// // main.c // 6502 // // Created by Tamas Rudnai on 7/14/19. // Copyright © 2019 GameAlloy. All rights reserved. // #define CLK_WAIT #include #include #include #include #include #include "6502.h" #include "../dev/disk/woz.h" void ViewController_spk_up_play(void); void ViewController_spk_dn_play(void); #include "../util/common.h" #define SOFTRESET_VECTOR 0x3F2 #define NMI_VECTOR 0xFFFA #define RESET_VECTOR 0xFFFC #define IRQ_VECTOR 0xFFFE const unsigned long long int iterations = G; unsigned long long int inst_cnt = 0; //const unsigned int fps = 30; const unsigned long long default_MHz_6502 = 1.023 * M; // 2 * M; // 4 * M; // 8 * M; // 16 * M; // 128 * M; // 256 * M; // 512 * M; const unsigned long long startup_MHz_6502 = 25 * M; unsigned long long MHz_6502 = default_MHz_6502; unsigned long long clk_6502_per_frm = startup_MHz_6502 / fps; unsigned long long clk_6502_per_frm_set = default_MHz_6502 / fps; unsigned long long clk_6502_per_frm_max = 0; unsigned long long tick_per_sec = G; unsigned long long tick_6502_per_sec = 0; //INLINE unsigned long long rdtsc(void) //{ // unsigned hi, lo; // __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi) ); // return ( (unsigned long long)lo) | ( ((unsigned long long)hi) << 32 ); //} m6502_t m6502 = { 0, // A 0, // X 0, // Y 0, // SR 0, // PC 0, // SP 0, // clktime 0, // clklast 0, // trace 0, // step 0, // brk 0, // rts 0, // bra 0, // bra_true 0, // bra_false 0, // compile HLT, // IF }; disassembly_t disassembly; #include "../util/disassembler.h" #include "../dev/mem/mmio.h" uint16_t videoShadow [0x1000]; uint32_t videoMem [0x2000]; uint32_t * videoMemPtr = videoMem; uint16_t HiResLineAddrTbl [0x2000]; INLINE void set_flags_N( const uint8_t test ) { m6502.N = BITTEST(test, 7); } INLINE void set_flags_V( const uint8_t test ) { m6502.V = BITTEST(test, 6); } INLINE void set_flags_Z( const uint8_t test ) { m6502.Z = test == 0; } INLINE void set_flags_C( const int16_t test ) { m6502.C = test >= 0; } INLINE void set_flags_NZ( const uint8_t test ) { set_flags_N(test); set_flags_Z(test); } INLINE void set_flags_NV( const uint8_t test ) { set_flags_N(test); set_flags_V(test); } INLINE void set_flags_NVZ( const uint8_t test ) { set_flags_NZ(test); set_flags_V(test); } INLINE void set_flags_NZC( const int16_t test ) { set_flags_NZ(test); set_flags_C(test); } //INLINE void set_flags_NZCV( int test ) { // set_flags_NZC(test); // set_flags_V(test); //} void initHiResLineAddresses() { uint16_t i = 0; for ( uint16_t x = 0; x <= 0x50; x+= 0x28 ) { for ( uint16_t y = 0; y <= 0x380; y += 0x80 ) { for ( uint16_t z = 0; z <= 0x1C00; z += 0x400) { HiResLineAddrTbl[i++] = x + y + z; } } } } typedef struct { uint8_t L; uint8_t H; } bytes_t; void hires_Update () { // lines int videoMemIndex = 0; for( int y = 0; y < 192; y++ ) { // 16 bit blocks of columns for ( int x = 0; x < 20; x++ ) { // odd bytes_t block = * (bytes_t*)(& RAM[ HiResLineAddrTbl[y * 20] + x * 2 ]); for ( uint8_t bit = 0; bit < 7; bit++ ) { uint8_t bitMask = 1 << bit; if (block.L & bitMask) { videoMem[videoMemIndex++] = 0x7F12A208; } else { // 28CD41 videoMem[videoMemIndex++] = 0x00000000; } } // even