Steve2/src/cpu/6502.c

1103 lines
37 KiB
C

//
// main.c
// 6502
//
// Created by Tamas Rudnai on 7/14/19.
// Copyright © 2019 GameAlloy. All rights reserved.
//
#define CLK_WAIT
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include "6502.h"
#include "../dev/disk/woz.h"
void ViewController_spk_up_play(void);
void ViewController_spk_dn_play(void);
#include "../util/common.h"
#define SOFTRESET_VECTOR 0x3F2
#define NMI_VECTOR 0xFFFA
#define RESET_VECTOR 0xFFFC
#define IRQ_VECTOR 0xFFFE
const unsigned long long int iterations = G;
unsigned long long int inst_cnt = 0;
//const unsigned int fps = 30;
const unsigned long long default_MHz_6502 = 1.023 * M; // 2 * M; // 4 * M; // 8 * M; // 16 * M; // 128 * M; // 256 * M; // 512 * M;
const unsigned long long startup_MHz_6502 = 25 * M;
unsigned long long MHz_6502 = default_MHz_6502;
unsigned long long clk_6502_per_frm = startup_MHz_6502 / fps;
unsigned long long clk_6502_per_frm_set = default_MHz_6502 / fps;
unsigned long long clk_6502_per_frm_max = 0;
unsigned long long tick_per_sec = G;
unsigned long long tick_6502_per_sec = 0;
//INLINE unsigned long long rdtsc(void)
//{
// unsigned hi, lo;
// __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi) );
// return ( (unsigned long long)lo) | ( ((unsigned long long)hi) << 32 );
//}
m6502_t m6502 = {
0, // A
0, // X
0, // Y
0, // SR
0, // PC
0, // SP
0, // clktime
0, // clklast
0, // trace
0, // step
0, // brk
0, // rts
0, // bra
0, // bra_true
0, // bra_false
0, // compile
HLT, // IF
};
disassembly_t disassembly;
#include "../util/disassembler.h"
#include "../dev/mem/mmio.h"
uint16_t videoShadow [0x1000];
uint32_t videoMem [0x2000];
uint32_t * videoMemPtr = videoMem;
uint16_t HiResLineAddrTbl [0x2000];
INLINE void set_flags_N( const uint8_t test ) {
m6502.N = BITTEST(test, 7);
}
INLINE void set_flags_V( const uint8_t test ) {
m6502.V = BITTEST(test, 6);
}
INLINE void set_flags_Z( const uint8_t test ) {
m6502.Z = test == 0;
}
INLINE void set_flags_C( const int16_t test ) {
m6502.C = test >= 0;
}
INLINE void set_flags_NZ( const uint8_t test ) {
set_flags_N(test);
set_flags_Z(test);
}
INLINE void set_flags_NV( const uint8_t test ) {
set_flags_N(test);
set_flags_V(test);
}
INLINE void set_flags_NVZ( const uint8_t test ) {
set_flags_NZ(test);
set_flags_V(test);
}
INLINE void set_flags_NZC( const int16_t test ) {
set_flags_NZ(test);
set_flags_C(test);
}
//INLINE void set_flags_NZCV( int test ) {
// set_flags_NZC(test);
// set_flags_V(test);
//}
void initHiResLineAddresses() {
uint16_t i = 0;
for ( uint16_t x = 0; x <= 0x50; x+= 0x28 ) {
for ( uint16_t y = 0; y <= 0x380; y += 0x80 ) {
for ( uint16_t z = 0; z <= 0x1C00; z += 0x400) {
HiResLineAddrTbl[i++] = x + y + z;
}
}
}
}
typedef struct {
uint8_t L;
uint8_t H;
} bytes_t;
void hires_Update () {
// lines
int videoMemIndex = 0;
for( int y = 0; y < 192; y++ ) {
// 16 bit blocks of columns
for ( int x = 0; x < 20; x++ ) {
// odd
bytes_t block = * (bytes_t*)(& RAM[ HiResLineAddrTbl[y * 20] + x * 2 ]);
for ( uint8_t bit = 0; bit < 7; bit++ ) {
uint8_t bitMask = 1 << bit;
if (block.L & bitMask) {
videoMem[videoMemIndex++] = 0x7F12A208;
}
else { // 28CD41
videoMem[videoMemIndex++] = 0x00000000;
}
}
// even
for ( uint8_t bit = 0; bit < 7; bit++ ) {
uint8_t bitMask = 1 << bit;
if (block.H & bitMask) {
videoMem[videoMemIndex++] = 0x7F12A208;
}
else { // 28CD41
videoMem[videoMemIndex++] = 0x00000000;
}
}
}
}
}
/**
Instruction Implementations
!!!! `his has to be here!!!
