apple2js/js/cards/disk2.ts

1043 lines
36 KiB
TypeScript
Raw Normal View History

import { base64_encode } from '../base64';
import type {
byte,
Card,
memory,
nibble,
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
ReadonlyUint8Array,
} from '../types';
import {
FormatWorkerMessage,
FormatWorkerResponse,
NibbleFormat,
DISK_PROCESSED,
DRIVE_NUMBERS,
DriveNumber,
JSONDisk,
ENCODING_NIBBLE,
PROCESS_BINARY,
PROCESS_JSON_DISK,
PROCESS_JSON,
ENCODING_BITSTREAM,
2022-07-23 19:00:38 +00:00
MassStorage,
MassStorageData,
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
DiskMetadata,
SupportedSectors,
FloppyDisk,
} from '../formats/types';
import {
createDisk,
createDiskFromJsonDisk
} from '../formats/create_disk';
import { toHex } from '../util';
import { jsonDecode, jsonEncode, readSector } from '../formats/format_utils';
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
import { BOOTSTRAP_ROM_16, BOOTSTRAP_ROM_13 } from '../roms/cards/disk2';
import Apple2IO from '../apple2io';
/** Softswitch locations */
const LOC = {
// Disk II Controller Commands
// See Understanding the Apple IIe, Table 9.1
PHASE0OFF: 0x80, // Q0L: Phase 0 OFF
PHASE0ON: 0x81, // Q0H: Phase 0 ON
PHASE1OFF: 0x82, // Q1L: Phase 1 OFF
PHASE1ON: 0x83, // Q1H: Phase 1 ON
PHASE2OFF: 0x84, // Q2L: Phase 2 OFF
PHASE2ON: 0x85, // Q2H: Phase 2 ON
PHASE3OFF: 0x86, // Q3L: Phase 3 OFF
PHASE3ON: 0x87, // Q3H: Phase 3 ON
DRIVEOFF: 0x88, // Q4L: Drives OFF
DRIVEON: 0x89, // Q4H: Selected drive ON
DRIVE1: 0x8A, // Q5L: Select drive 1
DRIVE2: 0x8B, // Q5H: Select drive 2
DRIVEREAD: 0x8C, // Q6L: Shift while writing; read data
DRIVEWRITE: 0x8D, // Q6H: Load while writing; read write protect
DRIVEREADMODE: 0x8E, // Q7L: Read
DRIVEWRITEMODE: 0x8F // Q7H: Write
} as const;
/** Logic state sequencer ROM */
// See Understanding the Apple IIe, Table 9.3 Logic State Sequencer Commands
// CODE OPERATION BEFORE AFTER
// 0 CLR XXXXXXXX 00000000
// 8 NOP ABCDEFGH ABCDEFGH
// 9 SL0 ABCDEFGH BCDEFGH0
// A SR (write protected) ABCDEFGH 11111111
// (not write protected) ABCDEFGH 0ABCDEFG
// B LOAD XXXXXXXX YYYYYYYY
// D SL1 ABCDEFGH BCDEFGH1
const SEQUENCER_ROM_13 = [
// See Understanding the Apple IIe, Figure 9.10 The DOS 3.2 Logic State Sequencer
// Note that the column order here is NOT the same as in Figure 9.10 for Q7 H (Write).
//
// Q7 L (Read) Q7 H (Write)
// Q6 L (Shift) Q6 H (Load) Q6 L (Shift) Q6 H (Load)
// QA L QA H QA L QA H QA L QA H QA L QA H
// 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0xD8, 0x18, 0x18, 0x08, 0x0A, 0x0A, 0x0A, 0x0A, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, // 0
0xD8, 0x2D, 0x28, 0x28, 0x0A, 0x0A, 0x0A, 0x0A, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, // 1
0xD8, 0x38, 0x38, 0x38, 0x0A, 0x0A, 0x0A, 0x0A, 0x39, 0x39, 0x39, 0x39, 0x3B, 0x3B, 0x3B, 0x3B, // 2
0xD8, 0x48, 0xD8, 0x48, 0x0A, 0x0A, 0x0A, 0x0A, 0x48, 0x48, 0x48, 0x48, 0x48, 0x48, 0x48, 0x48, // 3
0xD8, 0x58, 0xD8, 0x58, 0x0A, 0x0A, 0x0A, 0x0A, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, // 4
0xD8, 0x68, 0xD8, 0x68, 0x0A, 0x0A, 0x0A, 0x0A, 0x68, 0x68, 0x68, 0x68, 0x68, 0x68, 0x68, 0x68, // 5
0xD8, 0x78, 0xD8, 0x78, 0x0A, 0x0A, 0x0A, 0x0A, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, // 6
0xD8, 0x88, 0xD8, 0x88, 0x0A, 0x0A, 0x0A, 0x0A, 0x08, 0x08, 0x88, 0x88, 0x08, 0x08, 0x88, 0x88, // 7
0xD8, 0x98, 0xD8, 0x98, 0x0A, 0x0A, 0x0A, 0x0A, 0x98, 0x98, 0x98, 0x98, 0x98, 0x98, 0x98, 0x98, // 8
0xD8, 0x09, 0xD8, 0xA8, 0x0A, 0x0A, 0x0A, 0x0A, 0xA8, 0xA8, 0xA8, 0xA8, 0xA8, 0xA8, 0xA8, 0xA8, // 9
