apple2js/js/cards/cffa.ts

510 lines
16 KiB
TypeScript
Raw Normal View History

import type { byte, Card, Restorable } from '../types';
import { debug, toHex } from '../util';
import { rom as readOnlyRom } from '../roms/cards/cffa';
import { create2MGFromBlockDisk, HeaderData, read2MGHeader } from '../formats/2mg';
import { ProDOSVolume } from '../formats/prodos';
import createBlockDisk from '../formats/block';
import {
BlockDisk,
BlockFormat,
ENCODING_BLOCK,
MassStorage,
MassStorageData,
} from 'js/formats/types';
const rom = new Uint8Array(readOnlyRom);
const COMMANDS = {
ATACRead: 0x20,
ATACWrite: 0x30,
ATAIdentify: 0xEC
};
// CFFA Card Settings
const SETTINGS = {
Max32MBPartitionsDev0: 0x800,
Max32MBPartitionsDev1: 0x801,
DefaultBootDevice: 0x802,
DefaultBootPartition: 0x803,
Reserved: 0x804, // 4 bytes
WriteProtectBits: 0x808,
MenuSnagMask: 0x809,
MenuSnagKey: 0x80A,
BootTimeDelayTenths: 0x80B,
BusResetSeconds: 0x80C,
CheckDeviceTenths: 0x80D,
ConfigOptionBits: 0x80E,
BlockOffsetDev0: 0x80F, // 3 bytes
BlockOffsetDev1: 0x812, // 3 bytes
Unused: 0x815
};
// CFFA ATA Register Locations
const LOC = {
ATADataHigh: 0x80,
SetCSMask: 0x81,
ClearCSMask: 0x82,
WriteEEPROM: 0x83,
NoWriteEEPROM: 0x84,
ATADevCtrl: 0x86,
ATAAltStatus: 0x86,
ATADataLow: 0x88,
AError: 0x89,
ASectorCnt: 0x8a,
ASector: 0x8b,
ATACylinder: 0x8c,
ATACylinderH: 0x8d,
ATAHead: 0x8e,
ATACommand: 0x8f,
ATAStatus: 0x8f
};
// ATA Status Bits
const STATUS = {
BSY: 0x80, // Busy
DRDY: 0x40, // Drive ready. 1 when ready
DWF: 0x20, // Drive write fault. 1 when fault
DSC: 0x10, // Disk seek complete. 1 when not seeking
DRQ: 0x08, // Data request. 1 when ready to write
CORR: 0x04, // Correct data. 1 on correctable error
IDX: 0x02, // 1 once per revolution
ERR: 0x01 // Error. 1 on error
};
// ATA Identity Block Locations
const IDENTITY = {
SectorCountLow: 58,
SectorCountHigh: 57
};
export interface CFFAState {
2022-05-10 15:04:20 +00:00
disks: Array<BlockDisk | null>;
}
export default class CFFA implements Card, MassStorage<BlockFormat>, Restorable<CFFAState> {
// CFFA internal Flags
private _disableSignalling = false;
private _writeEEPROM = true;
private _lba = true;
// LBA/CHS registers
private _sectorCnt = 1;
private _sector = 0;
private _cylinder = 0;
private _cylinderH = 0;
private _head = 0;
private _drive = 0;
// CFFA Data High register
private _dataHigh = 0;
// Current Sector
private _curSector: Uint16Array | number[];
private _curWord = 0;
// ATA Status registers
private _interruptsEnabled = false;
private _altStatus = 0;
private _error = 0;
private _identity: number[][] = [[], []];
// Disk data
private _partitions: Array<ProDOSVolume|null> = [
// Drive 1
null,
// Drive 2
null
];
private _sectors: Uint16Array[][] = [
// Drive 1
[],
// Drive 2
[]
];
private _name: string[] = [];
private _metadata: Array<HeaderData|null> = [];
constructor() {
debug('CFFA');
for (let idx = 0; idx < 0x100; idx++) {
this._identity[0][idx] = 0;
this._identity[1][idx] = 0;
}
rom[SETTINGS.Max32MBPartitionsDev0] = 0x1;
rom[SETTINGS.Max32MBPartitionsDev1] = 0x0;
rom[SETTINGS.BootTimeDelayTenths] = 0x5; // 0.5 seconds
rom[SETTINGS.CheckDeviceTenths] = 0x5; // 0.5 seconds
}
// Verbose debug method
2022-05-18 02:08:28 +00:00
private _debug(..._args: unknown[]) {
// debug.apply(this, arguments);
}
private _reset() {
this._debug('reset');
this._sectorCnt = 1;
this._sector = 0;
this._cylinder = 0;
this._cylinderH = 0;
this._head = 0;
this._drive = 0;
this._dataHigh = 0;
}
// Convert status register into readable string
private _statusString(status: byte) {
const statusArray = [];
let flag: keyof typeof STATUS;
for (flag in STATUS) {
if(status & STATUS[flag]) {
statusArray.push(flag);
}
}
return statusArray.join('|');
}
// Dump sector as hex and ascii
private _dumpSector(sector: number) {
if (sector >= this._sectors[this._drive].length) {
this._debug('dump sector out of range', sector);
return;
}
for (let idx = 0; idx < 16; idx++) {
const row = [];