for ( uint8_t bit = 0; bit < 7; bit++ ) { uint8_t bitMask = 1 << bit; if (block.H & bitMask) { videoMem[videoMemIndex++] = 0x7F12A208; } else { // 28CD41 videoMem[videoMemIndex++] = 0x00000000; } } } } } /** Instruction Implementations !!!! `his has to be here!!! This idea is that "INLINE" would work only if it is located in the same source file -- hence the include... **/ #include "6502_instructions.h" INLINE int m6502_Step() { #ifdef DEBUG___ switch ( m6502.PC ) { case 0xC600: printf("DISK...\n"); break; case 0xC62F: printf("DISK IO...\n"); break; default: break; } switch ( m6502.PC ) { case 0xE000: dbgPrintf("START...\n"); break; case 0xF168: dbgPrintf("START...\n"); break; case 0xF16B: dbgPrintf("START...\n"); break; case 0xF195: // RAM size init dbgPrintf("START...\n"); break; default: break; } #endif #ifdef FUNCTIONTEST switch ( m6502.PC ) { case 0x400: dbgPrintf("START...\n"); break; case 0x0438: dbgPrintf2("*** TEST 1 (%04X)\n", m6502.PC); break; case 0x0581: dbgPrintf2("*** TEST 2 (%04X)\n", m6502.PC); break; case 0x05C8: dbgPrintf2("*** TEST 3 (%04X)\n", m6502.PC); break; case 0x05FC: dbgPrintf2("*** TEST 4 (%04X)\n", m6502.PC); break; case 0x0776: dbgPrintf2("*** TEST 5 (%04X)\n", m6502.PC); break; case 0x0872: dbgPrintf2("*** TEST 6 (%04X)\n", m6502.PC); break; case 0x08A6: dbgPrintf2("*** TEST 7 (%04X)\n", m6502.PC); break; case 0x08F0: dbgPrintf2("*** TEST 8 (%04X)\n", m6502.PC); break; case 0x0946: dbgPrintf2("*** TEST 9 (%04X)\n", m6502.PC); break; case 0x0982: dbgPrintf2("*** TEST 10 (%04X)\n", m6502.PC); break; case 0x09B9: dbgPrintf2("*** TEST 11 (%04X)\n", m6502.PC); break; case 0x0A11: dbgPrintf2("*** TEST 12 (%04X)\n", m6502.PC); break; case 0x0AB7: dbgPrintf2("*** TEST 13 (%04X)\n", m6502.PC); break; case 0x0D7D: dbgPrintf2("*** TEST 14 (%04X)\n", m6502.PC); break; case 0x0E46: dbgPrintf2("*** TEST 15 (%04X)\n", m6502.PC); break; case 0x0F01: dbgPrintf2("*** TEST 16 (%04X)\n", m6502.PC); break; case 0x0F43: dbgPrintf2("*** TEST 17 (%04X)\n", m6502.PC); break; case 0x0FFA: dbgPrintf2("*** TEST 18 (%04X)\n", m6502.PC); break; case 0x103A: dbgPrintf2("*** TEST 19 (%04X)\n", m6502.PC); break; case 0x1330: dbgPrintf2("*** TEST 20 (%04X)\n", m6502.PC); break; case 0x162A: dbgPrintf2("*** TEST 21 (%04X)\n", m6502.PC); break; case 0x16DB: dbgPrintf2("*** TEST 22 (%04X)\n", m6502.PC); break; case 0x17FA: dbgPrintf2("*** TEST 23 (%04X)\n", m6502.PC); break; case 0x1899: dbgPrintf2("*** TEST 24 (%04X)\n", m6502.PC); break; case 0x1B63: dbgPrintf2("*** TEST 25 (%04X)\n", m6502.PC); break; case 0x1CB7: dbgPrintf2("*** TEST 26 (%04X)\n", m6502.PC); break; case 0x1DC5: dbgPrintf("*** TEST 27 (%04X)\n", m6502.PC); break; case 0x1ED3: dbgPrintf2("*** TEST 28 (%04X)\n", m6502.PC); break; case 0x22B7: dbgPrintf2("*** TEST 29 (%04X)\n", m6502.PC); break; case 0x23FB: dbgPrintf2("*** TEST 30 (%04X)\n", m6502.PC); break; case 0x257B: dbgPrintf2("*** TEST 31 (%04X)\n", m6502.PC); break; case 0x271F: dbgPrintf2("*** TEST 32 (%04X)\n", m6502.PC); break; case 0x289F: dbgPrintf2("*** TEST 33 (%04X)\n", m6502.PC); break; case 0x2A43: dbgPrintf2("*** TEST 34 (%04X)\n", m6502.PC); break; case 