0xCD, 0xBD, 0xD8, 0xB8, 0x0A, 0x0A, 0x0A, 0x0A, 0xB9, 0xB9, 0xB9, 0xB9, 0xBB, 0xBB, 0xBB, 0xBB, // A
0xD9, 0x39, 0xD8, 0xC8, 0x0A, 0x0A, 0x0A, 0x0A, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, // B
0xD9, 0xD9, 0xD8, 0xA0, 0x0A, 0x0A, 0x0A, 0x0A, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8, // C
0x1D, 0x0D, 0xE8, 0xE8, 0x0A, 0x0A, 0x0A, 0x0A, 0xE8, 0xE8, 0xE8, 0xE8, 0xE8, 0xE8, 0xE8, 0xE8, // D
0xFD, 0xFD, 0xF8, 0xF8, 0x0A, 0x0A, 0x0A, 0x0A, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8, // E
0xDD, 0x4D, 0xE0, 0xE0, 0x0A, 0x0A, 0x0A, 0x0A, 0x88, 0x88, 0x08, 0x08, 0x88, 0x88, 0x08, 0x08 // F
] as const;
const SEQUENCER_ROM_16 = [
// See Understanding the Apple IIe, Figure 9.11 The DOS 3.3 Logic State Sequencer
// Note that the column order here is NOT the same as in Figure 9.11 for Q7 H (Write).
//
// Q7 L (Read) Q7 H (Write)
// Q6 L (Shift) Q6 H (Load) Q6 L (Shift) Q6 H (Load)
// QA L QA H QA L QA H QA L QA H QA L QA H
// 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0x18, 0x18, 0x18, 0x18, 0x0A, 0x0A, 0x0A, 0x0A, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, // 0
0x2D, 0x2D, 0x38, 0x38, 0x0A, 0x0A, 0x0A, 0x0A, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, // 1
0xD8, 0x38, 0x08, 0x28, 0x0A, 0x0A, 0x0A, 0x0A, 0x39, 0x39, 0x39, 0x39, 0x3B, 0x3B, 0x3B, 0x3B, // 2
0xD8, 0x48, 0x48, 0x48, 0x0A, 0x0A, 0x0A, 0x0A, 0x48, 0x48, 0x48, 0x48, 0x48, 0x48, 0x48, 0x48, // 3
0xD8, 0x58, 0xD8, 0x58, 0x0A, 0x0A, 0x0A, 0x0A, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, // 4
0xD8, 0x68, 0xD8, 0x68, 0x0A, 0x0A, 0x0A, 0x0A, 0x68, 0x68, 0x68, 0x68, 0x68, 0x68, 0x68, 0x68, // 5
0xD8, 0x78, 0xD8, 0x78, 0x0A, 0x0A, 0x0A, 0x0A, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, // 6
0xD8, 0x88, 0xD8, 0x88, 0x0A, 0x0A, 0x0A, 0x0A, 0x08, 0x08, 0x88, 0x88, 0x08, 0x08, 0x88, 0x88, // 7
0xD8, 0x98, 0xD8, 0x98, 0x0A, 0x0A, 0x0A, 0x0A, 0x98, 0x98, 0x98, 0x98, 0x98, 0x98, 0x98, 0x98, // 8
0xD8, 0x29, 0xD8, 0xA8, 0x0A, 0x0A, 0x0A, 0x0A, 0xA8, 0xA8, 0xA8, 0xA8, 0xA8, 0xA8, 0xA8, 0xA8, // 9
0xCD, 0xBD, 0xD8, 0xB8, 0x0A, 0x0A, 0x0A, 0x0A, 0xB9, 0xB9, 0xB9, 0xB9, 0xBB, 0xBB, 0xBB, 0xBB, // A
0xD9, 0x59, 0xD8, 0xC8, 0x0A, 0x0A, 0x0A, 0x0A, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, // B
0xD9, 0xD9, 0xD8, 0xA0, 0x0A, 0x0A, 0x0A, 0x0A, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8, // C
0xD8, 0x08, 0xE8, 0xE8, 0x0A, 0x0A, 0x0A, 0x0A, 0xE8, 0xE8, 0xE8, 0xE8, 0xE8, 0xE8, 0xE8, 0xE8, // D
0xFD, 0xFD, 0xF8, 0xF8, 0x0A, 0x0A, 0x0A, 0x0A, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8, // E
0xDD, 0x4D, 0xE0, 0xE0, 0x0A, 0x0A, 0x0A, 0x0A, 0x88, 0x88, 0x08, 0x08, 0x88, 0x88, 0x08, 0x08 // F
] as const;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
/** Contents of the P6 sequencer ROM. */
const SEQUENCER_ROM: Record<SupportedSectors, ReadonlyArray<byte>> = {
13: SEQUENCER_ROM_13,
16: SEQUENCER_ROM_16,
};
/** Contents of the P5 ROM at 0xCnXX. */
const BOOTSTRAP_ROM: Record<SupportedSectors, ReadonlyUint8Array> = {
13: BOOTSTRAP_ROM_13,
16: BOOTSTRAP_ROM_16,
};
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
type LssClockCycle = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7;
type Phase = 0 | 1 | 2 | 3;
/**
* How far the head moves, in quarter tracks, when in phase X and phase Y is
* activated. For example, if in phase 0 (top row), turning on phase 3 would
* step backwards a quarter track while turning on phase 2 would step forwards
* a half track.