const charRow = [];
for (let jdx = 0; jdx < 16; jdx++) {
const val = this._sectors[this._drive][sector][idx * 16 + jdx];
row.push(toHex(val, 4));
const low = val & 0x7f;
const hi = val >> 8 & 0x7f;
charRow.push(low > 0x1f ? String.fromCharCode(low) : '.');
charRow.push(hi > 0x1f ? String.fromCharCode(hi) : '.');
}
this._debug(row.join(' '), ' ', charRow.join(''));
}
}
// Card I/O access
private _access(off: byte, val: byte) {
const readMode = val === undefined;
let retVal;
let sector;
if (readMode) {
retVal = 0;
switch (off & 0x8f) {
case LOC.ATADataHigh: // 0x00
retVal = this._dataHigh;
break;
case LOC.SetCSMask: // 0x01
this._disableSignalling = true;
break;
case LOC.ClearCSMask: // 0x02
this._disableSignalling = false;
break;
case LOC.WriteEEPROM: // 0x03
this._writeEEPROM = true;
break;
case LOC.NoWriteEEPROM: // 0x04
this._writeEEPROM = false;
break;
case LOC.ATAAltStatus: // 0x06
retVal = this._altStatus;
break;
case LOC.ATADataLow: // 0x08
this._dataHigh = this._curSector[this._curWord] >> 8;
retVal = this._curSector[this._curWord] & 0xff;
if (!this._disableSignalling) {
this._curWord++;
}
break;
case LOC.AError: // 0x09
retVal = this._error;
break;
case LOC.ASectorCnt: // 0x0A
retVal = this._sectorCnt;
break;
case LOC.ASector: // 0x0B
retVal = this._sector;
break;
case LOC.ATACylinder: // 0x0C
retVal = this._cylinder;
break;
case LOC.ATACylinderH: // 0x0D
retVal = this._cylinderH;
break;
case LOC.ATAHead: // 0x0E
retVal = this._head | (this._lba ? 0x40 : 0) | (this._drive ? 0x10 : 0) | 0xA0;
break;
case LOC.ATAStatus: // 0x0F
retVal = this._sectors[this._drive].length > 0 ? STATUS.DRDY | STATUS.DSC : 0;
this._debug('returning status', this._statusString(retVal));
break;
default:
debug('read unknown soft switch', toHex(off));
}
if (off & 0x7) { // Anything but data high/low
this._debug('read soft switch', toHex(off), toHex(retVal));
}
} else {
if (off & 0x7) { // Anything but data high/low
this._debug('write soft switch', toHex(off), toHex(val));
}
switch (off & 0x8f) {
case LOC.ATADataHigh: // 0x00
this._dataHigh = val;
break;
case LOC.SetCSMask: // 0x01
this._disableSignalling = true;
break;
case LOC.ClearCSMask: // 0x02
this._disableSignalling = false;
break;
case LOC.WriteEEPROM: // 0x03
this._writeEEPROM = true;
break;
case LOC.NoWriteEEPROM: // 0x04
this._writeEEPROM = false;
break;
case LOC.ATADevCtrl: // 0x06
this._debug('devCtrl:', toHex(val));
this._interruptsEnabled = (val & 0x04) ? true : false;
this._debug('Interrupts', this._interruptsEnabled ? 'enabled' : 'disabled');
if (val & 0x02) {
this._reset();
}
break;
case LOC.ATADataLow: // 0x08
this._curSector[this._curWord] = this._dataHigh << 8 | val;
this._curWord++;
break;
case LOC.ASectorCnt: // 0x0a
this._debug('setting sector count', val);
this._sectorCnt = val;
break;
case LOC.ASector: // 0x0b
this._debug('setting sector', toHex(val));
this._sector = val;
break;
case LOC.ATACylinder: // 0x0c
this._debug('setting cylinder', toHex(val));
this._cylinder = val;
break;
case LOC.ATACylinderH: // 0x0d
this._debug('setting cylinder high', toHex(val));
this._cylinderH = val;
break;
case LOC.ATAHead:
this._head = val & 0xf;
this._lba = val & 0x40 ? true : false;
this._drive = val & 0x10 ? 1 : 0;
this._debug('setting head', toHex(val & 0xf), 'drive', this._drive);
if (!this._lba) {
console.error('CHS mode not supported');
}
break;
case LOC.ATACommand: // 0x0f
this._debug('command:', toHex(val));
sector = this._head << 24 | this._cylinderH << 16 | this._cylinder << 8 | this._sector;
this._dumpSector(sector);
switch (val) {
case COMMANDS.ATAIdentify:
this._debug('ATA identify');
this._curSector = this._identity[this._drive];
this._curWord = 0;
break;
case COMMANDS.ATACRead:
this._debug('ATA read sector', toHex(this._cylinderH), toHex(this._cylinder), toHex(this._sector), sector);
this._curSector = this._sectors[this._drive][sector];
this._curWord = 0;
break;
case COMMANDS.ATACWrite:
