISK_NIBBLES_READ
|
|
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
|
|
if (m_bLogDisk_NibblesRW)
|
|
#endif
|
|
{
|
|
LOG_DISK("read %04X = %02X\r\n", pFloppy->m_byte, m_floppyLatch);
|
|
}
|
|
|
|
m_formatTrack.DecodeLatchNibbleRead(m_floppyLatch);
|
|
#endif
|
|
}
|
|
else if (!pFloppy->m_bWriteProtected) // && m_seqFunc.writeMode
|
|
{
|
|
if (!pDrive->m_spinning)
|
|
return; // If not spinning then only 1 bit-cell gets written?
|
|
|
|
*(pFloppy->m_trackimage + pFloppy->m_byte) = m_floppyLatch;
|
|
pFloppy->m_trackimagedirty = true;
|
|
|
|
bool bIsSyncFF = false;
|
|
#if LOG_DISK_NIBBLES_WRITE
|
|
ULONG uCycleDelta = 0;
|
|
bIsSyncFF = LogWriteCheckSyncFF(uCycleDelta);
|
|
#endif
|
|
|
|
m_formatTrack.DecodeLatchNibbleWrite(m_floppyLatch, uSpinNibbleCount, pFloppy, bIsSyncFF); // GH#125
|
|
|
|
#if LOG_DISK_NIBBLES_WRITE
|
|
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
|
|
if (m_bLogDisk_NibblesRW)
|
|
#endif
|
|
{
|
|
if (!bIsSyncFF)
|
|
LOG_DISK("write %04X = %02X (cy=+%d)\r\n", pFloppy->m_byte, m_floppyLatch, uCycleDelta);
|
|
else
|
|
LOG_DISK("write %04X = %02X (cy=+%d) sync #%d\r\n", pFloppy->m_byte, m_floppyLatch, uCycleDelta, m_uSyncFFCount);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// GH #1212 We have a non .WOZ disk, mirror so that GetCurrentShiftReg() returns last nibble read
|
|
m_shiftReg = m_floppyLatch;
|
|
|
|
if (++pFloppy->m_byte >= pFloppy->m_nibbles)
|
|
pFloppy->m_byte = 0;
|
|
|
|
// Show track status (GH#201) - NB. Prevent flooding of forcing UI to redraw!!!
|
|
if ((pFloppy->m_byte & 0xFF) == 0)
|
|
GetFrame().FrameDrawDiskStatus();
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::ResetLogicStateSequencer(void)
|
|
{
|
|
m_shiftReg = 0;
|
|
m_latchDelay = 0;
|
|
m_writeStarted = false;
|
|
m_dbgLatchDelayedCnt = 0;
|
|
|
|
m_T00S00PatternIdx = 0;
|
|
m_foundT00S00Pattern = false;
|
|
}
|
|
|
|
UINT Disk2InterfaceCard::GetBitCellDelta(const ULONG uExecutedCycles)
|
|
{
|
|
FloppyDisk& floppy = m_floppyDrive[m_currDrive].m_disk;
|
|
|
|
const BYTE optimalBitTiming = ImageGetOptimalBitTiming(floppy.m_imagehandle);
|
|
|
|
// NB. m_extraCycles is needed to retain accuracy:
|
|
// . Read latch #1: 0-> 9: cycleDelta= 9, bitCellDelta=2, extraCycles=1
|
|
// . Read latch #2: 9->20: cycleDelta=11, bitCellDelta=2, extraCycles=3
|
|
// . Overall: 0->20: cycleDelta=20, bitCellDelta=5, extraCycles=0
|
|
UINT bitCellDelta;
|
|
#if 0
|
|
if (optimalBitTiming == 32)
|
|
{
|
|
const ULONG cycleDelta = (ULONG)(g_nCumulativeCycles - m_diskLastCycle) + (BYTE) floppy.m_extraCycles;
|
|
bitCellDelta = cycleDelta / 4; // DIV 4 for 4us per bit-cell
|
|
floppy.m_extraCycles = cycleDelta & 3; // MOD 4 : remainder carried forward for next time
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
const double cycleDelta = (double)(g_nCumulativeCycles - m_diskLastCycle) + floppy.m_extraCycles;
|
|
const double bitTime = 0.125 * (double)optimalBitTiming; // 125ns units
|
|
bitCellDelta = (UINT) floor( cycleDelta / bitTime );
|
|
floppy.m_extraCycles = (double)cycleDelta - ((double)bitCellDelta * bitTime);
|
|
}
|
|
|
|
// NB. actual m_diskLastCycle for the last bitCell is minus floppy.m_extraCycles
|
|
// - but don't need this value; and it's correctly accounted for in this function.
|
|
m_diskLastCycle = g_nCumulativeCycles;
|
|
|
|
return bitCellDelta;
|
|
}
|
|
|
|
void Disk2InterfaceCard::UpdateBitStreamPosition(FloppyDisk& floppy, const ULONG bitCellDelta)
|
|
{
|
|
if (floppy.m_bitCount == 0) // Repro: Boot DOS3.3(WOZ), eject+reinsert disk, CALL-151, C0E9 N C0ED ; motor-on & LoadWriteProtect()
|
|
return;
|
|
|
|
floppy.m_bitOffset += bitCellDelta;
|
|
if (floppy.m_bitOffset >= floppy.m_bitCount)
|
|
floppy.m_bitOffset %= floppy.m_bitCount;
|
|
|
|
UpdateBitStreamOffsets(floppy);
|
|
}
|
|
|
|
void Disk2InterfaceCard::UpdateBitStreamOffsets(FloppyDisk& floppy)
|
|
{
|
|
floppy.m_byte = floppy.m_bitOffset / 8;
|
|
const UINT remainder = 7 - (floppy.m_bitOffset & 7);
|
|
floppy.m_bitMask = 1 << remainder;
|
|
}
|
|
|
|
__forceinline void Disk2InterfaceCard::IncBitStream(FloppyDisk& floppy)
|
|
{
|
|
floppy.m_bitMask >>= 1;
|
|
if (!floppy.m_bitMask)
|
|
{
|
|
floppy.m_bitMask = 1 << 7;
|
|
floppy.m_byte++;
|
|
}
|
|
|
|
floppy.m_bitOffset++;
|
|
if (floppy.m_bitOffset == floppy.m_bitCount)
|
|
{
|
|
floppy.m_bitMask = 1 << 7;
|
|
floppy.m_bitOffset = 0;
|
|
floppy.m_byte = 0;
|
|
}
|
|
|
|
if (floppy.m_bitOffset == floppy.m_initialBitOffset)
|
|
floppy.m_revs++;
|
|
}
|
|
|
|
void Disk2InterfaceCard::PreJitterCheck(int phase, BYTE latch)
|
|
{
|
|
if (phase != 0 || (latch & 0x80) == 0)
|
|
return;
|
|
|
|
if (latch == m_T00S00Pattern[m_T00S00PatternIdx])
|
|
{
|
|
m_T00S00PatternIdx++;
|
|
if (m_T00S00PatternIdx == sizeof(m_T00S00Pattern))
|
|
m_foundT00S00Pattern = true; // 6502 code has just read latch nibbles for T$00,S$00 address prologue
|
|
}
|
|
else
|
|
{
|
|
m_T00S00PatternIdx = 0;
|
|
}
|
|
}
|
|
|
|
// GH#930: After T$00,S$00 randomly skip 1 bit-cell.
|
|
// . PreJitterCheck() condition met && skipped a big number of bit-cells.
|
|
// . Fix is just for 'Wasteland' and 'Legacy of the Ancients' (but shouldn't interfere with any other woz images).
|
|
// . NB. This is likely to be the transition from DiskII firmware ($C6xx) to user-code ($801),
|
|
// so skipping 1 bit-cell here shouldn't matter.
|
|
// . And (see comment [*1]) the T00S00 pattern only matches a handful of titles.
|
|
void Disk2InterfaceCard::AddJitter(int phase, FloppyDisk& floppy)
|
|
{
|
|
if (phase == 0 && m_foundT00S00Pattern)
|
|
{
|
|
if (rand() < RAND_THRESHOLD(1, 10))
|
|
{
|
|
LogOutput("Disk: T$00 jitter - slip 1 bitcell (PC=%04X)\n", regs.pc);
|
|
IncBitStream(floppy);
|
|
}
|
|
else
|
|
{
|
|
LogOutput("Disk: T$00 jitter - *** SKIP *** (PC=%04X)\n", regs.pc);
|
|
}
|
|
}
|
|
|
|
m_T00S00PatternIdx = 0;
|
|
m_foundT00S00Pattern = false;
|
|
}
|
|
|
|
// GH#1125: For T$21 (track 33.0) or above (and sufficiently long sync FF/10 run-length), then randomly skip 1 bit-cell at the start of the FF/2 track seam.
