apple2js/js/cards/drivers/WozDiskDriver.ts

226 lines
8.1 KiB
TypeScript
Raw Normal View History

import Apple2IO from '../../apple2io';
import { DriveNumber, WozDisk } from '../../formats/types';
import { toHex } from '../../util';
import { SEQUENCER_ROM } from '../disk2';
import { BaseDiskDriver } from './BaseDiskDriver';
import { ControllerState, Drive, DriverState, LssClockCycle, LssState } from './types';
interface WozDiskDriverState extends DriverState {
clock: LssClockCycle;
state: LssState;
lastCycles: number;
zeros: number;
}
export class WozDiskDriver extends BaseDiskDriver {
/** Logic state sequencer clock cycle. */
private clock: LssClockCycle;
/** Logic state sequencer state. */
private state: LssState;
/** Current CPU cycle count. */
private lastCycles: number = 0;
/**
* Number of zeros read in a row. The Disk ][ can only read two zeros in a
* row reliably; above that and the drive starts reporting garbage. See
* "Freaking Out Like a MC3470" in the WOZ spec.
*/
private zeros = 0;
constructor(
driveNo: DriveNumber,
drive: Drive,
readonly disk: WozDisk,
controller: ControllerState,
private readonly onDirty: () => void,
private readonly io: Apple2IO) {
super(driveNo, drive, disk, controller);
// From the example in UtA2e, p. 9-29, col. 1, para. 1., this is
// essentially the start of the sequencer loop and produces
// correctly synced nibbles immediately. Starting at state 0
// would introduce a spurrious 1 in the latch at the beginning,
// which requires reading several more sync bytes to sync up.
this.state = 2;
this.clock = 0;
}
onDriveOn(): void {
this.lastCycles = this.io.cycles();
}
onDriveOff(): void {
// nothing
}
/**
* Spin the disk under the read/write head for WOZ images.
*
* This implementation emulates every clock cycle of the 2 MHz
* sequencer since the last time it was called in order to
* determine the current state. Because this is called on
* every access to the softswitches, the data in the latch
* will be correct on every read.
*
* The emulation of the disk makes a few simplifying assumptions:
*
* * The motor turns on instantly.
* * The head moves tracks instantly.
* * The length (in bits) of each track of the WOZ image
* represents one full rotation of the disk and that each
* bit is evenly spaced.
* * Writing will not change the track length. This means
* that short tracks stay short.
* * The read head picks up the next bit when the sequencer
* clock === 4.
* * Head position X on track T is equivalent to head position
* X on track T. (This is not the recommendation in the WOZ
* spec.)
* * Unspecified tracks contain a single zero bit. (A very
* short track, indeed!)
* * Two zero bits are sufficient to cause the MC3470 to freak
* out. When freaking out, it returns 0 and 1 with equal
* probability.
* * Any softswitch changes happen before `moveHead`. This is
* important because it means that if the clock is ever
* advanced more than one cycle between calls, the
* softswitch changes will appear to happen at the very
* beginning, not just before the last cycle.
*/
private moveHead() {
// TODO(flan): Short-circuit if the drive is not on.
const cycles = this.io.cycles();
// Spin the disk the number of elapsed cycles since last call
let workCycles = (cycles - this.lastCycles) * 2;
this.lastCycles = cycles;
const drive = this.drive;
const disk = this.disk;
const controller = this.controller;
// TODO(flan): Improve unformatted track behavior. The WOZ
// documentation suggests using an empty track of 6400 bytes
// (51,200 bits).
const track = disk.rawTracks[disk.trackMap[drive.track]] || [0];
while (workCycles-- > 0) {
let pulse: number = 0;
if (this.clock === 4) {
pulse = track[drive.head];
if (!pulse) {
// More than 2 zeros can not be read reliably.
// TODO(flan): Revisit with the new MC3470
// suggested 4-bit window behavior.
if (++this.zeros > 2) {
const r = Math.random();
pulse = r >= 0.5 ? 1 : 0;
}
} else {
this.zeros = 0;
}
}
let idx = 0;
idx |= pulse ? 0x00 : 0x01;
idx |= controller.latch & 0x80 ? 0x02 : 0x00;
idx |= controller.q6 ? 0x04 : 0x00;
idx |= controller.q7 ? 0x08 : 0x00;
idx |= this.state << 4;
const command = SEQUENCER_ROM[controller.sectors][idx];
this.debug(`clock: ${this.clock} state: ${toHex(this.state)} pulse: ${pulse} command: ${toHex(command)} q6: ${controller.q6} latch: ${toHex(controller.latch)}`);
switch (command & 0xf) {
case 0x0: // CLR
controller.latch = 0;
break;
case 0x8: // NOP
break;
case 0x9: // SL0
controller.latch = (controller.latch << 1) & 0xff;
break;
case 0xA: // SR
controller.latch >>= 1;
if (this.isWriteProtected()) {
controller.latch |= 0x80;
}
break;
case 0xB: // LD
controller.latch = controller.bus;
this.debug('Loading', toHex(controller.latch), 'from bus');
break;
case 0xD: // SL1
controller.latch = ((controller.latch << 1) | 0x01) & 0xff;
break;
default:
this.debug(`unknown command: ${toHex(command & 0xf)}`);
}
this.state = (command >> 4 & 0xF) as LssState;
if (this.clock === 4) {
if (this.isOn()) {
if (controller.q7) {
// TODO(flan): This assumes that writes are happening in
// a "friendly" way, namely where the track was originally
// written. To do this correctly, the virtual head should
// actually keep track of the current quarter track plus
// the one on each side. Then, when writing, it should
// check that all three are actually the same rawTrack. If
// they aren't, then the trackMap has to be updated as
// well.
track[drive.head] = this.state & 0x8 ? 0x01 : 0x00;
this.debug('Wrote', this.state & 0x8 ? 0x01 : 0x00);
drive.dirty = true;
this.onDirty();
}
if (++drive.head >= track.length) {
drive.head = 0;
}
}
}
if (++this.clock > 7) {
this.clock = 0;
}
}
}
tick(): void {
this.moveHead();
}
onQ6High(_readMode: boolean): void {
// nothing?
}
onQ6Low(): void {
// nothing?
}
clampTrack(): void {
// For NibbleDisks, the emulator clamps the track to the available
// range.
if (this.drive.track < 0) {
this.drive.track = 0;
}
const lastTrack = this.disk.trackMap.length - 1;
if (this.drive.track > lastTrack) {
this.drive.track = lastTrack;
}
}
getState(): WozDiskDriverState {
const { clock, state, lastCycles, zeros } = this;
return { clock, state, lastCycles, zeros };
}
setState(state: WozDiskDriverState) {
this.clock = state.clock;
this.state = state.state;
this.lastCycles = state.lastCycles;
this.zeros = state.zeros;
}
}