this._debug('ATA write sector', toHex(this._cylinderH), toHex(this._cylinder), toHex(this._sector), sector);
this._curSector = this._sectors[this._drive][sector];
this._curWord = 0;
break;
default:
debug('unknown command', toHex(val));
}
break;
default:
debug('write unknown soft switch', toHex(off), toHex(val));
}
}
return retVal;
}
ioSwitch(off: byte, val: byte) {
return this._access(off, val);
}
read(page: byte, off: byte) {
return rom[(page - 0xc0) << 8 | off];
}
write(page: byte, off: byte, val: byte) {
if (this._writeEEPROM) {
this._debug('writing', toHex(page << 8 | off), toHex(val));
rom[(page - 0xc0) << 8 | off] - val;
}
}
getState() {
return {
disks: this._partitions.map(
(partition) => {
let result: BlockDisk | null = null;
if (partition) {
const disk: BlockDisk = partition.disk();
result = {
blocks: disk.blocks.map(
(block) => new Uint8Array(block)
),
encoding: ENCODING_BLOCK,
Split disk data out into its own record (#158) * Harmonize drive and disk type hierarchies Before, the `XXXDrive` and `XXXDisk` type hierarchies were similar, but not exactly the same. For example, `encoding` and `format` were missing on some `XXXDisk` types where they existed on the `XXXDrive` type. This change attempts to bring the hierarchies closer together. However, the biggest visible consequence is the introduction of the `FLOPPY_FORMATS` array and its associated `FloppyFormat` type. This replaces `NIBBLE_FORMATS` in most places. A couple of new type guards for disk formats and disks have been added as well. All tests pass, everything compiles with no errors, and both WOZ and nibble format disks load in the emulator. * Move disk data to a `disk` field in the drive Before, disk data was mixed in with state about the drive itself (like track, motor phase, etc.). This made it hard to know exactly what data was necessary for different image formats. Now, the disk data is in a `disk` field whose type depends on the drive type. This makes responisbility a bit easier. One oddity, though, is that the `Drive` has metadata _and_ the `Disk` has metadata. When a disk is in the drive, these should be `===`, but when there is no disk in the drive, obviously only the drive metadata is set. All tests pass, everything compiles, and both WOZ and nibble disks work in the emulator (both preact and classic). * Squash the `Drive` type hierarchy Before, the type of the drive depended on the type of the disk in the drive. Thus, `NibbleDrive` contained a `NibbleDisk` and a `WozDrive` contained a `WozDisk`. With the extraction of the disk data to a single field, this type hierarchy makes no sense. Instead, it suffices to check the type of the disk. This change removes the `NibbleDrive` and `WozDrive` types and type guards, checking the disk type where necessary. This change also introduces the `NoFloppyDisk` type to represent the lack of a disk. This allows the drive to have metadata, for one. All tests pass, everything compiles, and both WOZ and nibble disks work locally. * Use more destructuring assignment Now, more places use constructs like: ```TypeScript const { metadata, readOnly, track, head, phase, dirty } = drive; return { disk: getDiskState(drive.disk), metadata: {...metadata}, readOnly, track, head, phase, dirty, }; ``` * Remove the `Disk` object from the `Drive` object This change splits out the disk objects into a record parallel to the drive objects. The idea is that the `Drive` structure becomes a representation of the state of the drive that is separate from the disk image actually in the drive. This helps in an upcoming refactoring. This also changes the default empty disks to be writable. While odd, the write protect switch should be in the "off" position since there is no disk pressing on it. Finally, `insertDisk` now resets the head position to 0 since there is no way of preserving the head position across disks. (Even in the real world, the motor-off delay plus spindle spin-down would make it impossible to know the disk head position with any accuracy.)