This idea is that "INLINE" would work only if it is
located in the same source file -- hence the include...
**/
#include "6502_instructions.h"
INLINE int m6502_Step() {
#ifdef DEBUG___
switch ( m6502.PC ) {
case 0xC600:
printf("DISK...\n");
break;
case 0xC62F:
printf("DISK IO...\n");
break;
default:
break;
}
switch ( m6502.PC ) {
case 0xE000:
dbgPrintf("START...\n");
break;
case 0xF168:
dbgPrintf("START...\n");
break;
case 0xF16B:
dbgPrintf("START...\n");
break;
case 0xF195: // RAM size init
dbgPrintf("START...\n");
break;
default:
break;
}
#endif
#ifdef FUNCTIONTEST
switch ( m6502.PC ) {
case 0x400:
dbgPrintf("START...\n");
break;
case 0x0438:
dbgPrintf2("*** TEST 1 (%04X)\n", m6502.PC);
break;
case 0x0581:
dbgPrintf2("*** TEST 2 (%04X)\n", m6502.PC);
break;
case 0x05C8:
dbgPrintf2("*** TEST 3 (%04X)\n", m6502.PC);
break;
case 0x05FC:
dbgPrintf2("*** TEST 4 (%04X)\n", m6502.PC);
break;
case 0x0776:
dbgPrintf2("*** TEST 5 (%04X)\n", m6502.PC);
break;
case 0x0872:
dbgPrintf2("*** TEST 6 (%04X)\n", m6502.PC);
break;
case 0x08A6:
dbgPrintf2("*** TEST 7 (%04X)\n", m6502.PC);
break;
case 0x08F0:
dbgPrintf2("*** TEST 8 (%04X)\n", m6502.PC);
break;
case 0x0946:
dbgPrintf2("*** TEST 9 (%04X)\n", m6502.PC);
break;
case 0x0982:
dbgPrintf2("*** TEST 10 (%04X)\n", m6502.PC);
break;
case 0x09B9:
dbgPrintf2("*** TEST 11 (%04X)\n", m6502.PC);
break;
case 0x0A11:
dbgPrintf2("*** TEST 12 (%04X)\n", m6502.PC);
break;
case 0x0AB7:
dbgPrintf2("*** TEST 13 (%04X)\n", m6502.PC);
break;
case 0x0D7D:
dbgPrintf2("*** TEST 14 (%04X)\n", m6502.PC);
break;
case 0x0E46:
dbgPrintf2("*** TEST 15 (%04X)\n", m6502.PC);
break;
case 0x0F01:
dbgPrintf2("*** TEST 16 (%04X)\n", m6502.PC);
break;
case 0x0F43:
dbgPrintf2("*** TEST 17 (%04X)\n", m6502.PC);
break;
case 0x0FFA:
dbgPrintf2("*** TEST 18 (%04X)\n", m6502.PC);
break;
case 0x103A:
dbgPrintf2("*** TEST 19 (%04X)\n", m6502.PC);
break;
case 0x1330:
dbgPrintf2("*** TEST 20 (%04X)\n", m6502.PC);
break;
case 0x162A:
dbgPrintf2("*** TEST 21 (%04X)\n", m6502.PC);
break;
case 0x16DB:
dbgPrintf2("*** TEST 22 (%04X)\n", m6502.PC);
break;
case 0x17FA:
dbgPrintf2("*** TEST 23 (%04X)\n", m6502.PC);
break;
case 0x1899:
dbgPrintf2("*** TEST 24 (%04X)\n", m6502.PC);
break;
case 0x1B63:
dbgPrintf2("*** TEST 25 (%04X)\n", m6502.PC);
break;
case 0x1CB7:
dbgPrintf2("*** TEST 26 (%04X)\n", m6502.PC);
break;
case 0x1DC5:
dbgPrintf("*** TEST 27 (%04X)\n", m6502.PC);
break;
case 0x1ED3:
dbgPrintf2("*** TEST 28 (%04X)\n", m6502.PC);
break;
case 0x22B7:
dbgPrintf2("*** TEST 29 (%04X)\n", m6502.PC);
break;
case 0x23FB:
dbgPrintf2("*** TEST 30 (%04X)\n", m6502.PC);
break;
case 0x257B:
dbgPrintf2("*** TEST 31 (%04X)\n", m6502.PC);
break;
case 0x271F:
dbgPrintf2("*** TEST 32 (%04X)\n", m6502.PC);
break;
case 0x289F:
dbgPrintf2("*** TEST 33 (%04X)\n", m6502.PC);
break;
case 0x2A43:
dbgPrintf2("*** TEST 34 (%04X)\n", m6502.PC);
break;
case 0x2AED:
dbgPrintf2("*** TEST 35 (%04X)\n", m6502.PC);
break;
case 0x2BA7:
dbgPrintf2("*** TEST 36 (%04X)\n", m6502.PC);
break;
case 0x2C55:
dbgPrintf2("*** TEST 37 (%04X)\n", m6502.PC);
break;
case 0x2D13:
dbgPrintf2("*** TEST 38 (%04X)\n", m6502.PC);
break;
case 0x3103:
dbgPrintf2("*** TEST 40 (%04X)\n", m6502.PC);
break;
case 0x32FC:
dbgPrintf2("*** TEST 41 (%04X)\n", m6502.PC);
break;
case 0x3361:
dbgPrintf2("*** TEST 42 (%04X)\n", m6502.PC);
break;
case 0x3405:
dbgPrintf2("*** TEST 43 (%04X)\n", m6502.PC);
break;
case 0x345D:
dbgPrintf2("*** TEST 44 (%04X)\n", m6502.PC);
break;
case 0x3469:
dbgPrintf2("*** TEST PASSED (%04X)\n", m6502.PC);
break;
default:
break;
}
#endif
disNewInstruction();
switch ( fetch() ) {
case 0x00: BRK(); return 7; // BRK
case 0x01: ORA( src_X_ind() ); return 6; // ORA X,ind
// case 0x02: // t jams
// case 0x03: // SLO* (undocumented)
// case 0x04: // NOP* (undocumented)
case 0x05: ORA( src_zp() ); return 3; // ORA zpg
case 0x06: ASL( dest_zp() ); return 5; // ASL zpg
// case 0x07: // SLO* (undocumented)
case 0x08: PHP(); return 3; // PHP
case 0x09: ORA( imm() ); return 2; // ORA imm
case 0x0A: ASLA(); return 2; // ASL A
// case 0x0B: // ANC** (undocumented)
// case 0x0C: // NOP* (undocumented)
case 0x0D: ORA( src_abs() ); return 4; // ORA abs
case 0x0E: ASL( dest_abs() ); return 6; // ASL abs
// case 0x0F: // SLO* (undocumented)
case 0x10: BPL( rel_addr() ); return 2; // BPL rel
case 0x11: ORA( src_ind_Y() ); return 5; // ORA ind,Y
// case 0x12: // t jams
// case 0x13: // SLO* (undocumented)
// case 0x14: // NOP* (undocumented)
case 0x15: ORA( src_zp_X() ); return 4; // ORA zpg,X
case 0x16: ASL( dest_zp_X() ); return 6; // ASL zpg,X
// case 0x17: // SLO* (undocumented)
case 0x18: CLC(); return 2; // CLC
case 0x19: ORA( src_abs_Y() ); return 4; // ORA abs,Y
// case 0x1A: // NOP* (undocumented)
// case 0x1B: // SLO* (undocumented)
// case 0x1C: // NOP* (undocumented)
case 0x1D: ORA( src_abs_X() ); return 4; // ORA abs,X
case 0x1E: ASL( dest_abs_X() ); return 7; // ASL abs,X
// case 0x1F: // SLO* (undocumented)
case 0x20: JSR( abs_addr() ); return 6; // JSR abs
case 0x21: AND( src_X_ind() ); return 6; // AND X,ind
// case 0x22: KIL
// case 0x23: RLA izx 8
case 0x24: BIT( src_zp() ); return 3; // BIT zpg
case 0x25: AND( src_zp() ); return 3; // AND zpg
case 0x26: ROL( dest_zp() ); return 5; // ROL zpg
// case 0x27: RLA zp 5
case 0x28: PLP(); return 4; // PLP
case 0x29: AND( imm() ); return 2; // AND imm
case 0x2A: ROLA(); return 2; // ROL A
// case 0x2B: ANC imm 2
case 0x2C: BIT( src_abs() ); return 4; // BIT abs
case 0x2D: AND( src_abs() ); return 4; // AND abs
case 0x2E: ROL( dest_abs() ); return 6; // ROL abs
// case 0x2F: RLA abs 6
case 0x30: BMI( rel_addr() ); return 2; // BMI rel
case 0x31: AND( src_ind_Y() ); return 5; // AND ind,Y
// case 0x32: KIL
// case 0x33: RLA izy 8
// case 0x34: NOP zpx 4
case 0x35: AND( src_zp_X() ); return 4; // AND zpg,X
case 0x36: ROL( dest_zp_X() ); return 6; // ROL zpg,X
// case 0x37: RLA zpx 6
case 0x38: SEC(); return 2; // SEC
case 0x39: AND( src_abs_Y() ); return 4; // AND abs,Y
// case 0x3A: NOP 2
// case 0x3B: RLA aby 7
// case 0x3C: NOP abx 4
case 0x3D: AND( src_abs_X() ); return 4; // AND abs,X
case 0x3E: ROL( dest_abs_X() ); return 7; // ROL abs,X
// case 0x3F: RLA abx 7