0x2AED: dbgPrintf2("*** TEST 35 (%04X)\n", m6502.PC); break; case 0x2BA7: dbgPrintf2("*** TEST 36 (%04X)\n", m6502.PC); break; case 0x2C55: dbgPrintf2("*** TEST 37 (%04X)\n", m6502.PC); break; case 0x2D13: dbgPrintf2("*** TEST 38 (%04X)\n", m6502.PC); break; case 0x3103: dbgPrintf2("*** TEST 40 (%04X)\n", m6502.PC); break; case 0x32FC: dbgPrintf2("*** TEST 41 (%04X)\n", m6502.PC); break; case 0x3361: dbgPrintf2("*** TEST 42 (%04X)\n", m6502.PC); break; case 0x3405: dbgPrintf2("*** TEST 43 (%04X)\n", m6502.PC); break; case 0x345D: dbgPrintf2("*** TEST 44 (%04X)\n", m6502.PC); break; case 0x3469: dbgPrintf2("*** TEST PASSED (%04X)\n", m6502.PC); break; default: break; } #endif disNewInstruction(); switch ( fetch() ) { case 0x00: BRK(); return 7; // BRK case 0x01: ORA( src_X_ind() ); return 6; // ORA X,ind // case 0x02: // t jams // case 0x03: // SLO* (undocumented) // case 0x04: // NOP* (undocumented) case 0x05: ORA( src_zp() ); return 3; // ORA zpg case 0x06: ASL( dest_zp() ); return 5; // ASL zpg // case 0x07: // SLO* (undocumented) case 0x08: PHP(); return 3; // PHP case 0x09: ORA( imm() ); return 2; // ORA imm case 0x0A: ASLA(); return 2; // ASL A // case 0x0B: // ANC** (undocumented) // case 0x0C: // NOP* (undocumented) case 0x0D: ORA( src_abs() ); return 4; // ORA abs case 0x0E: ASL( dest_abs() ); return 6; // ASL abs // case 0x0F: // SLO* (undocumented) case 0x10: BPL( rel_addr() ); return 2; // BPL rel case 0x11: ORA( src_ind_Y() ); return 5; // ORA ind,Y // case 0x12: // t jams // case 0x13: // SLO* (undocumented) // case 0x14: // NOP* (undocumented) case 0x15: ORA( src_zp_X() ); return 4; // ORA zpg,X case 0x16: ASL( dest_zp_X() ); return 6; // ASL zpg,X // case 0x17: // SLO* (undocumented) case 0x18: CLC(); return 2; // CLC case 0x19: ORA( src_abs_Y() ); return 4; // ORA abs,Y // case 0x1A: // NOP* (undocumented) // case 0x1B: // SLO* (undocumented) // case 0x1C: // NOP* (undocumented) case 0x1D: ORA( src_abs_X() ); return 4; // ORA abs,X case 0x1E: ASL( dest_abs_X() ); return 7; // ASL abs,X // case 0x1F: // SLO* (undocumented) case 0x20: JSR( abs_addr() ); return 6; // JSR abs case 0x21: AND( src_X_ind() ); return 6; // AND X,ind // case 0x22: KIL // case 0x23: RLA izx 8 case 0x24: BIT( src_zp() ); return 3; // BIT zpg case 0x25: AND( src_zp() ); return 3; // AND zpg case 0x26: ROL( dest_zp() ); return 5; // ROL zpg // case 0x27: RLA zp 5 case 0x28: PLP(); return 4; // PLP case 0x29: AND( imm() ); return 2; // AND imm case 0x2A: ROLA(); return 2; // ROL A // case 0x2B: ANC imm 2 case 0x2C: BIT( src_abs() ); return 4; // BIT abs case 0x2D: AND( src_abs() ); return 4; // AND abs case 0x2E: ROL( dest_abs() ); return 6; // ROL abs // case 0x2F: RLA abs 6 case 0x30: BMI( rel_addr() ); return 2; // BMI rel case 0x31: AND( src_ind_Y() ); return 5; // AND ind,Y // case 0x32: KIL // case 0x33: RLA izy 8 // case 0x34: NOP zpx 4 case 0x35: AND( src_zp_X() ); return 4; // AND zpg,X case 0x36: ROL( dest_zp_X() ); return 6; // ROL zpg,X // case 0x37: RLA zpx 6 case 0x38: SEC(); return 2; // SEC case 0x39: AND( src_abs_Y() ); return 4; // AND abs,Y // case 0x3A: NOP 2 // case 0x3B: RLA aby 7 // case 0x3C: NOP abx 4 case 0x3D: AND( src_abs_X() ); return 4; // AND abs,X case 0x3E: ROL( dest_abs_X() ); return 7; // ROL abs,X // case 0x3F: RLA abx 7 case 0x40: RTI(); return 6; // RTI case 0x41: EOR( src_X_ind() ); return 6; // EOR X,ind // case 0x42: KIL // case 0x43: SRE izx 8 // case 0x44: NOP zp 3 case 0x45: EOR( src_zp() ); return 3; // EOR zpg case 0x46: LSR( dest_zp() ); return 5; // LSR zpg // case 0x47: SRE zp 5 case 0x48: PHA(); return 3; // PHA case 0x49: EOR( imm() ); return 2; // EOR imm case 0x4A: LSRA(); return 2; // LSR A // case 0x4B: ALR imm 2 case 0x4C: JMP( abs_addr() ); return 3; // JMP abs case 0x4D: EOR( src_abs() ); return 4; // EOR abs case 0x4E: LSR( dest_abs() ); return 6; // LSR abs // case 0x4F: SRE abs 6 case 0x50: BVC( rel_addr() ); return 2; // BVC rel case 0x51: EOR( src_ind_Y() ); return 5; // EOR ind,Y // case 0x52: KIL // case 0x53: SRE izy 8 // case 0x54: NOP zpx 4 case 0x55: EOR( src_zp_X() ); return 4; // AND zpg,X case 0x56: LSR( dest_zp_X() ); return 6; // LSR zpg,X // case 0x57: SRE zpx 6 case 0x58: CLI(); return 2; // CLI case 0x59: EOR( src_abs_Y() ); return 4; // EOR abs,Y // case 0x5A: NOP 2 // case 0x5B: SRE aby 7 // case 0x5C: NOP abx 4 case 0x5D: EOR( src_abs_X() ); return 4; // EOR abs,X case 0x5E: LSR( dest_abs_X() ); return 7; // LSR abs,X // case 0x5F: SRE abx 7 case 0x60: RTS(); return 6; // RTS case 0x61: ADC( src_X_ind() ); return 6; // ADC X,ind // case 0x62: KIL // case 0x63: RRA izx 8 // case 0x64: NOP zp 3 case 0x65: ADC( src_zp() ); return 3; // ADC zpg case 0x66: ROR( dest_zp() ); return 5; // ROR zpg // case 0x67: RRA zp 5 case 0x68: PLA(); break; // PLA case 0x69: ADC( imm() ); return 2; // ADC imm case 0x6A: RORA(); return 2; // ROR A // case 0x6B: ARR imm 2 case 0x6C: JMP( ind_addr() ); return 5; // JMP ind case 0x6D: ADC( src_abs() ); return 4; // ADC abs case 0x6E: ROR( dest_abs() ); return 6; // ROR abs // case 0x6F: RRA abs 6 case 0x70: BVS( rel_addr() ); return 2; // BVS rel case 0x71: ADC( src_ind_Y() ); return 5; // ADC ind,Y // case 0x72: // case 0x73: // case 0x74: case 0x75: ADC( src_zp_X() ); return 4; // ADC zpg,X case 0x76: ROR( dest_zp_X() ); return 6; // ROR zpg,X // case 0x77: case 0x78: SEI(); return 2; // SEI case 0x79: ADC( src_abs_Y() ); return 4; // ADC abs,Y // case 0x7A: // case 0x7B: // case 0x7C: case 0x7D: ADC( src_abs_X() ); return 4; // ADC abs,X case 0x7E: ROR( dest_abs_X() ); return 7; // ROR abs,X // case 0x7F: // case 0x80: case 0x81: STA( addr_X_ind() ) ; return 6; // STA X,ind // case 0x82: // case 0x83: case 0x84: STY( addr_zp() ); return 3; // STY zpg case 0x85: STA( addr_zp() ); return 3; // STA zpg case 0x86: STX( addr_zp() ); return 3; // STX zpg // case 0x87: case 0x88: DEY(); return 2; // DEY // case 0x89: NOP(); imm(); return 4; // NOP imm case 0x8A: TXA(); return 2; // TXA // case 0x8B: case 0x8C: STY( addr_abs() ); return 4; // STY abs case 0x8D: STA( addr_abs() ); return 4; // STA abs case 0x8E: STX( addr_abs() ); return 4; // STX abs // case 0x8F: case 0x90: BCC( rel_addr() ); return 2; // BCC rel case 0x91: STA( addr_ind_Y() ); return 