*
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
* Note that this emulation is highly simplified as it only takes into account
* the order that coils are powered on and ignores when they are powered off.
* The actual hardware allows for multiple coils to be powered at the same time
* providing different levels of torque on the head arm. Along with that, the
* RWTS uses a complex delay system to drive the coils faster based on expected
* head momentum.
*
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
* Examining the https://computerhistory.org/blog/apple-ii-dos-source-code/,
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
* one finds the SEEK routine on line 4831 of `appdos31.lst`. It uses `ONTABLE`
* and `OFFTABLE` (each 12 bytes) to know exactly how many microseconds to
* power on/off each coil as the head accelerates. At the end, the final coil
* is left powered on 9.5 milliseconds to ensure the head has settled.
*
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
* https://embeddedmicro.weebly.com/apple-2iie.html shows traces of the boot
* seek (which is slightly different) and a regular seek.
*/
const PHASE_DELTA = [
[0, 1, 2, -1],
[-1, 0, 1, 2],
[-2, -1, 0, 1],
[1, -2, -1, 0]
] as const;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
/**
* State of the controller.
*/
interface ControllerState {
/** Sectors supported by the controller. */
sectors: SupportedSectors;
/** Is the active drive powered on? */
on: boolean;
/** The active drive. */
drive: DriveNumber;
/** The 8-cycle LSS clock. */
clock: LssClockCycle;
/** Current state of the Logic State Sequencer. */
state: nibble;
/** Q6 (Shift/Load) */
q6: boolean;
/** Q7 (Read/Write) */
q7: boolean;
/** Last data from the disk drive. */
latch: byte;
/** Last data written by the CPU to card softswitch 0x8D. */
bus: byte;
}
/** Callbacks triggered by events of the drive or controller. */
export interface Callbacks {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
/** Called when a drive turns on or off. */
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
driveLight: (drive: DriveNumber, on: boolean) => void;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
/**
* Called when a disk has been written to. For performance and integrity,
* this is only called when the drive stops spinning or is removed from
* the drive.
*/
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
dirty: (drive: DriveNumber, dirty: boolean) => void;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
/** Called when a disk is inserted or removed from the drive. */
label: (drive: DriveNumber, name?: string, side?: string) => void;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
/** Common information for Nibble and WOZ disks. */
interface BaseDrive {
/** Current disk format. */
2022-05-10 15:04:20 +00:00
format: NibbleFormat;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Current disk volume number. */
2022-05-10 15:04:20 +00:00
volume: byte;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Quarter track position of read/write head. */
2022-05-10 15:04:20 +00:00
track: byte;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Position of the head on the track. */
2022-05-10 15:04:20 +00:00
head: byte;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Current active coil in the head stepper motor. */
2022-05-10 15:04:20 +00:00
phase: Phase;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Whether the drive write protect is on. */
2022-05-10 15:04:20 +00:00
readOnly: boolean;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Whether the drive has been written to since it was loaded. */
2022-05-10 15:04:20 +00:00
dirty: boolean;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
/** Metadata about the disk image */
metadata: DiskMetadata;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
/** WOZ format track data from https://applesaucefdc.com/woz/reference2/. */
interface WozDrive extends BaseDrive {
/** Woz encoding */
2022-05-10 15:04:20 +00:00
encoding: typeof ENCODING_BITSTREAM;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Maps quarter tracks to data in rawTracks; `0xFF` = random garbage. */
trackMap: byte[];
/** Unique track bitstreams. The index is arbitrary; it is NOT the track number. */
rawTracks: Uint8Array[];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
/** Nibble format track data. */
interface NibbleDrive extends BaseDrive {
/** Nibble encoding */
2022-05-10 15:04:20 +00:00
encoding: typeof ENCODING_NIBBLE;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Nibble data. The index is the track number. */
tracks: memory[];
}
type Drive = WozDrive | NibbleDrive;
function isNibbleDrive(drive: Drive): drive is NibbleDrive {
return drive.encoding === ENCODING_NIBBLE;
}
function isWozDrive(drive: Drive): drive is WozDrive {
return drive.encoding === ENCODING_BITSTREAM;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
interface DriveState {
2022-05-10 15:04:20 +00:00
format: NibbleFormat;
encoding: typeof ENCODING_BITSTREAM | typeof ENCODING_NIBBLE;
volume: byte;
tracks: memory[];
track: byte;
head: byte;
phase: Phase;
readOnly: boolean;
dirty: boolean;
trackMap: number[];
rawTracks: Uint8Array[];
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
metadata: DiskMetadata;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
/** State of the controller for saving/restoring. */
// TODO(flan): It's unclear whether reusing ControllerState here is a good idea.