case 0x40: RTI(); return 6; // RTI
case 0x41: EOR( src_X_ind() ); return 6; // EOR X,ind
// case 0x42: KIL
// case 0x43: SRE izx 8
// case 0x44: NOP zp 3
case 0x45: EOR( src_zp() ); return 3; // EOR zpg
case 0x46: LSR( dest_zp() ); return 5; // LSR zpg
// case 0x47: SRE zp 5
case 0x48: PHA(); return 3; // PHA
case 0x49: EOR( imm() ); return 2; // EOR imm
case 0x4A: LSRA(); return 2; // LSR A
// case 0x4B: ALR imm 2
case 0x4C: JMP( abs_addr() ); return 3; // JMP abs
case 0x4D: EOR( src_abs() ); return 4; // EOR abs
case 0x4E: LSR( dest_abs() ); return 6; // LSR abs
// case 0x4F: SRE abs 6
case 0x50: BVC( rel_addr() ); return 2; // BVC rel
case 0x51: EOR( src_ind_Y() ); return 5; // EOR ind,Y
// case 0x52: KIL
// case 0x53: SRE izy 8
// case 0x54: NOP zpx 4
case 0x55: EOR( src_zp_X() ); return 4; // AND zpg,X
case 0x56: LSR( dest_zp_X() ); return 6; // LSR zpg,X
// case 0x57: SRE zpx 6
case 0x58: CLI(); return 2; // CLI
case 0x59: EOR( src_abs_Y() ); return 4; // EOR abs,Y
// case 0x5A: NOP 2
// case 0x5B: SRE aby 7
// case 0x5C: NOP abx 4
case 0x5D: EOR( src_abs_X() ); return 4; // EOR abs,X
case 0x5E: LSR( dest_abs_X() ); return 7; // LSR abs,X
// case 0x5F: SRE abx 7
case 0x60: RTS(); return 6; // RTS
case 0x61: ADC( src_X_ind() ); return 6; // ADC X,ind
// case 0x62: KIL
// case 0x63: RRA izx 8
// case 0x64: NOP zp 3
case 0x65: ADC( src_zp() ); return 3; // ADC zpg
case 0x66: ROR( dest_zp() ); return 5; // ROR zpg
// case 0x67: RRA zp 5
case 0x68: PLA(); break; // PLA
case 0x69: ADC( imm() ); return 2; // ADC imm
case 0x6A: RORA(); return 2; // ROR A
// case 0x6B: ARR imm 2
case 0x6C: JMP( ind_addr() ); return 5; // JMP ind
case 0x6D: ADC( src_abs() ); return 4; // ADC abs
case 0x6E: ROR( dest_abs() ); return 6; // ROR abs
// case 0x6F: RRA abs 6
case 0x70: BVS( rel_addr() ); return 2; // BVS rel
case 0x71: ADC( src_ind_Y() ); return 5; // ADC ind,Y
// case 0x72:
// case 0x73:
// case 0x74:
case 0x75: ADC( src_zp_X() ); return 4; // ADC zpg,X
case 0x76: ROR( dest_zp_X() ); return 6; // ROR zpg,X
// case 0x77:
case 0x78: SEI(); return 2; // SEI
case 0x79: ADC( src_abs_Y() ); return 4; // ADC abs,Y
// case 0x7A:
// case 0x7B:
// case 0x7C:
case 0x7D: ADC( src_abs_X() ); return 4; // ADC abs,X
case 0x7E: ROR( dest_abs_X() ); return 7; // ROR abs,X
// case 0x7F:
// case 0x80:
case 0x81: STA( addr_X_ind() ) ; return 6; // STA X,ind
// case 0x82:
// case 0x83:
case 0x84: STY( addr_zp() ); return 3; // STY zpg
case 0x85: STA( addr_zp() ); return 3; // STA zpg
case 0x86: STX( addr_zp() ); return 3; // STX zpg
// case 0x87:
case 0x88: DEY(); return 2; // DEY
// case 0x89: NOP(); imm(); return 4; // NOP imm
case 0x8A: TXA(); return 2; // TXA
// case 0x8B:
case 0x8C: STY( addr_abs() ); return 4; // STY abs
case 0x8D: STA( addr_abs() ); return 4; // STA abs
case 0x8E: STX( addr_abs() ); return 4; // STX abs
// case 0x8F:
case 0x90: BCC( rel_addr() ); return 2; // BCC rel
case 0x91: STA( addr_ind_Y() ); return 6; // STA ind,Y
// case 0x92:
// case 0x93:
case 0x94: STY( addr_zp_X() ); return 4; // STY zpg,X
case 0x95: STA( addr_zp_X() ); return 4; // STA zpg,X