6; // STA ind,Y // case 0x92: // case 0x93: case 0x94: STY( addr_zp_X() ); return 4; // STY zpg,X case 0x95: STA( addr_zp_X() ); return 4; // STA zpg,X case 0x96: STX( addr_zp_Y() ); return 4; // STX zpg,Y // case 0x97: case 0x98: TYA(); return 2; // TYA case 0x99: STA( addr_abs_Y() ); return 5; // STA abs,Y case 0x9A: TXS(); return 2; // TXS // case 0x9B: // case 0x9C: case 0x9D: STA( addr_abs_X() ); return 5; // STA abs,X // case 0x9E: // case 0x9F: case 0xA0: LDY( imm() ); return 2; // LDY imm case 0xA1: LDA( src_X_ind() ) ; return 6; // LDA X,ind case 0xA2: LDX( imm() ); return 2; // LDX imm // case 0xA3: case 0xA4: LDY( src_zp() ); return 3; // LDY zpg case 0xA5: LDA( src_zp() ); return 3; // LDA zpg case 0xA6: LDX( src_zp() ); return 3; // LDX zpg // case 0xA7: case 0xA8: TAY(); return 2; // TAY case 0xA9: LDA( imm() ); return 2; // LDA imm case 0xAA: TAX(); return 2; // TAX // case 0xAB: case 0xAC: LDY( src_abs() ); return 4; // LDY abs case 0xAD: LDA( src_abs() ); return 4; // LDA abs case 0xAE: LDX( src_abs() ); return 4; // LDX abs // case 0xAF: case 0xB0: BCS( rel_addr() ); return 2; // BCS rel case 0xB1: LDA( src_ind_Y() ); return 5; // LDA ind,Y // case 0xB2: // case 0xB3: case 0xB4: LDY( src_zp_X() ); return 4; // LDY zpg,X case 0xB5: LDA( src_zp_X() ); return 4; // LDA zpg,X case 0xB6: LDX( src_zp_Y() ); return 4; // LDX zpg,Y // case 0xB7: case 0xB8: CLV(); return 2; // CLV case 0xB9: LDA( src_abs_Y() ); return 4; // LDA abs,Y case 0xBA: TSX(); return 2; // TSX // case 0xBB: case 0xBC: LDY( src_abs_X() ); return 4; // LDY abs,X case 0xBD: LDA( src_abs_X() ); return 4; // LDA abs,X case 0xBE: LDX( src_abs_Y() ); return 4; // LDX abs,Y // case 0xBF: case 0xC0: CPY( imm() ); return 2; // CPY imm case 0xC1: CMP( src_X_ind() ) ; return 6; // LDA X,ind // case 0xC2: // case 0xC3: case 0xC4: CPY( src_zp() ); return 3; // CPY zpg case 0xC5: CMP( src_zp() ); return 3; // CMP zpg case 0xC6: DEC( dest_zp() ); return 5; // DEC zpg // case 0xC7: case 0xC8: INY(); return 2; // INY case 0xC9: CMP( imm() ); return 2; // CMP imm case 0xCA: DEX(); return 2; // DEX // case 0xCB: case 0xCC: CPY( src_abs() ); return 4; // CPY abs case 0xCD: CMP( src_abs() ); return 4; // CMP abs case 0xCE: DEC( dest_abs() ); return 6; // DEC abs // case 0xCF: case 0xD0: BNE( rel_addr() ); return 2; // BNE rel case 0xD1: CMP( src_ind_Y() ); return 5; // CMP ind,Y // case 0xD2: // case 0xD3: // case 0xD4: case 0xD5: CMP( src_zp_X() ); return 4; // CMP zpg,X case 0xD6: DEC( dest_zp_X() ); return 6; // DEC zpg,X // case 0xD7: case 0xD8: CLD(); return 2; // CLD case 0xD9: CMP( src_abs_Y() ); return 4; // CMP abs,Y // case 0xDA: // case 0xDB: // case 0xDC: case 0xDD: CMP( src_abs_X() ); return 4; // CMP abs,X case 0xDE: DEC( dest_abs_X() ); return 7; // DEC abs,X // case 0xDF: case 0xE0: CPX( imm() ); return 2; // CPX imm case 0xE1: SBC( src_X_ind() ) ; return 6; // SBC (X,ind) // case 0xE2: // case 0xE3: case 0xE4: CPX( src_zp() ); return 3; // CPX zpg case 0xE5: SBC( src_zp() ); return 3; // SBC zpg case 0xE6: INC( dest_zp() ); return 5; // INC zpg // case 0xE7: case 0xE8: INX(); return 2; // INX case 0xE9: SBC( imm() ); return 2; // SBC imm case 0xEA: NOP(); return 2; // NOP // case 0xEB: case 0xEC: CPX( src_abs() ); return 4; // CPX abs case 0xED: SBC( src_abs() ); return 4; // SBC abs case 0xEE: INC( dest_abs() ); return 6; // INC abs // case 0xEF: case 0xF0: BEQ( rel_addr() ); return 2; // BEQ rel case 0xF1: SBC( src_ind_Y() ); return 5; // SBC ind,Y // case 0xF2: // case 0xF3: // case 0xF4: case 0xF5: SBC( src_zp_X() ); return 4; // SBC zpg,X case 0xF6: INC( dest_zp_X() ); return 6; // INC zpg,X // case 0xF7: case 0xF8: SED(); return 2; // SED case 0xF9: SBC( src_abs_Y() ); return 4; // SBC abs,Y // case 0xFA: // case 0xFB: // case 0xFC: case 0xFD: SBC( src_abs_X() ); return 4; // SBC abs,X case 0xFE: INC( dest_abs_X() ); return 7; // INC abs,X // case 0xFF: default: dbgPrintf("%04X: Unimplemented Instruction 0x%02X\n", m6502.PC -1, memread( m6502.PC -1 )); return 2; } // } // fetch16 return 2; } unsigned long long ee = 0; unsigned long long dd = 0; // nanosec does not work very well for some reason struct timespec tim = { 0, 400L }; double mips = 0; double mhz = 0; unsigned long long epoch = 0; unsigned int clkfrm = 0; void m6502_Run() { static unsigned int clk = 0; // init time //#ifdef CLK_WAIT // unsigned long long elpased = (unsigned long long)-1LL; //#endif // we will also use this to pause the simulation if not finished by the end of the frame clk_6502_per_frm_max = clk_6502_per_frm; #ifdef SPEEDTEST for ( inst_cnt = 0; inst_cnt < iterations ; inst_cnt++ ) #elif defined( CLK_WAIT ) for ( clkfrm = 0; clkfrm < clk_6502_per_frm_max ; clkfrm += clk ) #else // for ( ; m6502.pc ; ) for ( ; ; ) #endif { #ifdef INTERRUPT_CHECK_PER_STEP if ( m6502.IF ) { switch (m6502.interrupt) { case HLT: // CPU is haletd, nothing to do here... return; case IRQ: m6502.PC = memread16(IRQ_VECTOR); // TODO: PUSH things onto stack? break; case NMI: m6502.PC = memread16(NMI_VECTOR); // TODO: PUSH things onto stack? break; case HARDRESET: m6502.PC = memread16(RESET_VECTOR); // make sure it will be a cold reset... memwrite(0x3F4, 0); m6502.SP = 0xFF; // N V - B D I Z C // 0 0 1 0 0 1 0 1 m6502.SR = 0x25; break; case SOFTRESET: // m6502.PC = memread16(SOFTRESET_VECTOR); m6502.PC = memread16( RESET_VECTOR ); m6502.SP = 0xFF; // N V - B D I Z C // 0 0 1 0 0 1 0 1 m6502.SR = 0x25; break; default: break; } m6502.IF = 0; } #endif // INTERRUPT_CHECK_PER_STEP // dbgPrintf("%llu %04X: ", clktime, m6502.PC); m6502.clktime += clk = m6502_Step(); printDisassembly( outdev ); // dbgPrintf2("A:%02X X:%02X Y:%02X SP:%02X %c%c%c%c%c%c%c%c\n\n", // m6502.A, // m6502.X, // m6502.Y, // m6502.SP, // m6502.N ? 'N' : 'n', // m6502.V ? 'V' : 'v', // m6502.res ? 'R' : 'r', // m6502.B ? 'B' : 'b', // m6502.D ? 'D' : 'd', // m6502.I ? 'I' : 'i', // m6502.Z ? 'Z' : 'z', // m6502.C ? 