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
interface State {
drives: DriveState[];
skip: number;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
controllerState: ControllerState;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
function getDriveState(drive: Drive): DriveState {
const result: DriveState = {
format: drive.format,
encoding: drive.encoding,
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
volume: drive.volume,
tracks: [],
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
track: drive.track,
head: drive.head,
phase: drive.phase,
readOnly: drive.readOnly,
dirty: drive.dirty,
trackMap: [],
rawTracks: [],
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
metadata: { ...drive.metadata },
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
};
if (isNibbleDrive(drive)) {
for (let idx = 0; idx < drive.tracks.length; idx++) {
result.tracks.push(new Uint8Array(drive.tracks[idx]));
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
if (isWozDrive(drive)) {
result.trackMap = [...drive.trackMap];
for (let idx = 0; idx < drive.rawTracks.length; idx++) {
result.rawTracks.push(new Uint8Array(drive.rawTracks[idx]));
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
return result;
}
function setDriveState(state: DriveState) {
let result: Drive;
if (state.encoding === ENCODING_NIBBLE) {
result = {
format: state.format,
encoding: ENCODING_NIBBLE,
volume: state.volume,
tracks: [],
track: state.track,
head: state.head,
phase: state.phase,
readOnly: state.readOnly,
dirty: state.dirty,
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
metadata: { ...state.metadata },
};
for (let idx = 0; idx < state.tracks.length; idx++) {
result.tracks.push(new Uint8Array(state.tracks[idx]));
}
} else {
result = {
format: state.format,
encoding: ENCODING_BITSTREAM,
volume: state.volume,
track: state.track,
head: state.head,
phase: state.phase,
readOnly: state.readOnly,
dirty: state.dirty,
trackMap: [...state.trackMap],
rawTracks: [],
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
metadata: { ...state.metadata },
};
for (let idx = 0; idx < state.rawTracks.length; idx++) {
result.rawTracks.push(new Uint8Array(state.rawTracks[idx]));
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
return result;
}
/**
* Emulates the 16-sector and 13-sector versions of the Disk ][ drive and controller.
*/
2022-07-23 19:00:38 +00:00
export default class DiskII implements Card<State>, MassStorage<NibbleFormat> {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
private drives: Record<DriveNumber, Drive> = {
1: { // Drive 1
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
format: 'dsk',
encoding: ENCODING_NIBBLE,
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
volume: 254,
tracks: [],
track: 0,
head: 0,
phase: 0,
readOnly: false,
dirty: false,
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
metadata: { name: 'Disk 1' },
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
},
2: { // Drive 2
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
format: 'dsk',
encoding: ENCODING_NIBBLE,
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
volume: 254,
tracks: [],
track: 0,
head: 0,
phase: 0,
readOnly: false,
dirty: false,
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
metadata: { name: 'Disk 2' },
}
};
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
private state: ControllerState;
/**
* When `1`, the next nibble will be available for read; when `0`,
* the card is pretending to wait for data to be shifted in by the
* sequencer.
*/
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
private skip = 0;
/** Drive off timeout id or null. */
private offTimeout: number | null = null;
/** Current drive object. */
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
private cur: Drive;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Nibbles read this on cycle */
private nibbleCount = 0;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Current CPU cycle count. */
private lastCycles = 0;
/**
* Number of zeros read in a row. The Disk ][ can only read two zeros in a
* row reliably; above that and the drive starts reporting garbage. See
* "Freaking Out Like a MC3470" in the WOZ spec.
*/
private zeros = 0;
private worker: Worker;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
/** Builds a new Disk ][ card. */
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
constructor(private io: Apple2IO, private callbacks: Callbacks, private sectors: SupportedSectors = 16) {
this.debug('Disk ][');
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.lastCycles = this.io.cycles();
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.state = {
sectors,
bus: 0,
latch: 0,
drive: 1,
on: false,
q6: false,
q7: false,
clock: 0,
// From the example in UtA2e, p. 9-29, col. 1, para. 1., this is
// essentially the start of the sequencer loop and produces
// correctly synced nibbles immediately. Starting at state 0
// would introduce a spurrious 1 in the latch at the beginning,
// which requires reading several more sync bytes to sync up.
state: 2,
};
this.cur = this.drives[this.state.drive];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.initWorker();
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
2022-05-18 02:08:28 +00:00
private debug(..._args: unknown[]) {
// debug(..._args);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
public head(): number {
return this.cur.head;
}
/**
* Spin the disk under the read/write head for WOZ images.