2022-09-17 13:41:35 +00:00
format: disk.format,
readOnly: disk.readOnly,
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
metadata: { ...disk.metadata },
};
}
return result;
}
)
};
}
setState(state: CFFAState) {
state.disks.forEach(
(disk, idx) => {
if (disk) {
this.setBlockVolume(idx + 1, disk);
} else {
this.resetBlockVolume(idx + 1);
}
}
);
}
resetBlockVolume(drive: number) {
drive = drive - 1;
this._sectors[drive] = [];
this._name[drive] = '';
this._metadata[drive] = null;
this._identity[drive][IDENTITY.SectorCountHigh] = 0;
this._identity[drive][IDENTITY.SectorCountLow] = 0;
if (drive) {
rom[SETTINGS.Max32MBPartitionsDev1] = 0x0;
} else {
rom[SETTINGS.Max32MBPartitionsDev0] = 0x0;
}
}
setBlockVolume(drive: number, disk: BlockDisk) {
drive = drive - 1;
// Convert 512 byte blocks into 256 word sectors
this._sectors[drive] = disk.blocks.map(function(block) {
return new Uint16Array(block.buffer);
});
this._identity[drive][IDENTITY.SectorCountHigh] = this._sectors[0].length & 0xffff;
this._identity[drive][IDENTITY.SectorCountLow] = this._sectors[0].length >> 16;
const prodos = new ProDOSVolume(disk);
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this._name[drive] = disk.metadata.name;
this._partitions[drive] = prodos;
if (drive) {
rom[SETTINGS.Max32MBPartitionsDev1] = 0x1;
} else {
rom[SETTINGS.Max32MBPartitionsDev0] = 0x1;
}
return true;
}
// Assign a raw disk image to a drive. Must be 2mg or raw PO image.
setBinary(drive: number, name: string, ext: BlockFormat, rawData: ArrayBuffer) {
const volume = 254;
const readOnly = false;
if (ext === '2mg') {
const headerData = read2MGHeader(rawData);
const { bytes, offset } = headerData;
this._metadata[drive - 1] = headerData;
rawData = rawData.slice(offset, offset + bytes);
} else {
this._metadata[drive - 1] = null;
}
const options = {
rawData,
name,
volume,
readOnly
};
Split disk data out into its own record (#158) * Harmonize drive and disk type hierarchies Before, the `XXXDrive` and `XXXDisk` type hierarchies were similar, but not exactly the same. For example, `encoding` and `format` were missing on some `XXXDisk` types where they existed on the `XXXDrive` type. This change attempts to bring the hierarchies closer together. However, the biggest visible consequence is the introduction of the `FLOPPY_FORMATS` array and its associated `FloppyFormat` type. This replaces `NIBBLE_FORMATS` in most places. A couple of new type guards for disk formats and disks have been added as well. All tests pass, everything compiles with no errors, and both WOZ and nibble format disks load in the emulator. * Move disk data to a `disk` field in the drive Before, disk data was mixed in with state about the drive itself (like track, motor phase, etc.). This made it hard to know exactly what data was necessary for different image formats. Now, the disk data is in a `disk` field whose type depends on the drive type. This makes responisbility a bit easier. One oddity, though, is that the `Drive` has metadata _and_ the `Disk` has metadata. When a disk is in the drive, these should be `===`, but when there is no disk in the drive, obviously only the drive metadata is set. All tests pass, everything compiles, and both WOZ and nibble disks work in the emulator (both preact and classic). * Squash the `Drive` type hierarchy Before, the type of the drive depended on the type of the disk in the drive. Thus, `NibbleDrive` contained a `NibbleDisk` and a `WozDrive` contained a `WozDisk`. With the extraction of the disk data to a single field, this type hierarchy makes no sense. Instead, it suffices to check the type of the disk. This change removes the `NibbleDrive` and `WozDrive` types and type guards, checking the disk type where necessary. This change also introduces the `NoFloppyDisk` type to represent the lack of a disk. This allows the drive to have metadata, for one. All tests pass, everything compiles, and both WOZ and nibble disks work locally. * Use more destructuring assignment Now, more places use constructs like: ```TypeScript const { metadata, readOnly, track, head, phase, dirty } = drive; return { disk: getDiskState(drive.disk), metadata: {...metadata}, readOnly, track, head, phase, dirty, }; ``` * Remove the `Disk` object from the `Drive` object This change splits out the disk objects into a record parallel to the drive objects. The idea is that the `Drive` structure becomes a representation of the state of the drive that is separate from the disk image actually in the drive. This helps in an upcoming refactoring. This also changes the default empty disks to be writable. While odd, the write protect switch should be in the "off" position since there is no disk pressing on it. Finally, `insertDisk` now resets the head position to 0 since there is no way of preserving the head position across disks. (Even in the real world, the motor-off delay plus spindle spin-down would make it impossible to know the disk head position with any accuracy.)