case 0x96: STX( addr_zp_Y() ); return 4; // STX zpg,Y
// case 0x97:
case 0x98: TYA(); return 2; // TYA
case 0x99: STA( addr_abs_Y() ); return 5; // STA abs,Y
case 0x9A: TXS(); return 2; // TXS
// case 0x9B:
// case 0x9C:
case 0x9D: STA( addr_abs_X() ); return 5; // STA abs,X
// case 0x9E:
// case 0x9F:
case 0xA0: LDY( imm() ); return 2; // LDY imm
case 0xA1: LDA( src_X_ind() ) ; return 6; // LDA X,ind
case 0xA2: LDX( imm() ); return 2; // LDX imm
// case 0xA3:
case 0xA4: LDY( src_zp() ); return 3; // LDY zpg
case 0xA5: LDA( src_zp() ); return 3; // LDA zpg
case 0xA6: LDX( src_zp() ); return 3; // LDX zpg
// case 0xA7:
case 0xA8: TAY(); return 2; // TAY
case 0xA9: LDA( imm() ); return 2; // LDA imm
case 0xAA: TAX(); return 2; // TAX
// case 0xAB:
case 0xAC: LDY( src_abs() ); return 4; // LDY abs
case 0xAD: LDA( src_abs() ); return 4; // LDA abs
case 0xAE: LDX( src_abs() ); return 4; // LDX abs
// case 0xAF:
case 0xB0: BCS( rel_addr() ); return 2; // BCS rel
case 0xB1: LDA( src_ind_Y() ); return 5; // LDA ind,Y
// case 0xB2:
// case 0xB3:
case 0xB4: LDY( src_zp_X() ); return 4; // LDY zpg,X
case 0xB5: LDA( src_zp_X() ); return 4; // LDA zpg,X
case 0xB6: LDX( src_zp_Y() ); return 4; // LDX zpg,Y
// case 0xB7:
case 0xB8: CLV(); return 2; // CLV
case 0xB9: LDA( src_abs_Y() ); return 4; // LDA abs,Y
case 0xBA: TSX(); return 2; // TSX
// case 0xBB:
case 0xBC: LDY( src_abs_X() ); return 4; // LDY abs,X
case 0xBD: LDA( src_abs_X() ); return 4; // LDA abs,X
case 0xBE: LDX( src_abs_Y() ); return 4; // LDX abs,Y
// case 0xBF:
case 0xC0: CPY( imm() ); return 2; // CPY imm
case 0xC1: CMP( src_X_ind() ) ; return 6; // LDA X,ind
// case 0xC2:
// case 0xC3:
case 0xC4: CPY( src_zp() ); return 3; // CPY zpg
case 0xC5: CMP( src_zp() ); return 3; // CMP zpg
case 0xC6: DEC( dest_zp() ); return 5; // DEC zpg
// case 0xC7:
case 0xC8: INY(); return 2; // INY
case 0xC9: CMP( imm() ); return 2; // CMP imm
case 0xCA: DEX(); return 2; // DEX
// case 0xCB:
case 0xCC: CPY( src_abs() ); return 4; // CPY abs
case 0xCD: CMP( src_abs() ); return 4; // CMP abs
case 0xCE: DEC( dest_abs() ); return 6; // DEC abs
// case 0xCF:
case 0xD0: BNE( rel_addr() ); return 2; // BNE rel
case 0xD1: CMP( src_ind_Y() ); return 5; // CMP ind,Y
// case 0xD2:
// case 0xD3:
// case 0xD4:
case 0xD5: CMP( src_zp_X() ); return 4; // CMP zpg,X
case 0xD6: DEC( dest_zp_X() ); return 6; // DEC zpg,X
// case 0xD7:
case 0xD8: CLD(); return 2; // CLD
case 0xD9: CMP( src_abs_Y() ); return 4; // CMP abs,Y
// case 0xDA:
// case 0xDB:
// case 0xDC:
case 0xDD: CMP( src_abs_X() ); return 4; // CMP abs,X
case 0xDE: DEC( dest_abs_X() ); return 7; // DEC abs,X
// case 0xDF:
case 0xE0: CPX( imm() ); return 2; // CPX imm
case 0xE1: SBC( src_X_ind() ) ; return 6; // SBC (X,ind)
// case 0xE2:
// case 0xE3:
case 0xE4: CPX( src_zp() ); return 3; // CPX zpg
case 0xE5: SBC( src_zp() ); return 3; // SBC zpg
case 0xE6: INC( dest_zp() ); return 5; // INC zpg
// case 0xE7:
case 0xE8: INX(); return 2; // INX
case 0xE9: SBC( imm() ); return 2; // SBC imm
case 0xEA: NOP(); return 2; // NOP
// case 0xEB:
case 0xEC: CPX( src_abs() ); return 4; // CPX abs