2022-07-23 19:00:38 +00:00
*
* This implementation emulates every clock cycle of the 2 MHz
* sequencer since the last time it was called in order to
* determine the current state. Because this is called on
* every access to the softswitches, the data in the latch
* will be correct on every read.
2022-07-23 19:00:38 +00:00
*
* The emulation of the disk makes a few simplifying assumptions:
2022-07-23 19:00:38 +00:00
*
* * The motor turns on instantly.
* * The head moves tracks instantly.
* * The length (in bits) of each track of the WOZ image
* represents one full rotation of the disk and that each
* bit is evenly spaced.
* * Writing will not change the track length. This means
* that short tracks stay short.
* * The read head picks up the next bit when the sequencer
* clock === 4.
* * Head position X on track T is equivalent to head position
* X on track T. (This is not the recommendation in the WOZ
* spec.)
* * Unspecified tracks contain a single zero bit. (A very
* short track, indeed!)
* * Two zero bits are sufficient to cause the MC3470 to freak
* out. When freaking out, it returns 0 and 1 with equal
* probability.
* * Any softswitch changes happen before `moveHead`. This is
* important because it means that if the clock is ever
* advanced more than one cycle between calls, the
* softswitch changes will appear to happen at the very
* beginning, not just before the last cycle.
*/
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
private moveHead() {
// TODO(flan): Short-circuit if the drive is not on.
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
const cycles = this.io.cycles();
// Spin the disk the number of elapsed cycles since last call
let workCycles = (cycles - this.lastCycles) * 2;
this.lastCycles = cycles;
if (!isWozDrive(this.cur)) {
return;
}
const track =
this.cur.rawTracks[this.cur.trackMap[this.cur.track]] || [0];
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
const state = this.state;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
while (workCycles-- > 0) {
let pulse: number = 0;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
if (state.clock === 4) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
pulse = track[this.cur.head];
if (!pulse) {
// More than 2 zeros can not be read reliably.
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (++this.zeros > 2) {
pulse = Math.random() >= 0.5 ? 1 : 0;
}
} else {
this.zeros = 0;
}
}
let idx = 0;
idx |= pulse ? 0x00 : 0x01;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
idx |= state.latch & 0x80 ? 0x02 : 0x00;
idx |= state.q6 ? 0x04 : 0x00;
idx |= state.q7 ? 0x08 : 0x00;
idx |= state.state << 4;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
const command = SEQUENCER_ROM[this.sectors][idx];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.debug(`clock: ${state.clock} state: ${toHex(state.state)} pulse: ${pulse} command: ${toHex(command)} q6: ${state.q6} latch: ${toHex(state.latch)}`);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
switch (command & 0xf) {
case 0x0: // CLR
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch = 0;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
break;
case 0x8: // NOP
break;
case 0x9: // SL0
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch = (state.latch << 1) & 0xff;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
break;
case 0xA: // SR
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch >>= 1;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (this.cur.readOnly) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch |= 0x80;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
break;
case 0xB: // LD
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch = state.bus;
this.debug('Loading', toHex(state.latch), 'from bus');
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
break;
case 0xD: // SL1
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch = ((state.latch << 1) | 0x01) & 0xff;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
break;
default:
this.debug(`unknown command: ${toHex(command & 0xf)}`);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.state = (command >> 4 & 0xF) as nibble;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
if (state.clock === 4) {
if (state.on) {
if (state.q7) {
track[this.cur.head] = state.state & 0x8 ? 0x01 : 0x00;
this.debug('Wrote', state.state & 0x8 ? 0x01 : 0x00);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
if (++this.cur.head >= track.length) {
this.cur.head = 0;
}
}
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
if (++state.clock > 7) {
state.clock = 0;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
}
}
// Only called for non-WOZ disks
private readWriteNext() {
if (!isNibbleDrive(this.cur)) {
return;
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
const state = this.state;
if (state.on && (this.skip || state.q7)) {
const track = this.cur.tracks[this.cur.track >> 2];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (track && track.length) {
if (this.cur.head >= track.length) {
this.cur.head = 0;
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
if (state.q7) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (!this.cur.readOnly) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
track[this.cur.head] = state.bus;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (!this.cur.dirty) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.updateDirty(state.drive, true);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
}
} else {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch = track[this.cur.head];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
++this.cur.head;
}
} else {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch = 0;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
this.skip = (++this.skip % 2);
}
/**
* Sets whether the head positioning stepper motor coil for the given
* phase is on or off. Normally, the motor must be stepped two phases
* per track. Half tracks can be written by stepping only once; quarter
* tracks by activating two neighboring coils at once.
*/
private setPhase(phase: Phase, on: boolean) {
// According to Sather, UtA2e, p. 9-12, Drive On/Off and Drive
// Select:
// Turning a drive on ($C089,X) [...]:
// 1. [...]