2022-09-17 13:41:35 +00:00
const disk = createBlockDisk(ext, options);
return this.setBlockVolume(drive, disk);
}
getBinary(drive: number): MassStorageData | null {
drive = drive - 1;
const blockDisk = this._partitions[drive]?.disk();
if (!blockDisk) {
return null;
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
const { blocks, readOnly } = blockDisk;
const { name } = blockDisk.metadata;
Split disk data out into its own record (#158) * Harmonize drive and disk type hierarchies Before, the `XXXDrive` and `XXXDisk` type hierarchies were similar, but not exactly the same. For example, `encoding` and `format` were missing on some `XXXDisk` types where they existed on the `XXXDrive` type. This change attempts to bring the hierarchies closer together. However, the biggest visible consequence is the introduction of the `FLOPPY_FORMATS` array and its associated `FloppyFormat` type. This replaces `NIBBLE_FORMATS` in most places. A couple of new type guards for disk formats and disks have been added as well. All tests pass, everything compiles with no errors, and both WOZ and nibble format disks load in the emulator. * Move disk data to a `disk` field in the drive Before, disk data was mixed in with state about the drive itself (like track, motor phase, etc.). This made it hard to know exactly what data was necessary for different image formats. Now, the disk data is in a `disk` field whose type depends on the drive type. This makes responisbility a bit easier. One oddity, though, is that the `Drive` has metadata _and_ the `Disk` has metadata. When a disk is in the drive, these should be `===`, but when there is no disk in the drive, obviously only the drive metadata is set. All tests pass, everything compiles, and both WOZ and nibble disks work in the emulator (both preact and classic). * Squash the `Drive` type hierarchy Before, the type of the drive depended on the type of the disk in the drive. Thus, `NibbleDrive` contained a `NibbleDisk` and a `WozDrive` contained a `WozDisk`. With the extraction of the disk data to a single field, this type hierarchy makes no sense. Instead, it suffices to check the type of the disk. This change removes the `NibbleDrive` and `WozDrive` types and type guards, checking the disk type where necessary. This change also introduces the `NoFloppyDisk` type to represent the lack of a disk. This allows the drive to have metadata, for one. All tests pass, everything compiles, and both WOZ and nibble disks work locally. * Use more destructuring assignment Now, more places use constructs like: ```TypeScript const { metadata, readOnly, track, head, phase, dirty } = drive; return { disk: getDiskState(drive.disk), metadata: {...metadata}, readOnly, track, head, phase, dirty, }; ``` * Remove the `Disk` object from the `Drive` object This change splits out the disk objects into a record parallel to the drive objects. The idea is that the `Drive` structure becomes a representation of the state of the drive that is separate from the disk image actually in the drive. This helps in an upcoming refactoring. This also changes the default empty disks to be writable. While odd, the write protect switch should be in the "off" position since there is no disk pressing on it. Finally, `insertDisk` now resets the head position to 0 since there is no way of preserving the head position across disks. (Even in the real world, the motor-off delay plus spindle spin-down would make it impossible to know the disk head position with any accuracy.)
2022-09-17 13:41:35 +00:00
let ext: '2mg' | 'po';
let data: ArrayBuffer;
if (this._metadata[drive]) {
ext = '2mg';
data = create2MGFromBlockDisk(this._metadata[drive - 1], blockDisk);
} else {
ext = 'po';
const dataArray = new Uint8Array(blocks.length * 512);
for (let idx = 0; idx < blocks.length; idx++) {
dataArray.set(blocks[idx], idx * 512);
}
data = dataArray.buffer;
}
return {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
metadata: { name },
ext,
data,
2022-07-23 19:00:38 +00:00
readOnly,
};
}
}