case 0xED: SBC( src_abs() ); return 4; // SBC abs
case 0xEE: INC( dest_abs() ); return 6; // INC abs
// case 0xEF:
case 0xF0: BEQ( rel_addr() ); return 2; // BEQ rel
case 0xF1: SBC( src_ind_Y() ); return 5; // SBC ind,Y
// case 0xF2:
// case 0xF3:
// case 0xF4:
case 0xF5: SBC( src_zp_X() ); return 4; // SBC zpg,X
case 0xF6: INC( dest_zp_X() ); return 6; // INC zpg,X
// case 0xF7:
case 0xF8: SED(); return 2; // SED
case 0xF9: SBC( src_abs_Y() ); return 4; // SBC abs,Y
// case 0xFA:
// case 0xFB:
// case 0xFC:
case 0xFD: SBC( src_abs_X() ); return 4; // SBC abs,X
case 0xFE: INC( dest_abs_X() ); return 7; // INC abs,X
// case 0xFF:
default:
dbgPrintf("%04X: Unimplemented Instruction 0x%02X\n", m6502.PC -1, memread( m6502.PC -1 ));
return 2;
}
// } // fetch16
return 2;
}
unsigned long long ee = 0;
unsigned long long dd = 0;
// nanosec does not work very well for some reason
struct timespec tim = { 0, 400L };
double mips = 0;
double mhz = 0;
unsigned long long epoch = 0;
unsigned int clkfrm = 0;
void m6502_Run() {
static unsigned int clk = 0;
// init time
//#ifdef CLK_WAIT
// unsigned long long elpased = (unsigned long long)-1LL;
//#endif
// we will also use this to pause the simulation if not finished by the end of the frame
clk_6502_per_frm_max = clk_6502_per_frm;
#ifdef SPEEDTEST
for ( inst_cnt = 0; inst_cnt < iterations ; inst_cnt++ )
#elif defined( CLK_WAIT )
for ( clkfrm = 0; clkfrm < clk_6502_per_frm_max ; clkfrm += clk )
#else
// for ( ; m6502.pc ; )
for ( ; ; )
#endif
{
#ifdef INTERRUPT_CHECK_PER_STEP
if ( m6502.IF ) {
switch (m6502.interrupt) {
case HLT:
// CPU is haletd, nothing to do here...
return;
case IRQ:
m6502.PC = memread16(IRQ_VECTOR);
// TODO: PUSH things onto stack?
break;
case NMI:
m6502.PC = memread16(NMI_VECTOR);
// TODO: PUSH things onto stack?
break;
case HARDRESET:
m6502.PC = memread16(RESET_VECTOR);
// make sure it will be a cold reset...
memwrite(0x3F4, 0);
m6502.SP = 0xFF;
// N V - B D I Z C
// 0 0 1 0 0 1 0 1
m6502.SR = 0x25;
break;
case SOFTRESET:
// m6502.PC = memread16(SOFTRESET_VECTOR);
m6502.PC = memread16( RESET_VECTOR );
m6502.SP = 0xFF;
// N V - B D I Z C
// 0 0 1 0 0 1 0 1
m6502.SR = 0x25;
break;
default:
break;
}
m6502.IF = 0;
}
#endif // INTERRUPT_CHECK_PER_STEP
// dbgPrintf("%llu %04X: ", clktime, m6502.PC);
m6502.clktime +=
clk = m6502_Step();
printDisassembly( outdev );
// dbgPrintf2("A:%02X X:%02X Y:%02X SP:%02X %c%c%c%c%c%c%c%c\n\n",
// m6502.A,
// m6502.X,
// m6502.Y,
// m6502.SP,
// m6502.N ? 'N' : 'n',
// m6502.V ? 'V' : 'v',
// m6502.res ? 'R' : 'r',
// m6502.B ? 'B' : 'b',
// m6502.D ? 'D' : 'd',
// m6502.I ? 'I' : 'i',
// m6502.Z ? 'Z' : 'z',
// m6502.C ? 'C' : 'c'
// );
#ifdef CLK_WAIT
// ee += tick_6502_per_sec * clk;
// ee /= 2;
// dd += rdtsc() - epoch - elpased;
// dd /= 2;
// get the new time in ticks needed to simulate exact 6502 clock
// elpased = tick_6502_per_sec * clktime;
// query time + wait
// TODO: We should use nanosleep
// usleep(1); // this is good enough for debugging
// nanosleep(&tim, NULL);
// printf(" tps:%llu s:%llu t:%llu d:%llu e:%llu n:%llu\n", tick_6502_per_sec, s, t, t - s, e, e - (t - s));