|
|
// Example of high sync FF/10 run-lengths for tracks 33.0+:
|
|
// . Accolade Comics:114, Silent Service:117, Wings of Fury:140, Wizardry I:127, Wizardry III:283
|
|
// NB. Restrict to higher FF/10 run-lengths to limit the titles affected by this jitter.
|
|
void Disk2InterfaceCard::AddTrackSeamJitter(float phasePrecise, FloppyDisk& floppy)
|
|
{
|
|
if (phasePrecise >= (33.0 * 2) && floppy.m_longestSyncFFRunLength > 110)
|
|
{
|
|
if (floppy.m_bitOffset == floppy.m_longestSyncFFBitOffsetStart)
|
|
{
|
|
if (rand() < RAND_THRESHOLD(5, 10))
|
|
{
|
|
LogOutput("Disk: T%05.2f jitter - slip 1 bitcell (revs=%d) (PC=%04X)\n", phasePrecise / 2, floppy.m_revs, regs.pc);
|
|
IncBitStream(floppy);
|
|
}
|
|
else
|
|
{
|
|
LogOutput("Disk: T%05.2f jitter - *** SKIP *** (revs=%d) (PC=%04X)\n", phasePrecise / 2, floppy.m_revs, regs.pc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void __stdcall Disk2InterfaceCard::DataLatchReadWriteWOZ(WORD pc, WORD addr, BYTE bWrite, ULONG uExecutedCycles)
|
|
{
|
|
_ASSERT(m_seqFunc.function != dataShiftWrite);
|
|
|
|
FloppyDrive& drive = m_floppyDrive[m_currDrive];
|
|
FloppyDisk& floppy = drive.m_disk;
|
|
|
|
if (!floppy.m_trackimagedata && floppy.m_imagehandle)
|
|
{
|
|
ReadTrack(m_currDrive, uExecutedCycles);
|
|
// NB. ReadTrack() has called GetBitCellDelta(), so the subsequent call to GetBitCellDelta() below just returns bitCellDelta==0
|
|
// So could just return at this point.
|
|
}
|
|
|
|
if (!floppy.m_trackimagedata)
|
|
{
|
|
_ASSERT(0); // Can't happen for WOZ - ReadTrack() should return an empty track
|
|
return UpdateLatchForEmptyDrive(&drive);
|
|
}
|
|
|
|
// Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13)
|
|
// "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12)
|
|
// Note: Sherwood Forest sets shift mode and reads with the drive off.
|
|
// TODO: And same for a write?
|
|
if (!drive.m_spinning) // GH#599
|
|
return;
|
|
|
|
// Skipping forward a large amount of bitcells means the bitstream will very likely be out-of-sync.
|
|
// The first 1-bit will produce a latch nibble, and this 1-bit is unlikely to be the nibble's high bit.
|
|
// So we need to ensure we run enough bits through the sequencer to re-sync.
|
|
const UINT significantBitCells = 100; // eg. long stream of weak bits and/or 5x 10-bit sync FF nibbles (GH#1020)
|
|
UINT bitCellDelta = GetBitCellDelta(uExecutedCycles);
|
|
|
|
UINT bitCellRemainder;
|
|
if (bitCellDelta <= significantBitCells)
|
|
{
|
|
bitCellRemainder = bitCellDelta;
|
|
}
|
|
else
|
|
{
|
|
bitCellRemainder = significantBitCells;
|
|
bitCellDelta -= significantBitCells;
|
|
|
|
UpdateBitStreamPosition(floppy, bitCellDelta);
|
|
|
|
m_latchDelay = 0;
|
|
drive.m_headWindow = 0;
|
|
|
|
AddJitter(drive.m_phase, floppy); // Only call when skipping a big number of bit-cells (ie. >significantBitCells)
|
|
}
|
|
|
|
if (!bWrite)
|
|
{
|
|
if (m_seqFunc.function != readSequencing)
|
|
{
|
|
_ASSERT(m_seqFunc.function == checkWriteProtAndInitWrite);
|
|
UpdateBitStreamPosition(floppy, bitCellRemainder);
|
|
return;
|
|
}
|
|
|
|
DataLatchReadWOZ(pc, addr, bitCellRemainder);
|
|
|
|
PreJitterCheck(drive.m_phase, m_floppyLatch); // Pre: m_floppyLatch just updated
|
|
}
|
|
else
|
|
{
|
|
_ASSERT(m_seqFunc.function == dataLoadWrite);
|
|
DataLoadWriteWOZ(pc, addr, bitCellRemainder);
|
|
}
|
|
|
|
// Show track status (GH#201) - NB. Prevent flooding of forcing UI to redraw!!!
|
|
if ((floppy.m_byte & 0xFF) == 0)
|
|
GetFrame().FrameDrawDiskStatus();
|
|
}
|
|
|
|
void Disk2InterfaceCard::DataLatchReadWOZ(WORD pc, WORD addr, UINT bitCellRemainder)
|
|
{
|
|
// m_diskLastReadLatchCycle = g_nCumulativeCycles; // Not used by WOZ (only by NIB)
|
|
|
|
#if LOG_DISK_NIBBLES_READ
|
|
bool newLatchData = false;
|
|
#endif
|
|
|
|
FloppyDrive& drive = m_floppyDrive[m_currDrive];
|
|
FloppyDisk& floppy = drive.m_disk;
|
|
|
|
#if _DEBUG
|
|
static int dbgWOZ = 0;
|
|
if (dbgWOZ)
|
|
{
|
|
dbgWOZ = 0;
|
|
DumpTrackWOZ(floppy); // Enable as necessary
|
|
}
|
|
#endif
|
|
|
|
for (UINT i = 0; i < bitCellRemainder; i++)
|
|
{
|
|
BYTE n = floppy.m_trackimage[floppy.m_byte];
|
|
|
|
drive.m_headWindow <<= 1;
|
|
drive.m_headWindow |= (n & floppy.m_bitMask) ? 1 : 0;
|
|
BYTE outputBit = (drive.m_headWindow & 0xf) ? (drive.m_headWindow >> 1) & 1
|
|
: (rand() < RAND_THRESHOLD(3, 10)) ? 1 : 0; // ~30% chance of a 1 bit (Ref: WOZ-2.0)
|
|
|
|
IncBitStream(floppy);
|
|
|
|
AddTrackSeamJitter(drive.m_phasePrecise, floppy);
|
|
|
|
m_shiftReg <<= 1;
|
|
m_shiftReg |= outputBit;
|
|
|
|
if (m_latchDelay)
|
|
{
|
|
m_latchDelay -= 4;
|
|
if (m_latchDelay < 0)
|
|
m_latchDelay = 0;
|
|
|
|
if (m_shiftReg)
|
|
{
|
|
m_dbgLatchDelayedCnt = 0;
|
|
}
|
|
else // m_shiftReg==0
|
|
{
|
|
m_latchDelay += 4; // extend by 4us (so 7us again) - GH#662
|
|
|
|
m_dbgLatchDelayedCnt++;
|
|
#if LOG_DISK_NIBBLES_READ
|
|
if (m_dbgLatchDelayedCnt >= 3)
|
|
{
|
|
LOG_DISK("read: latch held due to 0: PC=%04X, cnt=%02X\r\n", regs.pc, m_dbgLatchDelayedCnt);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (!m_latchDelay)
|
|
{
|
|
#if LOG_DISK_NIBBLES_READ
|
|
if (newLatchData)
|
|
{
|
|
LOG_DISK("read skipped latch data: %04X = %02X\r\n", floppy.m_byte, m_floppyLatch);
|
|
newLatchData = false;
|
|
}
|
|
#endif
|
|
m_floppyLatch = m_shiftReg;
|
|
|
|
if (m_shiftReg & 0x80)
|
|
{
|
|
m_latchDelay = 7;
|
|
m_shiftReg = 0;
|
|
#if LOG_DISK_NIBBLES_READ
|
|
// May not actually be read by 6502 (eg. Prologue's CHKSUM 4&4 nibble pair), but still pass to the log's nibble reader
|
|
m_formatTrack.DecodeLatchNibbleRead(m_floppyLatch);
|
|
newLatchData = true;
|
|
#endif
|
|
}
|
|
}
|
|
} // for
|
|
|
|
#if LOG_DISK_NIBBLES_READ
|
|
if (m_floppyLatch & 0x80)
|
|
{
|
|
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
|
|
if (m_bLogDisk_NibblesRW)
|
|
#endif
|
|
{
|
|
LOG_DISK("read %04X = %02X\r\n", floppy.m_byte, m_floppyLatch);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Disk2InterfaceCard::DataLoadWriteWOZ(WORD pc, WORD addr, UINT bitCellRemainder)
|
|
{
|
|
_ASSERT(m_seqFunc.function == dataLoadWrite);
|
|
|
|
FloppyDrive& drive = m_floppyDrive[m_currDrive];
|
|
FloppyDisk& floppy = drive.m_disk;
|
|
|
|
if (floppy.m_bWriteProtected)
|
|
{
|
|
_ASSERT(0); // Must be a bug in the 6502 code for this to occur!