// 5. [...] enables head positioning [...]
//
// Therefore do nothing if no drive is on.
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
if (!this.state.on) {
this.debug(`ignoring phase ${phase}${on ? ' on' : ' off'}`);
return;
}
this.debug(`phase ${phase}${on ? ' on' : ' off'}`);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (on) {
this.cur.track += PHASE_DELTA[this.cur.phase][phase] * 2;
this.cur.phase = phase;
}
// The emulator clamps the track to the valid track range available
// in the image, but real Disk II drives can seek past track 34 by
// at least a half track, usually a full track. Some 3rd party
// drives can seek to track 39.
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
const maxTrack = isNibbleDrive(this.cur)
? this.cur.tracks.length * 4 - 1
: this.cur.trackMap.length - 1;
if (this.cur.track > maxTrack) {
this.cur.track = maxTrack;
}
if (this.cur.track < 0x0) {
this.cur.track = 0x0;
}
// debug(
// 'Drive', _drive, 'track', toHex(_cur.track >> 2) + '.' + (_cur.track & 0x3),
// '(' + toHex(_cur.track) + ')',
// '[' + phase + ':' + (on ? 'on' : 'off') + ']');
}
private access(off: byte, val?: byte) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
const state = this.state;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
let result = 0;
const readMode = val === undefined;
switch (off & 0x8f) {
case LOC.PHASE0OFF: // 0x00
this.setPhase(0, false);
break;
case LOC.PHASE0ON: // 0x01
this.setPhase(0, true);
break;
case LOC.PHASE1OFF: // 0x02
this.setPhase(1, false);
break;
case LOC.PHASE1ON: // 0x03
this.setPhase(1, true);
break;
case LOC.PHASE2OFF: // 0x04
this.setPhase(2, false);
break;
case LOC.PHASE2ON: // 0x05
this.setPhase(2, true);
break;
case LOC.PHASE3OFF: // 0x06
this.setPhase(3, false);
break;
case LOC.PHASE3ON: // 0x07
this.setPhase(3, true);
break;
case LOC.DRIVEOFF: // 0x08
if (!this.offTimeout) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
if (state.on) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
// TODO(flan): This is fragile because it relies on
// wall-clock time instead of emulator time.
this.offTimeout = window.setTimeout(() => {
this.debug('Drive Off');
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.on = false;
this.callbacks.driveLight(state.drive, false);
this.debug('nibbles read', this.nibbleCount);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}, 1000);
}
}
break;
case LOC.DRIVEON: // 0x09
if (this.offTimeout) {
// TODO(flan): Fragile—see above
window.clearTimeout(this.offTimeout);
this.offTimeout = null;
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
if (!state.on) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.debug('Drive On');
this.nibbleCount = 0;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.on = true;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.lastCycles = this.io.cycles();
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.callbacks.driveLight(state.drive, true);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
break;
case LOC.DRIVE1: // 0x0a
this.debug('Disk 1');
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.drive = 1;
this.cur = this.drives[state.drive];
if (state.on) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.callbacks.driveLight(2, false);
this.callbacks.driveLight(1, true);
}
break;
case LOC.DRIVE2: // 0x0b
this.debug('Disk 2');
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.drive = 2;
this.cur = this.drives[state.drive];
if (state.on) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.callbacks.driveLight(1, false);
this.callbacks.driveLight(2, true);
}
break;
case LOC.DRIVEREAD: // 0x0c (Q6L) Shift
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.q6 = false;
if (state.q7) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.debug('clearing _q6/SHIFT');
}
if (isNibbleDrive(this.cur)) {
this.readWriteNext();
}
break;
case LOC.DRIVEWRITE: // 0x0d (Q6H) LOAD
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.q6 = true;
if (state.q7) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.debug('setting _q6/LOAD');
}
if (isNibbleDrive(this.cur)) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
if (readMode && !state.q7) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (this.cur.readOnly) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch = 0xff;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.debug('Setting readOnly');
} else {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.latch = state.latch >> 1;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
this.debug('Clearing readOnly');
}
}
}
break;
case LOC.DRIVEREADMODE: // 0x0e (Q7L)
this.debug('Read Mode');
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.q7 = false;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
break;
case LOC.DRIVEWRITEMODE: // 0x0f (Q7H)
this.debug('Write Mode');
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.q7 = true;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
break;
default:
break;
}
this.moveHead();
if (readMode) {
// According to UtAIIe, p. 9-13 to 9-14, any even address can be
// used to read the data register onto the CPU bus, although some
// also cause conflicts with the disk controller commands.
if ((off & 0x01) === 0) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
result = state.latch;
if (result & 0x80) {
this.nibbleCount++;
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
} else {
result = 0;
}
} else {
// It's not explicitly stated, but writes to any address set the
// data register.