'C' : 'c' // ); #ifdef CLK_WAIT // ee += tick_6502_per_sec * clk; // ee /= 2; // dd += rdtsc() - epoch - elpased; // dd /= 2; // get the new time in ticks needed to simulate exact 6502 clock // elpased = tick_6502_per_sec * clktime; // query time + wait // TODO: We should use nanosleep // usleep(1); // this is good enough for debugging // nanosleep(&tim, NULL); // printf(" tps:%llu s:%llu t:%llu d:%llu e:%llu n:%llu\n", tick_6502_per_sec, s, t, t - s, e, e - (t - s)); // tight loop gives us the most precise wait time // while ( rdtsc() - epoch < elpased ) {} #endif } if( diskAccelerator_count ) { if( --diskAccelerator_count <= 0 ) { // make sure we only adjust clock once to get back to normal diskAccelerator_count = 0; clk_6502_per_frm = clk_6502_per_frm_set; } } // clock_t end = clock(); // double execution_time = ((double) (end - start)) / CLOCKS_PER_SEC; // unsigned long long e = rdtsc(); // unsigned long long t = e - epoch; // double execution_time = (double)t / tick_per_sec; // // mips = inst_cnt / (execution_time * M); // mhz = clktime / (execution_time * M); } void read_rom( const char * bundlePath, const char * filename, uint8_t * rom, const uint16_t addr ) { char fullPath[256]; strcpy( fullPath, bundlePath ); strcat( fullPath, "/"); strcat( fullPath, filename ); FILE * f = fopen(fullPath, "rb"); if (f == NULL) { perror("Failed to read ROM: "); return; } fseek(f, 0L, SEEK_END); uint16_t flen = ftell(f); fseek(f, 0L, SEEK_SET); fread( rom + addr, 1, flen, f); fclose(f); } size_t getFileSize ( const char * fullPath ) { FILE * f = fopen(fullPath, "rb"); if (f == NULL) { perror("Failed to read ROM: "); return 0; } fseek(f, 0L, SEEK_END); size_t flen = ftell(f); fseek(f, 0L, SEEK_SET); fclose(f); return flen; } void rom_loadFile( const char * bundlePath, const char * filename ) { char fullPath[256]; strcpy( fullPath, bundlePath ); strcat( fullPath, "/"); strcat( fullPath, filename ); size_t flen = getFileSize(fullPath); if ( flen == 0 ) { return; // there was an error } else if ( flen == 16 * KB ) { read_rom( bundlePath, filename, Apple2_16K_ROM, 0); memcpy(Apple2_64K_MEM + 0xC000, Apple2_16K_ROM, 16 * KB); // SWITCH_CX_ROM( RAM_PG_RD_TBL, 0xC0, Apple2_16K_ROM, 0x00); } else if ( flen == 12 * KB ) { read_rom( bundlePath, filename, Apple2_16K_ROM, 0x1000); memcpy(Apple2_64K_MEM + 0xD000, Apple2_16K_ROM + 0x1000, 12 * KB); } } void m6502_ColdReset( const char * bundlePath, const char * romFileName ) { inst_cnt = 0; mhz = (double)MHz_6502 / M; unsigned long long saved_frm_set = clk_6502_per_frm_set; clk_6502_per_frm_max = clk_6502_per_frm_set = 0; // wait 100ms to be sure simulation has been halted usleep(100000); printf("Bundlepath: %s", bundlePath); // epoch = rdtsc(); // sleep(1); // unsigned long long e = rdtsc(); // tick_per_sec = e - epoch; // tick_6502_per_sec = tick_per_sec / MHz_6502; resetMemory(); outdev = fopen("/Users/trudnai/Library/Containers/com.gamealloy.A2Mac/Data/disassembly_new.log", "w+"); if (outdev == NULL) { outdev = stdout; } #ifdef FUNCTIONTEST FILE * f = fopen("/Users/trudnai/Library/Containers/com.gamealloy.A2Mac/Data/6502_functional_test.bin", "rb"); if (f == NULL) { perror("Failed: "); return; } fread( RAM, 1, 65536, f); fclose(f); m6502.PC = 0x400; #else // Apple ][+ ROM rom_loadFile(bundlePath, romFileName); // Disk ][ ROM in Slot 6 read_rom( bundlePath, "DISK_II_C600.ROM", Apple2_64K_MEM, 0xC600); // read_rom( "/Users/trudnai/Library/Containers/com.gamealloy.A2Mac/Data/", "DISK_II_C600.ROM", Apple2_64K_MEM, 