|
|
UpdateBitStreamPosition(floppy, bitCellRemainder);
|
|
return;
|
|
}
|
|
|
|
if (!m_writeStarted)
|
|
UpdateBitStreamPosition(floppy, bitCellRemainder); // skip over bitCells before switching to write mode
|
|
|
|
m_writeStarted = true;
|
|
#if LOG_DISK_WOZ_LOADWRITE
|
|
LOG_DISK("load shiftReg with %02X (was: %02X)\n", m_floppyLatch, m_shiftReg);
|
|
#endif
|
|
m_shiftReg = m_floppyLatch;
|
|
|
|
floppy.m_longestSyncFFBitOffsetStart = -1; // invalidate the track seam location after a write
|
|
}
|
|
|
|
void Disk2InterfaceCard::DataShiftWriteWOZ(WORD pc, WORD addr, ULONG uExecutedCycles)
|
|
{
|
|
_ASSERT(m_seqFunc.function == dataShiftWrite);
|
|
|
|
FloppyDrive& drive = m_floppyDrive[m_currDrive];
|
|
FloppyDisk& floppy = drive.m_disk;
|
|
|
|
const UINT bitCellRemainder = GetBitCellDelta(uExecutedCycles);
|
|
|
|
if (floppy.m_bWriteProtected)
|
|
{
|
|
_ASSERT(0); // Must be a bug in the 6502 code for this to occur!
|
|
UpdateBitStreamPosition(floppy, bitCellRemainder);
|
|
return;
|
|
}
|
|
|
|
if (!drive.m_spinning)
|
|
return;
|
|
|
|
if (!floppy.m_trackimagedata) // GH#1126
|
|
return;
|
|
|
|
#if LOG_DISK_WOZ_SHIFTWRITE
|
|
LOG_DISK("T$%02X, bitOffset=%04X: %02X (%d bits)\n", drive.m_phase/2, floppy.m_bitOffset, m_shiftReg, bitCellRemainder);
|
|
#endif
|
|
|
|
for (UINT i = 0; i < bitCellRemainder; i++)
|
|
{
|
|
BYTE outputBit = m_shiftReg & 0x80;
|
|
m_shiftReg <<= 1;
|
|
|
|
BYTE n = floppy.m_trackimage[floppy.m_byte];
|
|
n &= ~floppy.m_bitMask;
|
|
if (outputBit) n |= floppy.m_bitMask;
|
|
floppy.m_trackimage[floppy.m_byte] = n;
|
|
|
|
IncBitStream(floppy);
|
|
}
|
|
|
|
floppy.m_trackimagedirty = true;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
// For now all that's needed is this basic case:
|
|
// . find [start,end] of longest run of FF/10 sync nibbles
|
|
void Disk2InterfaceCard::FindTrackSeamWOZ(FloppyDisk& floppy, float track)
|
|
{
|
|
const UINT oldBitOffset = floppy.m_bitOffset; // Save current state
|
|
|
|
BYTE shiftReg = 0;
|
|
UINT zeroCount = 0;
|
|
|
|
int startBitOffset = -1; // NB. change this to start of first FF/10
|
|
floppy.m_bitOffset = 0;
|
|
UpdateBitStreamOffsets(floppy);
|
|
|
|
int nibbleStartBitOffset = -1;
|
|
int syncFFStartBitOffset = -1;
|
|
int syncFFRunLength = 0;
|
|
int longestSyncFFStartBitOffset = -1;
|
|
int longestSyncFFRunLength = 0;
|
|
|
|
floppy.m_longestSyncFFBitOffsetStart = -1;
|
|
|
|
while (1)
|
|
{
|
|
BYTE n = floppy.m_trackimage[floppy.m_byte];
|
|
BYTE outputBit = (n & floppy.m_bitMask) ? 1 : 0;
|
|
|
|
IncBitStream(floppy);
|
|
|
|
if ((startBitOffset < 0 && floppy.m_bitOffset == 0) || (startBitOffset == floppy.m_bitOffset)) // done complete track?
|
|
break;
|
|
|
|
if (shiftReg & 0x80)
|
|
{
|
|
if (outputBit == 0) // zero, so LSS holds nibble in latch
|
|
{
|
|
zeroCount++;
|
|
continue;
|
|
}
|
|
|
|
// else: start of next nibble
|
|
|
|
if (shiftReg == 0xff && zeroCount == 2)
|
|
{
|
|
if (syncFFStartBitOffset < 0)
|
|
syncFFStartBitOffset = nibbleStartBitOffset;
|
|
syncFFRunLength++;
|
|
}
|
|
|
|
if ((shiftReg != 0xff || zeroCount != 2) && syncFFStartBitOffset >= 0)
|
|
{
|
|
// Longest FF/2 run could straddle end/start of track's bit buffer
|
|
if (startBitOffset < 0)
|
|
startBitOffset = nibbleStartBitOffset;
|
|
|
|
if (longestSyncFFRunLength < syncFFRunLength)
|
|
{
|
|
longestSyncFFStartBitOffset = syncFFStartBitOffset;
|
|
longestSyncFFRunLength = syncFFRunLength;
|
|
}
|
|
syncFFStartBitOffset = -1;
|
|
syncFFRunLength = 0;
|
|
}
|
|
|
|
shiftReg = 0;
|
|
zeroCount = 0;
|
|
}
|
|
|
|
shiftReg <<= 1;
|
|
shiftReg |= outputBit;
|
|
|
|
if (shiftReg == 0x01)
|
|
{
|
|
nibbleStartBitOffset = floppy.m_bitOffset - 1;
|
|
if (nibbleStartBitOffset < 0) nibbleStartBitOffset += floppy.m_bitCount;
|
|
}
|
|
}
|
|
|
|
if (longestSyncFFRunLength)
|
|
{
|
|
const int longestSyncFFBitOffsetEnd = (longestSyncFFStartBitOffset + longestSyncFFRunLength * 10 - 1) % floppy.m_bitCount;
|
|
#if LOG_DISK_WOZ_TRACK_SEAM
|
|
LOG_DISK("Track seam: T%05.2f: FF/10 (run=%d), start=%04X, end=%04X\n", track, longestSyncFFRunLength, longestSyncFFStartBitOffset, longestSyncFFBitOffsetEnd);
|
|
#endif
|
|
floppy.m_longestSyncFFBitOffsetStart = longestSyncFFStartBitOffset;
|
|
floppy.m_longestSyncFFRunLength = longestSyncFFRunLength;
|
|
}
|
|
else
|
|
{
|
|
#if LOG_DISK_WOZ_TRACK_SEAM
|
|
LOG_DISK("Track seam: T%05.2f: FF/10 (none)\n", track);
|
|
#endif
|
|
}
|
|
|
|
// Restore state
|
|
|
|
floppy.m_bitOffset = oldBitOffset;
|
|
UpdateBitStreamOffsets(floppy);
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
#ifdef _DEBUG
|
|
// Dump nibbles from current position bitstream wraps to same position
|
|
// NB. Need to define LOG_DISK_NIBBLES_READ so that GetReadD5AAxxDetectedString() works.
|
|
void Disk2InterfaceCard::DumpTrackWOZ(FloppyDisk floppy) // pass a copy of m_floppy
|
|
{
|
|
FormatTrack formatTrack(true);
|
|
|
|
BYTE shiftReg = 0;
|
|
UINT zeroCount = 0;
|
|
UINT nibbleCount = 0;
|
|
|
|
const UINT startBitOffset = 0; // NB. may need to tweak this offset, since the bitstream is a circular buffer
|
|
floppy.m_bitOffset = startBitOffset;
|
|
UpdateBitStreamOffsets(floppy);
|
|
|
|
int nibbleStartBitOffset = -1;
|
|
|
|
bool newLine = true;
|
|
bool doneLastBit = false;
|
|
|
|
while (1)
|
|
{
|
|
if (newLine && nibbleStartBitOffset >= 0)
|
|
{
|
|
newLine = false;
|
|
LogOutput("%04X:", nibbleStartBitOffset);
|
|
nibbleStartBitOffset = -1;
|
|
}
|
|
|
|
BYTE n = floppy.m_trackimage[floppy.m_byte];
|
|
BYTE outputBit = (n & floppy.m_bitMask) ? 1 : 0;
|
|
|
|
IncBitStream(floppy);
|
|
|
|
if (startBitOffset == floppy.m_bitOffset) // done complete track?