// tight loop gives us the most precise wait time
// while ( rdtsc() - epoch < elpased ) {}
#endif
}
if( diskAccelerator_count ) {
if( --diskAccelerator_count <= 0 ) {
// make sure we only adjust clock once to get back to normal
diskAccelerator_count = 0;
clk_6502_per_frm = clk_6502_per_frm_set;
}
}
// clock_t end = clock();
// double execution_time = ((double) (end - start)) / CLOCKS_PER_SEC;
// unsigned long long e = rdtsc();
// unsigned long long t = e - epoch;
// double execution_time = (double)t / tick_per_sec;
//
// mips = inst_cnt / (execution_time * M);
// mhz = clktime / (execution_time * M);
}
void read_rom( const char * bundlePath, const char * filename, uint8_t * rom, const uint16_t addr ) {
char fullPath[256];
strcpy( fullPath, bundlePath );
strcat( fullPath, "/");
strcat( fullPath, filename );
FILE * f = fopen(fullPath, "rb");
if (f == NULL) {
perror("Failed to read ROM: ");
return;
}
fseek(f, 0L, SEEK_END);
uint16_t flen = ftell(f);
fseek(f, 0L, SEEK_SET);
fread( rom + addr, 1, flen, f);
fclose(f);
}
size_t getFileSize ( const char * fullPath ) {
FILE * f = fopen(fullPath, "rb");
if (f == NULL) {
perror("Failed to read ROM: ");
return 0;
}
fseek(f, 0L, SEEK_END);
size_t flen = ftell(f);
fseek(f, 0L, SEEK_SET);
fclose(f);
return flen;
}
void rom_loadFile( const char * bundlePath, const char * filename ) {
char fullPath[256];
strcpy( fullPath, bundlePath );
strcat( fullPath, "/");
strcat( fullPath, filename );
size_t flen = getFileSize(fullPath);
if ( flen == 0 ) {
return; // there was an error
}
else if ( flen == 16 * KB ) {
read_rom( bundlePath, filename, Apple2_16K_ROM, 0);
memcpy(Apple2_64K_MEM + 0xC000, Apple2_16K_ROM, 16 * KB);
// SWITCH_CX_ROM( RAM_PG_RD_TBL, 0xC0, Apple2_16K_ROM, 0x00);
}
else if ( flen == 12 * KB ) {
read_rom( bundlePath, filename, Apple2_16K_ROM, 0x1000);
memcpy(Apple2_64K_MEM + 0xD000, Apple2_16K_ROM + 0x1000, 12 * KB);
}
}
void m6502_ColdReset( const char * bundlePath, const char * romFileName ) {
inst_cnt = 0;
mhz = (double)MHz_6502 / M;
unsigned long long saved_frm_set = clk_6502_per_frm_set;
clk_6502_per_frm_max = clk_6502_per_frm_set = 0;
// wait 100ms to be sure simulation has been halted
usleep(100000);
printf("Bundlepath: %s", bundlePath);
// epoch = rdtsc();
// sleep(1);
// unsigned long long e = rdtsc();
// tick_per_sec = e - epoch;
// tick_6502_per_sec = tick_per_sec / MHz_6502;
resetMemory();
outdev = fopen("/Users/trudnai/Library/Containers/com.gamealloy.A2Mac/Data/disassembly_new.log", "w+");
if (outdev == NULL) {
outdev = stdout;
}
#ifdef FUNCTIONTEST
FILE * f = fopen("/Users/trudnai/Library/Containers/com.gamealloy.A2Mac/Data/6502_functional_test.bin", "rb");
if (f == NULL) {
perror("Failed: ");
return;
}
fread( RAM, 1, 65536, f);
fclose(f);
m6502.PC = 0x400;
#else
// Apple ][+ ROM
rom_loadFile(bundlePath, romFileName);
// Disk ][ ROM in Slot 6
read_rom( bundlePath, "DISK_II_C600.ROM", Apple2_64K_MEM, 0xC600);
// read_rom( "/Users/trudnai/Library/Containers/com.gamealloy.A2Mac/Data/", "DISK_II_C600.ROM", Apple2_64K_MEM, 0xC600);