0xC600); m6502.A = m6502.X = m6502.Y = 0xFF; // reset vector m6502.SP = 0xFF; //-3; // N V - B D I Z C // 0 0 1 0 0 1 0 0 m6502.SR = 0x24; m6502.IF = 0; // memory size //*((uint16_t*)(&RAM[0x73])) = 0xC000; m6502.PC = memread16( RESET_VECTOR ); #endif uint8_t counter[] = { // 1 * COUNTER2 // 2 // 3 ORG $1000 // 4 SCREEN EQU $400 // 5 HOME EQU $FC58 // 6 DIGITS EQU $06 // 7 ZERO EQU $B0 // 8 CARRY EQU $BA // 9 RDKEY EQU $FD0C //10 // I have placed NOP to keep addresses 0xA0, 0x09, 0xEA, //11 LDY #$09 ; NOP 0x84, 0x06, //12 STY #DIGITS 0xEA, 0xEA, //13 NOP NOP 0xEA, 0xEA, 0xEA, //14 NOP NOP NOP 0xA6, 0x06, //15 LDY DIGITS 0xA9, 0xB0, //16 CLEAR LDA #ZERO 0x99, 0x00, 0x04, //17 STA SCREEN,Y 0x88, //18 DEY 0x10, 0xF8, //19 BPL CLEAR 0xA4, 0x06, //20 START LDY DIGITS 0x20, 0x36, 0x10, //21 ONES JSR INC 0xB9, 0x00, 0x04, //22 LDA SCREEN,Y 0xC9, 0xBA, //23 CMP #CARRY 0xD0, 0xF6, //24 BNE ONES 0xA9, 0xB0, //25 NEXT LDA #ZERO 0x99, 0x00, 0x04, //26 STA SCREEN,Y 0x88, //27 DEY 0x30, 0x0D, //28 BMI END 0x20, 0x36, 0x10, //29 JSR INC 0xB9, 0x00, 0x04, //30 LDA SCREEN,Y 0xC9, 0xBA, //31 CMP #CARRY 0xD0, 0xE2, //32 BNE START 0x4C, 0x20, 0x10, //33 JMP NEXT 0x60, //34 END RTS 0xB9, 0x00, 0x04, //36 INC LDA SCREEN,Y 0xAA, //37 TAX 0xE8, //38 INX 0x8A, //39 TXA 0x99, 0x00, 0x04, //40 STA SCREEN,Y 0x60, //41 RTS }; uint8_t counter_fast[] = { // 1 * COUNTER2 // 2 // 3 ORG $1000 // 4 SCREEN EQU $400 // 5 HOME EQU $FC58 // 6 DIGITS EQU $06 // 7 ZERO EQU $B0 // 8 CARRY EQU $BA // 9 RDKEY EQU $FD0C //10 // I have placed NOP to keep addresses 0xA0, 0x06, // 00 LDY #$09 0x84, 0x06, // 02 STY #DIGITS 0xA6, 0x06, // 04 LDY DIGITS 0xA9, 0xB0, // 06 CLEAR LDA #ZERO 0x99, 0x00, 0x04, // 08 STA SCREEN,Y 0x88, // 0B DEY 0x10, 0xF8, // 0C BPL CLEAR 0xA6, 0x06, // 0E START LDX DIGITS 0xA9, 0xBA, // 10 LDA #CARRY 0xFE, 0x00, 0x04, // 12 ONES INC SCREEN,X 0xDD, 0x00, 0x04, // 15 CMP SCREEN,X 0xD0, 0xF8, // 18 BNE ONES 0xA9, 0xB0, // 1A NEXT LDA #ZERO 0x9D, 0x00, 0x04, // 1C STA SCREEN,X 0xCA, // 1F DEX 0x30, 0x0C, // 20 BMI END 0xFE, 0x00, 0x04, // 22 INC SCREEN,X 0xBD, 0x00, 0x04, // 25 LDA SCREEN,X 0xC9, 0xBA, // 28 CMP #CARRY 0xD0, 0xE2, // 2A BNE START 0xF0, 0xEC, // 2C BEQ NEXT 0x60, // 2E END RTS }; // memcpy( RAM + 0x1000, counter_fast, sizeof(counter)); // m6502.PC = 0x1000; clk_6502_per_frm_set = saved_frm_set; } void tst6502() { // insert code here... printf("6502\n"); m6502_ColdReset( "", "" ); // clock_t start = clock(); // epoch = rdtsc(); m6502_Run(); // clock_t end = clock(); // double execution_time = ((double) (end - start)) / CLOCKS_PER_SEC; #ifdef SPEEDTEST unsigned long long end = rdtsc(); unsigned long long elapsed = end - epoch; double execution_time = (double)elapsed / tick_per_sec; double mips = inst_cnt / (execution_time * M); double mhz = m6502.clktime / (execution_time * M); printf("clk:%llu Elpased time: (%llu / %u / %llu), %.3lfs (%.3lf MIPS, %.3lf MHz)\n", iterations *3, tick_per_sec, MHz_6502, tick_6502_per_sec, execution_time, mips, mhz); // printf(" dd:%llu ee:%llu nn:%llu\n", dd, ee, ee - dd); #endif } int ___main(int argc, const char * argv[]) { tst6502(); return 0; }