|
|
doneLastBit = true;
|
|
else if (doneLastBit)
|
|
break;
|
|
|
|
if (shiftReg & 0x80)
|
|
{
|
|
if (outputBit == 0) // zero, so LSS holds nibble in latch
|
|
{
|
|
zeroCount++;
|
|
continue;
|
|
}
|
|
|
|
// else: start of next nibble
|
|
|
|
nibbleCount++;
|
|
|
|
char syncBits = zeroCount <= 9 ? '0' + zeroCount : '+';
|
|
if (zeroCount == 0) LogOutput("%02X ", shiftReg);
|
|
else LogOutput("%02X(%c)", shiftReg, syncBits);
|
|
|
|
formatTrack.DecodeLatchNibbleRead(shiftReg);
|
|
|
|
if ((nibbleCount % 32) == 0)
|
|
{
|
|
std::string strReadDetected = formatTrack.GetReadD5AAxxDetectedString();
|
|
if (!strReadDetected.empty())
|
|
{
|
|
OutputDebugString("\t; ");
|
|
OutputDebugString(strReadDetected.c_str());
|
|
}
|
|
OutputDebugString("\n");
|
|
newLine = true;
|
|
}
|
|
|
|
shiftReg = 0;
|
|
zeroCount = 0;
|
|
}
|
|
|
|
shiftReg <<= 1;
|
|
shiftReg |= outputBit;
|
|
|
|
if (shiftReg == 0x01)
|
|
{
|
|
nibbleStartBitOffset = floppy.m_bitOffset - 1;
|
|
if (nibbleStartBitOffset < 0) nibbleStartBitOffset += floppy.m_bitCount;
|
|
}
|
|
}
|
|
|
|
// Output any partial nibble
|
|
if (shiftReg & 0x80)
|
|
{
|
|
LogOutput("%02X", shiftReg);
|
|
|
|
// Output any remaining zeroCount
|
|
if (zeroCount)
|
|
{
|
|
char syncBits = zeroCount <= 9 ? '0' + zeroCount : '+';
|
|
LogOutput("(%c)", syncBits);
|
|
}
|
|
}
|
|
else if (shiftReg)
|
|
{
|
|
LogOutput("%02X/Partial Nibble", shiftReg);
|
|
}
|
|
|
|
// Output any remaining "read D5AAxx detected"
|
|
if (nibbleCount % 32)
|
|
{
|
|
std::string strReadDetected = formatTrack.GetReadD5AAxxDetectedString();
|
|
if (!strReadDetected.empty())
|
|
{
|
|
OutputDebugString("\t; ");
|
|
OutputDebugString(strReadDetected.c_str());
|
|
}
|
|
OutputDebugString("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::Reset(const bool bIsPowerCycle)
|
|
{
|
|
// RESET' forces all switches off (UTAIIe Table 9.1)
|
|
ResetSwitches();
|
|
|
|
m_formatTrack.Reset();
|
|
|
|
ResetLogicStateSequencer();
|
|
|
|
if (bIsPowerCycle) // GH#460
|
|
{
|
|
// NB. This doesn't affect the drive head (ie. drive's track position)
|
|
// . The initial machine start-up state is track=0, but after a power-cycle the track could be any value.
|
|
// . (For DiskII firmware, this results in a subtle extra latch read in this latter case, for the track!=0 case)
|
|
|
|
m_floppyDrive[DRIVE_1].m_spinning = 0;
|
|
m_floppyDrive[DRIVE_1].m_writelight = 0;
|
|
m_floppyDrive[DRIVE_2].m_spinning = 0;
|
|
m_floppyDrive[DRIVE_2].m_writelight = 0;
|
|
|
|
GetFrame().FrameRefreshStatus(DRAW_LEDS);
|
|
}
|
|
|
|
InitFirmware(GetCxRomPeripheral());
|
|
GetFrame().FrameRefreshStatus(DRAW_TITLE);
|
|
}
|
|
|
|
void Disk2InterfaceCard::ResetSwitches(void)
|
|
{
|
|
m_currDrive = 0;
|
|
m_floppyMotorOn = 0;
|
|
m_magnetStates = 0;
|
|
m_seqFunc.function = readSequencing;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
bool Disk2InterfaceCard::UserSelectNewDiskImage(const int drive, LPCSTR pszFilename/*=""*/)
|
|
{
|
|
if (!IsDriveConnected(drive))
|
|
{
|
|
GetFrame().FrameMessageBox("Drive not connected!", "Insert disk", MB_ICONEXCLAMATION|MB_SETFOREGROUND|MB_OK);
|
|
return false;
|
|
}
|
|
|
|
TCHAR directory[MAX_PATH];
|
|
TCHAR filename[MAX_PATH];
|
|
|
|
StringCbCopy(filename, MAX_PATH, pszFilename);
|
|
|
|
RegLoadString(TEXT(REG_PREFS), TEXT(REGVALUE_PREF_START_DIR), 1, directory, MAX_PATH, TEXT(""));
|
|
std::string title = StrFormat("Select Disk Image For Drive %d", drive + 1);
|
|
|
|
OPENFILENAME ofn;
|
|
memset(&ofn, 0, sizeof(OPENFILENAME));
|
|
ofn.lStructSize = sizeof(OPENFILENAME);
|
|
ofn.hwndOwner = GetFrame().g_hFrameWindow;
|
|
ofn.hInstance = GetFrame().g_hInstance;
|
|
ofn.lpstrFilter = TEXT("All Images\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.woz;*.zip;*.2mg;*.2img;*.iie;*.apl\0")
|
|
TEXT("Disk Images (*.bin,*.do,*.dsk,*.nib,*.po,*.gz,*.woz,*.zip,*.2mg,*.2img,*.iie)\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.woz;*.zip;*.2mg;*.2img;*.iie\0")
|
|
TEXT("All Files\0*.*\0");
|
|
ofn.lpstrFile = filename;
|
|
ofn.nMaxFile = MAX_PATH;
|
|
ofn.lpstrInitialDir = directory;
|
|
ofn.Flags = OFN_PATHMUSTEXIST;
|
|
ofn.lpstrTitle = title.c_str();
|
|
|
|
bool bRes = false;
|
|
|
|
if (GetOpenFileName(&ofn))
|
|
{
|
|
std::string openFilename = filename;
|
|
if ((!ofn.nFileExtension) || !filename[ofn.nFileExtension])
|
|
openFilename += TEXT(".dsk");
|
|
|
|
ImageError_e Error = InsertDisk(drive, openFilename, ofn.Flags & OFN_READONLY, IMAGE_CREATE);
|
|
if (Error == eIMAGE_ERROR_NONE)
|
|
{
|
|
bRes = true;
|
|
}
|
|
else
|
|
{
|
|
NotifyInvalidImage(drive, openFilename, Error);
|
|
}
|
|
}
|
|
|
|
return bRes;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void __stdcall Disk2InterfaceCard::LoadWriteProtect(WORD, WORD, BYTE write, BYTE value, ULONG uExecutedCycles)
|
|
{
|
|
// Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13)
|
|
// "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12)
|
|
// Note: Gemstone Warrior sets load mode with the drive off.
|
|
if (!m_floppyDrive[m_currDrive].m_spinning) // GH#599
|
|
return;
|
|
|
|
// Notes:
|
|
// . Only READ-LOAD mode ($C08E,X & $C08D,X) can issue the SR (shift write-protect) operation - UTAIIe page 9-20, fig 9.11
|
|
// . Phase 1 on also forces write protect in the Disk II drive (UTAIIe page 9-7) but we don't implement that.
|
|
// . write mode doesn't prevent reading write protect (GH#537):
|
|
// "If for some reason the above write protect check were entered with the READ/WRITE switch in WRITE,
|
|
// the write protect switch would still be read correctly" (UTAIIe page 9-21)
|
|
// . Sequencer "SR" (Shift Right) command shifts the data register right and loads QA (bit7) with write protect (UTAIIe page 9-21)
|
|
// . A read or write will shift 'write protect' in QA.