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
state.bus = val;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
return result;
}
private updateDirty(drive: DriveNumber, dirty: boolean) {
this.drives[drive].dirty = dirty;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (this.callbacks.dirty) {
this.callbacks.dirty(drive, dirty);
}
}
ioSwitch(off: byte, val?: byte) {
return this.access(off, val);
}
read(_page: byte, off: byte) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
return BOOTSTRAP_ROM[this.sectors][off];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
write() {
// not writable
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
reset() {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
const state = this.state;
if (state.on) {
this.callbacks.driveLight(state.drive, false);
state.q7 = false;
state.on = false;
state.drive = 1;
this.cur = this.drives[state.drive];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
}
tick() {
this.moveHead();
}
getState(): State {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
const result = {
drives: [] as DriveState[],
skip: this.skip,
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
controllerState: { ...this.state },
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
};
result.drives[1] = getDriveState(this.drives[1]);
result.drives[2] = getDriveState(this.drives[2]);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
return result;
}
setState(state: State) {
this.skip = state.skip;
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.state = { ...state.controllerState };
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
for (const d of DRIVE_NUMBERS) {
this.drives[d] = setDriveState(state.drives[d]);
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
const { name, side } = state.drives[d].metadata;
const { dirty } = state.drives[d];
this.callbacks.label(d, name, side);
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.callbacks.driveLight(d, this.state.on);
this.callbacks.dirty(d, dirty);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.cur = this.drives[this.state.drive];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
getMetadata(driveNo: DriveNumber) {
const drive = this.drives[driveNo];
return {
format: drive.format,
volume: drive.volume,
track: drive.track,
head: drive.head,
phase: drive.phase,
readOnly: drive.readOnly,
dirty: drive.dirty
};
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
// TODO(flan): Does not work on WOZ disks
rwts(disk: DriveNumber, track: byte, sector: byte) {
const cur = this.drives[disk];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (!isNibbleDrive(cur)) {
throw new Error('Can\'t read WOZ disks');
}
return readSector(cur, track, sector);
}
/** Sets the data for `drive` from `disk`, which is expected to be JSON. */
// TODO(flan): This implementation is not very safe.
setDisk(drive: DriveNumber, jsonDisk: JSONDisk) {
if (this.worker) {
const message: FormatWorkerMessage = {
type: PROCESS_JSON_DISK,
payload: {
drive,
jsonDisk
},
};
this.worker.postMessage(message);
return true;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
} else {
const disk = createDiskFromJsonDisk(jsonDisk);
if (disk) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.insertDisk(drive, disk);
return true;
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
return false;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
getJSON(drive: DriveNumber, pretty: boolean = false) {
const cur = this.drives[drive];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (!isNibbleDrive(cur)) {
throw new Error('Can\'t save WOZ disks to JSON');
}
return jsonEncode(cur, pretty);
}
setJSON(drive: DriveNumber, json: string) {
if (this.worker) {
const message: FormatWorkerMessage = {
type: PROCESS_JSON,
payload: {
drive,
json
},
};
this.worker.postMessage(message);
} else {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
const disk = jsonDecode(json);
this.insertDisk(drive, disk);
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
return true;
}
setBinary(drive: DriveNumber, name: string, fmt: NibbleFormat, rawData: ArrayBuffer) {
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
const readOnly = false;
const volume = 254;
const options = {
name,
rawData,
readOnly,
volume,
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
};
if (this.worker) {
const message: FormatWorkerMessage = {
type: PROCESS_BINARY,
payload: {
drive,
fmt,
options,
}
};
this.worker.postMessage(message);
return true;
} else {
const disk = createDisk(fmt, options);
if (disk) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.insertDisk(drive, disk);
return true;
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
return false;
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
initWorker() {
if (!window.Worker) {
return;
}
try {
this.worker = new Worker('dist/format_worker.bundle.js');
this.worker.addEventListener('message', (message: MessageEvent<FormatWorkerResponse>) => {
const { data } = message;
switch (data.type) {
case DISK_PROCESSED:
{
const { drive, disk } = data.payload;
if (disk) {
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
this.insertDisk(drive, disk);
}
}
break;
}
});
} catch (e: unknown) {
console.error(e);
}
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
private insertDisk(drive: DriveNumber, disk: FloppyDisk) {
const cur = this.drives[drive];
Object.assign(cur, disk);
const { name, side } = cur.metadata;
this.updateDirty(drive, true);
this.callbacks.label(drive, name, side);
}
2022-07-23 19:00:38 +00:00
// TODO(flan): Does not work with WOZ or D13 disks
getBinary(drive: DriveNumber, ext?: NibbleFormat): MassStorageData | null {
const cur = this.drives[drive];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (!isNibbleDrive(cur)) {
return null;
}
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
const { format, readOnly, tracks, volume } = cur;
const { name } = cur.metadata;
2022-07-23 19:00:38 +00:00
const len = format === 'nib' ?