m6502.A = m6502.X = m6502.Y = 0xFF;
// reset vector
m6502.SP = 0xFF; //-3;
// N V - B D I Z C
// 0 0 1 0 0 1 0 0
m6502.SR = 0x24;
m6502.IF = 0;
// memory size
//*((uint16_t*)(&RAM[0x73])) = 0xC000;
m6502.PC = memread16( RESET_VECTOR );
#endif
uint8_t counter[] = {
// 1 * COUNTER2
// 2
// 3 ORG $1000
// 4 SCREEN EQU $400
// 5 HOME EQU $FC58
// 6 DIGITS EQU $06
// 7 ZERO EQU $B0
// 8 CARRY EQU $BA
// 9 RDKEY EQU $FD0C
//10
// I have placed NOP to keep addresses
0xA0, 0x09, 0xEA, //11 LDY #$09 ; NOP
0x84, 0x06, //12 STY #DIGITS
0xEA, 0xEA, //13 NOP NOP
0xEA, 0xEA, 0xEA, //14 NOP NOP NOP
0xA6, 0x06, //15 LDY DIGITS
0xA9, 0xB0, //16 CLEAR LDA #ZERO
0x99, 0x00, 0x04, //17 STA SCREEN,Y
0x88, //18 DEY
0x10, 0xF8, //19 BPL CLEAR
0xA4, 0x06, //20 START LDY DIGITS
0x20, 0x36, 0x10, //21 ONES JSR INC
0xB9, 0x00, 0x04, //22 LDA SCREEN,Y
0xC9, 0xBA, //23 CMP #CARRY
0xD0, 0xF6, //24 BNE ONES
0xA9, 0xB0, //25 NEXT LDA #ZERO
0x99, 0x00, 0x04, //26 STA SCREEN,Y
0x88, //27 DEY
0x30, 0x0D, //28 BMI END
0x20, 0x36, 0x10, //29 JSR INC
0xB9, 0x00, 0x04, //30 LDA SCREEN,Y
0xC9, 0xBA, //31 CMP #CARRY
0xD0, 0xE2, //32 BNE START
0x4C, 0x20, 0x10, //33 JMP NEXT
0x60, //34 END RTS
0xB9, 0x00, 0x04, //36 INC LDA SCREEN,Y
0xAA, //37 TAX
0xE8, //38 INX
0x8A, //39 TXA
0x99, 0x00, 0x04, //40 STA SCREEN,Y
0x60, //41 RTS
};
uint8_t counter_fast[] = {
// 1 * COUNTER2
// 2
// 3 ORG $1000
// 4 SCREEN EQU $400
// 5 HOME EQU $FC58
// 6 DIGITS EQU $06
// 7 ZERO EQU $B0
// 8 CARRY EQU $BA
// 9 RDKEY EQU $FD0C
//10
// I have placed NOP to keep addresses
0xA0, 0x06, // 00 LDY #$09
0x84, 0x06, // 02 STY #DIGITS
0xA6, 0x06, // 04 LDY DIGITS
0xA9, 0xB0, // 06 CLEAR LDA #ZERO
0x99, 0x00, 0x04, // 08 STA SCREEN,Y
0x88, // 0B DEY
0x10, 0xF8, // 0C BPL CLEAR
0xA6, 0x06, // 0E START LDX DIGITS
0xA9, 0xBA, // 10 LDA #CARRY
0xFE, 0x00, 0x04, // 12 ONES INC SCREEN,X
0xDD, 0x00, 0x04, // 15 CMP SCREEN,X
0xD0, 0xF8, // 18 BNE ONES
0xA9, 0xB0, // 1A NEXT LDA #ZERO
0x9D, 0x00, 0x04, // 1C STA SCREEN,X
0xCA, // 1F DEX
0x30, 0x0C, // 20 BMI END
0xFE, 0x00, 0x04, // 22 INC SCREEN,X
0xBD, 0x00, 0x04, // 25 LDA SCREEN,X
0xC9, 0xBA, // 28 CMP #CARRY
0xD0, 0xE2, // 2A BNE START
0xF0, 0xEC, // 2C BEQ NEXT
0x60, // 2E END RTS
};
// memcpy( RAM + 0x1000, counter_fast, sizeof(counter));
// m6502.PC = 0x1000;
clk_6502_per_frm_set = saved_frm_set;
}
void tst6502() {
// insert code here...
printf("6502\n");
m6502_ColdReset( "", "" );
// clock_t start = clock();
// epoch = rdtsc();
m6502_Run();
// clock_t end = clock();
// double execution_time = ((double) (end - start)) / CLOCKS_PER_SEC;
#ifdef SPEEDTEST
unsigned long long end = rdtsc();
unsigned long long elapsed = end - epoch;
double execution_time = (double)elapsed / tick_per_sec;
double mips = inst_cnt / (execution_time * M);
double mhz = m6502.clktime / (execution_time * M);
printf("clk:%llu Elpased time: (%llu / %u / %llu), %.3lfs (%.3lf MIPS, %.3lf MHz)\n", iterations *3, tick_per_sec, MHz_6502, tick_6502_per_sec, execution_time, mips, mhz);
// printf(" dd:%llu ee:%llu nn:%llu\n", dd, ee, ee - dd);
#endif
}
int ___main(int argc, const char * argv[]) {
tst6502();
return 0;
}