|
|
// . The LSS saturates the data register before the CPU can read an intermediate value: so set to 0xFF or 0x00 (GH#1078)
|
|
FloppyDisk& floppy = m_floppyDrive[m_currDrive].m_disk;
|
|
if (floppy.m_bWriteProtected)
|
|
m_floppyLatch = 0xFF;
|
|
else
|
|
m_floppyLatch = 0x00;
|
|
|
|
if (m_writeStarted) // Prevent ResetLogicStateSequencer() from resetting m_writeStarted
|
|
return;
|
|
|
|
if (ImageIsWOZ(floppy.m_imagehandle))
|
|
{
|
|
#if LOG_DISK_NIBBLES_READ
|
|
LOG_DISK("%08X: reset LSS: ~PC=%04X\r\n", (UINT32)g_nCumulativeCycles, regs.pc);
|
|
#endif
|
|
|
|
const UINT bitCellDelta = GetBitCellDelta(uExecutedCycles);
|
|
UpdateBitStreamPosition(floppy, bitCellDelta); // Fix E7-copy protection
|
|
|
|
ResetLogicStateSequencer(); // "Set the sequencer to State 0" (UTAIIe page 9-21)
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void __stdcall Disk2InterfaceCard::SetReadMode(WORD, WORD, BYTE, BYTE, ULONG uExecutedCycles)
|
|
{
|
|
m_formatTrack.DriveSwitchedToReadMode(&m_floppyDrive[m_currDrive].m_disk);
|
|
|
|
#if LOG_DISK_RW_MODE
|
|
LOG_DISK("%08X: rw mode: read\r\n", (UINT32)g_nCumulativeCycles);
|
|
#endif
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void __stdcall Disk2InterfaceCard::SetWriteMode(WORD, WORD, BYTE, BYTE, ULONG uExecutedCycles)
|
|
{
|
|
m_formatTrack.DriveSwitchedToWriteMode(m_floppyDrive[m_currDrive].m_disk.m_byte);
|
|
|
|
BOOL modechange = !m_floppyDrive[m_currDrive].m_writelight;
|
|
#if LOG_DISK_RW_MODE
|
|
LOG_DISK("rw mode: write (mode changed=%d)\r\n", modechange ? 1 : 0);
|
|
#endif
|
|
#if LOG_DISK_NIBBLES_WRITE
|
|
m_uWriteLastCycle = 0;
|
|
#endif
|
|
|
|
m_floppyDrive[m_currDrive].m_writelight = WRITELIGHT_CYCLES;
|
|
|
|
if (modechange)
|
|
GetFrame().FrameDrawDiskLEDS();
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::Update(const ULONG cycles)
|
|
{
|
|
int loop = NUM_DRIVES;
|
|
while (loop--)
|
|
{
|
|
FloppyDrive* pDrive = &m_floppyDrive[loop];
|
|
|
|
if (pDrive->m_spinning && !m_floppyMotorOn)
|
|
{
|
|
if (!(pDrive->m_spinning -= MIN(pDrive->m_spinning, cycles)))
|
|
{
|
|
GetFrame().FrameDrawDiskLEDS();
|
|
GetFrame().FrameDrawDiskStatus();
|
|
}
|
|
}
|
|
|
|
if (m_seqFunc.writeMode && (m_currDrive == loop) && pDrive->m_spinning)
|
|
{
|
|
pDrive->m_writelight = WRITELIGHT_CYCLES;
|
|
}
|
|
else if (pDrive->m_writelight)
|
|
{
|
|
if (!(pDrive->m_writelight -= MIN(pDrive->m_writelight, cycles)))
|
|
{
|
|
GetFrame().FrameDrawDiskLEDS();
|
|
GetFrame().FrameDrawDiskStatus();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
bool Disk2InterfaceCard::DriveSwap(void)
|
|
{
|
|
// Refuse to swap if either Disk][ is active
|
|
// TODO: if Shift-Click then FORCE drive swap to bypass message
|
|
if (m_floppyDrive[DRIVE_1].m_spinning || m_floppyDrive[DRIVE_2].m_spinning)
|
|
{
|
|
// 1.26.2.4 Prompt when trying to swap disks while drive is on instead of silently failing
|
|
int status = GetFrame().FrameMessageBox(
|
|
"WARNING:\n"
|
|
"\n"
|
|
"\tAttempting to swap a disk while a drive is on\n"
|
|
"\t\t--> is NOT recommended <--\n"
|
|
"\tas this will most likely read/write incorrect data!\n"
|
|
"\n"
|
|
"If the other drive is empty then swapping is harmless. The"
|
|
" computer will appear to 'hang' trying to read non-existent data but"
|
|
" you can safely swap disks once more to restore the original disk.\n"
|
|
"\n"
|
|
"Do you still wish to swap disks?",
|
|
"Trying to swap a disk while a drive is on ...",
|
|
MB_ICONWARNING | MB_YESNOCANCEL
|
|
);
|
|
|
|
switch( status )
|
|
{
|
|
case IDNO:
|
|
case IDCANCEL:
|
|
return false;
|
|
default:
|
|
break; // User is OK with swapping disks so let them proceed at their own risk
|
|
}
|
|
}
|
|
|
|
FlushCurrentTrack(DRIVE_1);
|
|
FlushCurrentTrack(DRIVE_2);
|
|
|
|
// Swap disks between drives
|
|
// . NB. We swap trackimage ptrs (so don't need to swap the buffers' data)
|
|
std::swap(m_floppyDrive[DRIVE_1].m_disk, m_floppyDrive[DRIVE_2].m_disk);
|
|
|
|
// Invalidate the trackimage so that a read latch will re-read the track for the new floppy (GH#543)
|
|
m_floppyDrive[DRIVE_1].m_disk.m_trackimagedata = false;
|
|
m_floppyDrive[DRIVE_2].m_disk.m_trackimagedata = false;
|
|
|
|
SaveLastDiskImage(DRIVE_1);
|
|
SaveLastDiskImage(DRIVE_2);
|
|
|
|
GetFrame().FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES);
|
|
|
|
return true;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
bool Disk2InterfaceCard::GetFirmware(WORD lpNameId, BYTE* pDst)
|
|
{
|
|
BYTE* pData = GetFrame().GetResource(lpNameId, "FIRMWARE", DISK2_FW_SIZE);
|
|
if (!pData)
|
|
return false;
|
|
|
|
memcpy(pDst, pData, DISK2_FW_SIZE);
|
|
return true;
|
|
}
|
|
|
|
void Disk2InterfaceCard::InitFirmware(LPBYTE pCxRomPeripheral)
|
|
{
|
|
if (pCxRomPeripheral == NULL)
|
|
return;
|
|
|
|
ImageInfo* pImage = m_floppyDrive[DRIVE_1].m_disk.m_imagehandle;
|
|
|
|
if (m_force13SectorFirmware)
|
|
m_is13SectorFirmware = true;
|
|
else
|
|
m_is13SectorFirmware = ImageIsBootSectorFormatSector13(pImage);
|
|
|
|
if (m_is13SectorFirmware)
|
|
memcpy(pCxRomPeripheral + m_slot*APPLE_SLOT_SIZE, m_13SectorFirmware, DISK2_FW_SIZE);
|
|
else
|
|
memcpy(pCxRomPeripheral + m_slot*APPLE_SLOT_SIZE, m_16SectorFirmware, DISK2_FW_SIZE);
|
|
}
|
|
|
|
void Disk2InterfaceCard::InitializeIO(LPBYTE pCxRomPeripheral)
|
|
{
|
|
bool res = GetFirmware(IDR_DISK2_13SECTOR_FW, m_13SectorFirmware);
|
|
_ASSERT(res);
|
|
|
|
res = GetFirmware(IDR_DISK2_16SECTOR_FW, m_16SectorFirmware);
|
|
_ASSERT(res);
|
|
|
|
// Note: We used to disable the track stepping delay in the Disk II controller firmware by
|
|
// patching $C64C with $A9,$00,$EA. Now not doing this since:
|
|
// . Authentic Speed should be authentic
|
|
// . Enhanced Speed runs emulation unthrottled, so removing the delay has negligible effect
|
|
// . Patching the firmware breaks the ADC checksum used by "The CIA Files" (Tricky Dick)
|
|
// . In this case we can patch to compensate for an ADC or EOR checksum but not both (nickw)
|
|
|
|
RegisterIoHandler(m_slot, &Disk2InterfaceCard::IORead, &Disk2InterfaceCard::IOWrite, NULL, NULL, this, NULL);
|
|
|
|
InitFirmware(pCxRomPeripheral);
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
void Disk2InterfaceCard::SetSequencerFunction(WORD addr, ULONG executedCycles)
|
|
{
|
|
if ((addr & 0xf) < 0xc)
|
|
return;
|
|
|
|
const SEQFUNC oldSeqFunc = m_seqFunc.function;
|
|
|
|
switch ((addr & 3) ^ 2)
|
|
{
|
|
case 0: m_seqFunc.writeMode = 0; break; // $C08E,X (sequence addr A3 input)