tracks.reduce((acc, track) => acc + track.length, 0) :
this.sectors * tracks.length * 256;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
const data = new Uint8Array(len);
2022-07-23 19:00:38 +00:00
ext = ext ?? format;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
let idx = 0;
2022-07-23 19:00:38 +00:00
for (let t = 0; t < tracks.length; t++) {
if (ext === 'nib') {
data.set(tracks[t], idx);
idx += tracks[t].length;
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
} else {
for (let s = 0; s < 0x10; s++) {
2022-07-23 19:00:38 +00:00
const sector = readSector({ ...cur, format: ext }, t, s);
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
data.set(sector, idx);
idx += sector.length;
}
}
}
return {
2022-07-23 19:00:38 +00:00
ext,
Floppy controller refactorings 1 (#155) * Add `DiskMetada` to the `Disk` interface Before, metadata about the image, such as name, side, etc. was mixed in with actual disk image information. This change breaks that information into a separate structure called `DiskMetadata`. Currently, the only two fields are `name` and `side`, but the idea is that more fields could be added as necessary, like a description, a scan of the disk or label, etc. In a follow-on change, the default write-protection status will come from the metadata as well. The current implementation copies the metadata when saving/restoring state, loading disk images, etc. In the future, the metadata should passed around until the format is required to change (like saving one disk image format as another). Likewise, in the future, in may be desirable to be able to override the disk image metadata with user-supplied metadata. This could be use, for example, to temporarily add or remove write-protection from a disk image. All existing tests pass and the emulator builds with no errors. * Rename `writeMode` to `q7` Before, nibble disk emulation used the `writeMode` field to keep track of whether the drive should be read from or written to, but the WOZ emulation used `q7` to keep track of the same state. This change renames `writeMode` to `q7` because it more accurately reflects the state of the Disk II controller as specified in the manuals, DOS source, and, especially, _Understanding the Apple //e_ by Jim Sather. * Remove the coil state Before, `q` captured the state of the coils. But it was never read. This change just deletes it. * Use the bootstrap and sequencer ROMs with indirection Before, the contents of the bootstrap ROM and sequencer ROM were set directly on fields of the controller. These were not saved or restored with the state in `getState` and `setState`. (It would have been very space inefficient if they had). Now, these ROMs are used from constants indexed by the number of sectors the card supports. This, in turn, means that if the number of sectors is saved with the state, it can be easily restored. * Split out the Disk II controller state This change factors the emulated hardware state into a separate structure in the Disk II controller. The idea is that this hardware state will be able to be shared with the WOZ and nibble disk code instead of sharing _all_ of the controller state (like callbacks and so forth). * Factor out disk insertion Before, several places in the code essentially inserted a new disk image into the drive, which similar—but not always exactly the same—code. Now there is an `insertDisk` method that is responsible for inserting a new `FloppyDisk`. All tests pass, everything compiles, manually tested nibble disks and WOZ disks.
2022-09-01 01:55:01 +00:00
metadata: { name },
2022-07-23 19:00:38 +00:00
data: data.buffer,
readOnly,
volume,
};
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
}
2022-07-23 19:00:38 +00:00
// TODO(flan): Does not work with WOZ or D13 disks
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
getBase64(drive: DriveNumber) {
const cur = this.drives[drive];
Convert `cards/disk2.js` to Typescript (#54) * Convert `cards/disk2.js` to Typescript This is mostly a straightforward conversion of `cards/disk2.js` to Typescript, with the following exceptions: * `setState()` did not restore the drive light state correctly because the callback was called with the old `on` value. * `setPhase()` did not work for WOZ images. * `getBinary()` did not work for `nib` files. * `getBase64()` did not work for `nib` files and maybe didn't work right at all. Even with these fixes, local storage still doesn't work correctly. I have also added several TODOs where methods don't support WOZ disks. * Convert most uses of `memory` to `Uint8Array` There are many places in the existing code where we use `Uint8Array` directly. This change merely makes the `memory` type equivalent to `Uint8Array`. This change also changes most ROM data to be read-only in Typescript to ensure that it is not modified by mistake. This can't be done just by applying `as const` to the declaration because `Uint8Array`s are can not be expressed as literals. Instead, we create a new type, `ReadonlyUint8Array` that drops the mutation methods and makes indexed access read-only. See https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html for details. * Tighten types and document `disk2.ts` While trying to understand the Disk ][ emulation, I tighted the types and documented the parts that I could, including references to other sources, like _Understanding the Apple //e_ by Jim Sather. The one functional change is the addition of the P6 ROM of DOS 3.2 and earlier. This is automatically selected if the card is initialized for 13 sector disks.
2021-02-08 04:50:50 +00:00
if (!isNibbleDrive(cur)) {
return null;
}
const data: string[][] | string[] = [];
for (let t = 0; t < cur.tracks.length; t++) {
if (cur.format === 'nib') {
data[t] = base64_encode(cur.tracks[t]);
} else {
const track: string[] = [];
for (let s = 0; s < 0x10; s++) {
track[s] = base64_encode(readSector(cur, t, s));
}
data[t] = track;
}
}
return data;
}
}