|
|
case 1: m_seqFunc.writeMode = 1; break; // $C08F,X (sequence addr A3 input)
|
|
case 2: m_seqFunc.loadMode = 0; break; // $C08C,X (sequence addr A2 input)
|
|
case 3: m_seqFunc.loadMode = 1; break; // $C08D,X (sequence addr A2 input)
|
|
}
|
|
|
|
if (!m_seqFunc.writeMode)
|
|
m_writeStarted = false;
|
|
|
|
if (oldSeqFunc == checkWriteProtAndInitWrite && m_seqFunc.function != checkWriteProtAndInitWrite)
|
|
{
|
|
// Use up remaining cycles before switching out of "checkWriteProtAndInitWrite" mode
|
|
// Done when checking write-protect, but also for bit-slip (eg. E7) copy-protections
|
|
FloppyDisk& floppy = m_floppyDrive[m_currDrive].m_disk;
|
|
if (ImageIsWOZ(floppy.m_imagehandle))
|
|
{
|
|
const UINT bitCellDelta = GetBitCellDelta(executedCycles);
|
|
UpdateBitStreamPosition(floppy, bitCellDelta);
|
|
}
|
|
}
|
|
}
|
|
|
|
BYTE __stdcall Disk2InterfaceCard::IORead(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles)
|
|
{
|
|
CpuCalcCycles(nExecutedCycles); // g_nCumulativeCycles needed by most Disk I/O functions
|
|
|
|
UINT uSlot = ((addr & 0xff) >> 4) - 8;
|
|
Disk2InterfaceCard* pCard = (Disk2InterfaceCard*) MemGetSlotParameters(uSlot);
|
|
|
|
ImageInfo* pImage = pCard->m_floppyDrive[pCard->m_currDrive].m_disk.m_imagehandle;
|
|
bool isWOZ = ImageIsWOZ(pImage);
|
|
|
|
if (isWOZ && pCard->m_seqFunc.function == dataShiftWrite) // Occurs at end of sector write ($C0EE)
|
|
pCard->DataShiftWriteWOZ(pc, addr, nExecutedCycles); // Finish any previous write
|
|
|
|
pCard->SetSequencerFunction(addr, nExecutedCycles);
|
|
|
|
switch (addr & 0xF)
|
|
{
|
|
case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xA: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xB: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
}
|
|
|
|
// only even addresses return the latch (UTAIIe Table 9.1)
|
|
if (!(addr & 1))
|
|
{
|
|
if (isWOZ && pCard->m_seqFunc.function != dataShiftWrite)
|
|
pCard->DataLatchReadWriteWOZ(pc, addr, bWrite, nExecutedCycles);
|
|
|
|
return pCard->m_floppyLatch;
|
|
}
|
|
|
|
return MemReadFloatingBus(nExecutedCycles);
|
|
}
|
|
|
|
BYTE __stdcall Disk2InterfaceCard::IOWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles)
|
|
{
|
|
CpuCalcCycles(nExecutedCycles); // g_nCumulativeCycles needed by most Disk I/O functions
|
|
|
|
UINT uSlot = ((addr & 0xff) >> 4) - 8;
|
|
Disk2InterfaceCard* pCard = (Disk2InterfaceCard*) MemGetSlotParameters(uSlot);
|
|
|
|
ImageInfo* pImage = pCard->m_floppyDrive[pCard->m_currDrive].m_disk.m_imagehandle;
|
|
bool isWOZ = ImageIsWOZ(pImage);
|
|
|
|
if (isWOZ && pCard->m_seqFunc.function == dataShiftWrite)
|
|
pCard->DataShiftWriteWOZ(pc, addr, nExecutedCycles); // Finish any previous write
|
|
|
|
pCard->SetSequencerFunction(addr, nExecutedCycles);
|
|
|
|
switch (addr & 0xF)
|
|
{
|
|
case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xA: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xB: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break;
|
|
}
|
|
|
|
// any address writes the latch via sequencer LD command (74LS323 datasheet)
|
|
if (pCard->m_seqFunc.function == dataLoadWrite)
|
|
{
|
|
pCard->m_floppyLatch = d;
|
|
|
|
if (isWOZ)
|
|
pCard->DataLatchReadWriteWOZ(pc, addr, bWrite, nExecutedCycles);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
//===========================================================================
|
|
|
|
// Unit version history:
|
|
// 2: Added: Format Track state & DiskLastCycle
|
|
// 3: Added: DiskLastReadLatchCycle
|
|
// 4: Added: WOZ state
|
|
// Split up 'Unit' putting some state into a new 'Floppy'
|
|
// 5: Added: Sequencer Function
|
|
// 6: Added: Drive Connected & Motor On Cycle
|
|
// 7: Deprecated SS_YAML_KEY_LSS_RESET_SEQUENCER, SS_YAML_KEY_DISK_ACCESSED
|
|
// 8: Added: deferred stepper: event, address & cycle
|
|
// 9: Added: absolute path
|
|
static const UINT kUNIT_VERSION = 9;
|
|
|
|
#define SS_YAML_VALUE_CARD_DISK2 "Disk]["
|
|
|
|
#define SS_YAML_KEY_PHASES "Phases"
|
|
#define SS_YAML_KEY_CURRENT_DRIVE "Current Drive"
|
|
#define SS_YAML_KEY_DISK_ACCESSED "Disk Accessed" // deprecated at v7
|
|
#define SS_YAML_KEY_ENHANCE_DISK "Enhance Disk"
|
|
#define SS_YAML_KEY_FLOPPY_LATCH "Floppy Latch"
|
|
#define SS_YAML_KEY_FLOPPY_MOTOR_ON "Floppy Motor On"
|
|
#define SS_YAML_KEY_FLOPPY_WRITE_MODE "Floppy Write Mode" // deprecated at v5
|
|
#define SS_YAML_KEY_LAST_CYCLE "Last Cycle"
|
|
#define SS_YAML_KEY_LAST_READ_LATCH_CYCLE "Last Read Latch Cycle"
|
|
#define SS_YAML_KEY_LSS_SHIFT_REG "LSS Shift Reg"
|
|
#define SS_YAML_KEY_LSS_LATCH_DELAY "LSS Latch Delay"
|
|
#define SS_YAML_KEY_LSS_RESET_SEQUENCER "LSS Reset Sequencer" // deprecated at v7
|
|
#define SS_YAML_KEY_LSS_SEQUENCER_FUNCTION "LSS Sequencer Function"
|
|
#define SS_YAML_KEY_DEFERRED_STEPPER_EVENT "Deferred Stepper Event"
|
|
#define SS_YAML_KEY_DEFERRED_STEPPER_ADDRESS "Deferred Stepper Address"
|
|
#define SS_YAML_KEY_DEFERRED_STEPPER_CYCLE "Deferred Stepper Cycle"
|
|
|
|
#define SS_YAML_KEY_DISK2UNIT "Unit"
|
|
#define SS_YAML_KEY_DRIVE_CONNECTED "Drive Connected"
|
|
#define SS_YAML_KEY_PHASE "Phase"
|
|
#define SS_YAML_KEY_PHASE_PRECISE "Phase (precise)"
|
|
#define SS_YAML_KEY_TRACK "Track" // deprecated at v4
|
|
#define SS_YAML_KEY_HEAD_WINDOW "Head Window"
|
|
#define SS_YAML_KEY_LAST_STEPPER_CYCLE "Last Stepper Cycle"
|
|
#define SS_YAML_KEY_MOTOR_ON_CYCLE "Motor On Cycle"
|
|
|
|
#define SS_YAML_KEY_FLOPPY "Floppy"
|
|
#define SS_YAML_KEY_FILENAME "Filename"
|
|
#define SS_YAML_KEY_ABSOLUTE_PATH "Absolute Path"
|
|
#define SS_YAML_KEY_BYTE "Byte"
|
|
#define SS_YAML_KEY_NIBBLES "Nibbles"
|
|
#define SS_YAML_KEY_BIT_OFFSET "Bit Offset"
|
|
#define SS_YAML_KEY_BIT_COUNT "Bit Count"
|
|
#define SS_YAML_KEY_EXTRA_CYCLES "Extra Cycles"
|
|
#define SS_YAML_KEY_WRITE_PROTECTED "Write Protected"
|
|
#define SS_YAML_KEY_SPINNING "Spinning"
|
|
#define SS_YAML_KEY_WRITE_LIGHT "Write Light"
|
|
#define SS_YAML_KEY_TRACK_IMAGE_DATA "Track Image Data"
|
|
#define SS_YAML_KEY_TRACK_IMAGE_DIRTY "Track Image Dirty"
|
|
#define SS_YAML_KEY_TRACK_IMAGE "Track Image"
|
|
|
|
const std::string& Disk2InterfaceCard::GetSnapshotCardName(void)
|
|
{
|
|
static const std::string name(SS_YAML_VALUE_CARD_DISK2);
|
|
return name;
|
|
}
|
|
|
|
void Disk2InterfaceCard::SaveSnapshotFloppy(YamlSaveHelper& yamlSaveHelper, UINT unit)
|
|
{
|
|
YamlSaveHelper::Label label(yamlSaveHelper, "%s:\n", SS_YAML_KEY_FLOPPY);
|
|
yamlSaveHelper.SaveString(SS_YAML_KEY_FILENAME, m_floppyDrive[unit].m_disk.m_fullname);
|
|
yamlSaveHelper.SaveString(SS_YAML_KEY_ABSOLUTE_PATH, ImageGetPathname(m_floppyDrive[unit].m_disk.m_imagehandle));
|
|
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_BYTE, m_floppyDrive[unit].m_disk.m_byte);
|
|
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_NIBBLES, m_floppyDrive[unit].m_disk.m_nibbles);
|
|
yamlSaveHelper.SaveHexUint32(SS_YAML_KEY_BIT_OFFSET, m_floppyDrive[unit].m_disk.m_bitOffset); // v4
|
|
yamlSaveHelper.SaveHexUint32(SS_YAML_KEY_BIT_COUNT, m_floppyDrive[unit].m_disk.m_bitCount); // v4
|
|
yamlSaveHelper.SaveDouble(SS_YAML_KEY_EXTRA_CYCLES, m_floppyDrive[unit].m_disk.m_extraCycles); // v4
|
|
yamlSaveHelper.SaveBool(SS_YAML_KEY_WRITE_PROTECTED, m_floppyDrive[unit].m_disk.m_bWriteProtected);
|
|
yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DATA, m_floppyDrive[unit].m_disk.m_trackimagedata);
|
|
yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY, m_floppyDrive[unit].m_disk.m_trackimagedirty);
|
|
|
|
if (m_floppyDrive[unit].m_disk.m_trackimage)
|
|
{
|
|
YamlSaveHelper::Label image(yamlSaveHelper, "%s:\n", SS_YAML_KEY_TRACK_IMAGE);
|
|
yamlSaveHelper.SaveMemory(m_floppyDrive[unit].m_disk.m_trackimage, ImageGetMaxNibblesPerTrack(m_floppyDrive[unit].m_disk.m_imagehandle));
|
|
}
|
|
}
|
|
|
|
void Disk2InterfaceCard::SaveSnapshotDriveUnit(YamlSaveHelper& yamlSaveHelper, UINT unit)
|
|
{
|
|
YamlSaveHelper::Label label(yamlSaveHelper, "%s%d:\n", SS_YAML_KEY_DISK2UNIT, unit);
|
|
yamlSaveHelper.SaveBool(SS_YAML_KEY_DRIVE_CONNECTED, m_floppyDrive[unit].m_isConnected);
|
|
yamlSaveHelper.SaveUint(SS_YAML_KEY_PHASE, m_floppyDrive[unit].m_phase);
|
|
yamlSaveHelper.SaveFloat(SS_YAML_KEY_PHASE_PRECISE, m_floppyDrive[unit].m_phasePrecise); // v4
|
|
yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_HEAD_WINDOW, m_floppyDrive[unit].m_headWindow); // v4
|
|
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_STEPPER_CYCLE, m_floppyDrive[unit].m_lastStepperCycle); // v4
|
|
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_MOTOR_ON_CYCLE, m_floppyDrive[unit].m_motorOnCycle); // v6
|
|
yamlSaveHelper.SaveUint(SS_YAML_KEY_SPINNING, m_floppyDrive[unit].m_spinning);
|
|
yamlSaveHelper.SaveUint(SS_YAML_KEY_WRITE_LIGHT, m_floppyDrive[unit].m_writelight);
|
|
|
|
SaveSnapshotFloppy(yamlSaveHelper, unit);
|
|
}
|
|
|
|
void Disk2InterfaceCard::SaveSnapshot(YamlSaveHelper& yamlSaveHelper)
|
|
{
|
|
YamlSaveHelper::Slot slot(yamlSaveHelper, GetSnapshotCardName(), m_slot, kUNIT_VERSION);
|
|
|
|
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE);
|
|
yamlSaveHelper.SaveUint(SS_YAML_KEY_CURRENT_DRIVE, m_currDrive);
|
|
yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_PHASES, m_magnetStates);
|
|
yamlSaveHelper.SaveBool(SS_YAML_KEY_ENHANCE_DISK, m_enhanceDisk);
|
|
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_FLOPPY_LATCH, m_floppyLatch);
|
|
yamlSaveHelper.SaveBool(SS_YAML_KEY_FLOPPY_MOTOR_ON, m_floppyMotorOn == TRUE);
|
|
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_CYCLE, m_diskLastCycle); // v2
|
|
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE, m_diskLastReadLatchCycle); // v3
|
|
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_LSS_SHIFT_REG, m_shiftReg); // v4
|
|
yamlSaveHelper.SaveInt(SS_YAML_KEY_LSS_LATCH_DELAY, m_latchDelay); // v4
|
|
yamlSaveHelper.SaveInt(SS_YAML_KEY_LSS_SEQUENCER_FUNCTION, m_seqFunc.function); // v5
|
|
yamlSaveHelper.SaveBool(SS_YAML_KEY_DEFERRED_STEPPER_EVENT, m_deferredStepperEvent); // v8
|
|
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_DEFERRED_STEPPER_ADDRESS, m_deferredStepperAddress); // v8
|
|
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_DEFERRED_STEPPER_CYCLE, m_deferredStepperCumulativeCycles); // v8
|
|
m_formatTrack.SaveSnapshot(yamlSaveHelper); // v2
|
|
|
|
SaveSnapshotDriveUnit(yamlSaveHelper, DRIVE_1);
|
|
SaveSnapshotDriveUnit(yamlSaveHelper, DRIVE_2);
|
|
}
|
|
|
|
bool Disk2InterfaceCard::LoadSnapshotFloppy(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version, std::vector<BYTE>& track)
|
|
{
|
|
const std::string simpleFilename = yamlLoadHelper.LoadString(SS_YAML_KEY_FILENAME);
|
|
const std::string absolutePath = version >= 9 ? yamlLoadHelper.LoadString(SS_YAML_KEY_ABSOLUTE_PATH) : "";
|
|
|
|
std::string filename = simpleFilename;
|
|
bool bImageError = filename.empty();
|
|
|
|
if (!bImageError)
|
|
{
|
|
DWORD dwAttributes = GetFileAttributes(filename.c_str());
|
|
if (dwAttributes == INVALID_FILE_ATTRIBUTES && !absolutePath.empty())
|
|
{
|
|
// try the absolute path if present
|
|
filename = absolutePath;
|
|
dwAttributes = GetFileAttributes(filename.c_str());
|
|
}
|
|
|
|
if (dwAttributes == INVALID_FILE_ATTRIBUTES)
|
|
{
|
|
// ignore absolute name when opening the file dialog
|
|
filename = simpleFilename;
|
|
// Get user to browse for file
|
|
UserSelectNewDiskImage(unit, filename.c_str());
|
|
|
|
dwAttributes = GetFileAttributes(filename.c_str());
|
|
}
|
|
|
|
bImageError = (dwAttributes == INVALID_FILE_ATTRIBUTES);
|
|
if (!bImageError)
|
|
{
|
|
if (InsertDisk(unit, filename, dwAttributes & FILE_ATTRIBUTE_READONLY, IMAGE_DONT_CREATE) != eIMAGE_ERROR_NONE)
|
|
bImageError = true;
|
|
|
|
// InsertDisk() zeros m_floppyDrive[unit], then sets up:
|
|
// . m_imagename
|
|
// . m_fullname
|
|
// . m_bWriteProtected
|
|
}
|
|
}
|
|
|
|
yamlLoadHelper.LoadBool(SS_YAML_KEY_WRITE_PROTECTED); // Consume
|
|
m_floppyDrive[unit].m_disk.m_byte = yamlLoadHelper.LoadUint(SS_YAML_KEY_BYTE);
|
|
m_floppyDrive[unit].m_disk.m_nibbles = yamlLoadHelper.LoadUint(SS_YAML_KEY_NIBBLES);
|
|
m_floppyDrive[unit].m_disk.m_trackimagedata = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DATA) ? true : false;
|
|
m_floppyDrive[unit].m_disk.m_trackimagedirty = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY) ? true : false;
|
|
|
|
if (version >= 4)
|
|
{
|
|
m_floppyDrive[unit].m_disk.m_bitOffset = yamlLoadHelper.LoadUint(SS_YAML_KEY_BIT_OFFSET);
|
|
m_floppyDrive[unit].m_disk.m_bitCount = yamlLoadHelper.LoadUint(SS_YAML_KEY_BIT_COUNT);
|
|
m_floppyDrive[unit].m_disk.m_extraCycles = yamlLoadHelper.LoadDouble(SS_YAML_KEY_EXTRA_CYCLES);
|
|
|
|
if (m_floppyDrive[unit].m_disk.m_bitCount && (m_floppyDrive[unit].m_disk.m_bitOffset >= m_floppyDrive[unit].m_disk.m_bitCount))
|
|
throw std::runtime_error("Disk image: bitOffset >= bitCount");
|
|
|
|
if (ImageIsWOZ(m_floppyDrive[unit].m_disk.m_imagehandle))
|
|
UpdateBitStreamOffsets(m_floppyDrive[unit].m_disk); // overwrites m_byte, inits m_bitMask
|
|
}
|
|
|
|
if (yamlLoadHelper.GetSubMap(SS_YAML_KEY_TRACK_IMAGE))
|
|
{
|
|
yamlLoadHelper.LoadMemory(track, ImageGetMaxNibblesPerTrack(m_floppyDrive[unit].m_disk.m_imagehandle));
|
|
yamlLoadHelper.PopMap();
|
|
}
|
|
|
|
return bImageError;
|
|
}
|
|
|
|
bool Disk2InterfaceCard::LoadSnapshotDriveUnitv3(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version, std::vector<BYTE>& track)
|
|
{
|
|
_ASSERT(version <= 3);
|
|
|
|
std::string disk2UnitName = std::string(SS_YAML_KEY_DISK2UNIT) + (unit == DRIVE_1 ? std::string("0") : std::string("1"));
|
|
if (!yamlLoadHelper.GetSubMap(disk2UnitName))
|
|
throw std::runtime_error("Card: Expected key: " + disk2UnitName);
|
|
|
|
bool bImageError = LoadSnapshotFloppy(yamlLoadHelper, unit, version, track);
|
|
|
|
yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK); // consume
|
|
m_floppyDrive[unit].m_phase = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASE);
|
|
m_floppyDrive[unit].m_phasePrecise = (float) m_floppyDrive[unit].m_phase;
|
|
m_floppyDrive[unit].m_spinning = yamlLoadHelper.LoadUint(SS_YAML_KEY_SPINNING);
|
|
m_floppyDrive[unit].m_writelight = yamlLoadHelper.LoadUint(SS_YAML_KEY_WRITE_LIGHT);
|
|
|
|
yamlLoadHelper.PopMap();
|
|
|
|
return bImageError;
|
|
}
|
|
|
|
bool Disk2InterfaceCard::LoadSnapshotDriveUnitv4(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version, std::vector<BYTE>& track)
|
|
{
|
|
_ASSERT(version >= 4);
|
|
|
|
std::string disk2UnitName = std::string(SS_YAML_KEY_DISK2UNIT) + (unit == DRIVE_1 ? std::string("0") : std::string("1"));
|
|
if (!yamlLoadHelper.GetSubMap(disk2UnitName))
|
|
throw std::runtime_error("Card: Expected key: " + disk2UnitName);
|
|
|
|
if (!yamlLoadHelper.GetSubMap(SS_YAML_KEY_FLOPPY))
|
|
throw std::runtime_error("Card: Expected key: " SS_YAML_KEY_FLOPPY);
|
|
|
|
bool bImageError = LoadSnapshotFloppy(yamlLoadHelper, unit, version, track);
|
|
|
|
yamlLoadHelper.PopMap();
|
|
|
|
//
|
|
|
|
m_floppyDrive[unit].m_phase = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASE);
|
|
m_floppyDrive[unit].m_phasePrecise = yamlLoadHelper.LoadFloat(SS_YAML_KEY_PHASE_PRECISE);
|
|
m_floppyDrive[unit].m_headWindow = yamlLoadHelper.LoadUint(SS_YAML_KEY_HEAD_WINDOW) & 0xf;
|
|
m_floppyDrive[unit].m_lastStepperCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_STEPPER_CYCLE);
|
|
m_floppyDrive[unit].m_spinning = yamlLoadHelper.LoadUint(SS_YAML_KEY_SPINNING);
|
|
m_floppyDrive[unit].m_writelight = yamlLoadHelper.LoadUint(SS_YAML_KEY_WRITE_LIGHT);
|
|
|
|
if (version >= 6)
|
|
{
|
|
m_floppyDrive[unit].m_isConnected = yamlLoadHelper.LoadBool(SS_YAML_KEY_DRIVE_CONNECTED);
|
|
m_floppyDrive[unit].m_motorOnCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_MOTOR_ON_CYCLE);
|
|
}
|
|
|
|
yamlLoadHelper.PopMap();
|
|
|
|
return bImageError;
|
|
}
|
|
|
|
void Disk2InterfaceCard::LoadSnapshotDriveUnit(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version)
|
|
{
|
|
bool bImageError = false;
|
|
std::vector<BYTE> track(NIBBLES_PER_TRACK); // Default size - may expand vector after loading disk image (eg. WOZ Info.largestTrack)
|
|
|
|
if (version <= 3)
|
|
bImageError = LoadSnapshotDriveUnitv3(yamlLoadHelper, unit, version, track);
|
|
else
|
|
bImageError = LoadSnapshotDriveUnitv4(yamlLoadHelper, unit, version, track);
|
|
|
|
|
|
if (!bImageError)
|
|
{
|
|
if ((m_floppyDrive[unit].m_disk.m_trackimage == NULL) && m_floppyDrive[unit].m_disk.m_nibbles)
|
|
AllocTrack(unit, track.size());
|
|
|
|
if (m_floppyDrive[unit].m_disk.m_trackimage == NULL)
|
|
bImageError = true;
|
|
else
|
|
memcpy(m_floppyDrive[unit].m_disk.m_trackimage, &track[0], track.size());
|
|
}
|
|
|
|
if (bImageError)
|
|
{
|
|
m_floppyDrive[unit].m_disk.m_trackimagedata = false;
|
|
m_floppyDrive[unit].m_disk.m_trackimagedirty = false;
|
|
m_floppyDrive[unit].m_disk.m_nibbles = 0;
|
|
}
|
|
}
|
|
|
|
bool Disk2InterfaceCard::LoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT version)
|
|
{
|
|
if (version < 1 || version > kUNIT_VERSION)
|
|
ThrowErrorInvalidVersion(version);
|
|
|
|
m_currDrive = yamlLoadHelper.LoadUint(SS_YAML_KEY_CURRENT_DRIVE);
|
|
m_magnetStates = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASES);
|
|
m_enhanceDisk = yamlLoadHelper.LoadBool(SS_YAML_KEY_ENHANCE_DISK);
|
|
m_floppyLatch = yamlLoadHelper.LoadUint(SS_YAML_KEY_FLOPPY_LATCH);
|
|
m_floppyMotorOn = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_MOTOR_ON);
|
|
|
|
if (version >= 2)
|
|
{
|
|
m_diskLastCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_CYCLE);
|
|
m_formatTrack.LoadSnapshot(yamlLoadHelper);
|
|
}
|
|
|
|
if (version >= 3)
|
|
{
|
|
m_diskLastReadLatchCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE);
|
|
}
|
|
|
|
if (version >= 4)
|
|
{
|
|
m_shiftReg = yamlLoadHelper.LoadUint(SS_YAML_KEY_LSS_SHIFT_REG) & 0xff;
|
|
m_latchDelay = yamlLoadHelper.LoadInt(SS_YAML_KEY_LSS_LATCH_DELAY);
|
|
}
|
|
|
|
if (version >= 4 && version <= 6)
|
|
{
|
|
(void) yamlLoadHelper.LoadBool(SS_YAML_KEY_LSS_RESET_SEQUENCER); // deprecated
|
|
}
|
|
|
|
if (version >= 5)
|
|
{
|
|
m_seqFunc.function = (SEQFUNC) yamlLoadHelper.LoadInt(SS_YAML_KEY_LSS_SEQUENCER_FUNCTION);
|
|
}
|
|
else
|
|
{
|
|
m_seqFunc.writeMode = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_WRITE_MODE) ? 1 : 0;
|
|
m_seqFunc.loadMode = 0; // Wasn't saved until v5
|
|
}
|
|
|
|
if (version <= 6)
|
|
{
|
|
(void) yamlLoadHelper.LoadBool(SS_YAML_KEY_DISK_ACCESSED); // deprecated - but retrieve the value to avoid the "State: Unknown key (Disk Accessed)" warning
|
|
}
|
|
|
|
if (version >= 8)
|
|
{
|
|
m_deferredStepperEvent = yamlLoadHelper.LoadBool(SS_YAML_KEY_DEFERRED_STEPPER_EVENT);
|
|
m_deferredStepperAddress = yamlLoadHelper.LoadUint(SS_YAML_KEY_DEFERRED_STEPPER_ADDRESS);
|
|
m_deferredStepperCumulativeCycles = yamlLoadHelper.LoadUint64(SS_YAML_KEY_DEFERRED_STEPPER_CYCLE);
|
|
}
|
|
|
|
// Eject all disks first in case Drive-2 contains disk to be inserted into Drive-1
|
|
for (UINT i=0; i<NUM_DRIVES; i++)
|
|
{
|
|
EjectDisk(i); // Remove any disk & update Registry to reflect empty drive
|
|
m_floppyDrive[i].clear();
|
|
}
|
|
|
|
LoadSnapshotDriveUnit(yamlLoadHelper, DRIVE_1, version);
|
|
LoadSnapshotDriveUnit(yamlLoadHelper, DRIVE_2, version);
|
|
|
|
GetFrame().FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES | DRAW_DISK_STATUS);
|
|
|
|
if (m_deferredStepperEvent)
|
|
InsertSyncEvent();
|
|
|
|
return true;
|
|
}
|