ciderpress/reformat/HiRes.cpp

554 lines
20 KiB
C++

/*
* CiderPress
* Copyright (C) 2007 by faddenSoft, LLC. All Rights Reserved.
* See the file LICENSE for distribution terms.
*/
/*
* Reformat hi-res graphics into a bitmap.
*/
#include "StdAfx.h"
#include "HiRes.h"
/*
* Hi-Res image format:
*
* <16-bit load address> [DOS 3.3 only]
* <16-bit file length> [DOS 3.3 only]
* lines, in wonky format
*
* Each line is 40 bytes long. Each byte holds 7 bits that define a color
* value from 0 to 3, and the high byte determines which set of colors to
* use.
*
* The colors are:
* 0 black0 4 black1 00 00 / 80 80
* 1 green 5 orange 2a 55 / aa d5
* 2 purple 6 blue 55 2a / d5 aa
* 3 white0 7 white1 7f 7f / ff ff
*
* There is also a "half-shift" phenomenon for the second set, which appear
* to be shifted half a pixel to the right. The stair-step looks like this:
*
* white0
* purple
* white1
* blue
* green
* orange
*
* white1/blue/orange have a half-pixel shift, while green/orange have a
* full-pixel shift because the colors don't start until the appropriate
* bit (and stop on the appropriate bit). The area between two identical
* colors is filled. If you have a "1 0 0 1" bit situation, a black gap
* is formed, and a "0 1 1 0" situation creates a white area, but "0 1 0 1"
* forms a solid color starting and stopping on the 1/280th pixels where
* the 1s are.
*
* Some transition examples:
* purpleBBBorange
* purpleBBgreen
* blueBgreen
*
* orangeWWblue
* greenWWpurple
*
* The IIgs monochrome mode is not enabled on the RGB output unless you
* turn off AN3 by hitting $c05e (it can be re-enabled by hitting $c05f).
* This register turns off the half-pixel shift, so it doesn't appear to
* be possible to view hi-res output on an RGB monitor with the half-pixel
* shift intact. On the composite output, the removal of the half-pixel
* shift is quite visible.
*/
/*
* Regarding color...
* [ Found on http://www.geocities.com/jonrelay/software/a2info/munafo.htm ]
From: munafo@gcctech.com
Newsgroups: comp.emulators.apple2,comp.sys.apple2.programmer
Subject: RGB values for the standard Apple ][ colors
Date: Thu, 12 Oct 2000 03:13:33 GMT
Lines: 137
I am giving a table of all the lores and hires colors with their values in
RGB. First, though there is a bit to explain...
[...]
Here is the table. It was used by taking the chroma/luma values and
transforming to R-Y and B-Y, then transforming to YUV and finally to RGB.
The last step requires a gamma correction for display on an RGB monitor,
I used Y to the power of -0.4. For reference, the NTSC "color bars" test
pattern colors and the YIQ axis colors are also given.
--chroma--
Color name phase ampl luma -R- -G- -B-
black COLOR=0 0 0 0 0 0 0
gray COLOR=5 0 0 50 156 156 156
grey COLOR=10 0 0 50 156 156 156
white COLOR=15 0 0 100 255 255 255
dk blue COLOR=2 0 60 25 96 78 189
lt blue COLOR=7 0 60 75 208 195 255
purple COLOR=3 45 100 50 255 68 253
purple HCOLOR=2 45 100 50 255 68 253
red COLOR=1 90 60 25 227 30 96
pink COLOR=11 90 60 75 255 160 208
orange COLOR=9 135 100 50 255 106 60
orange HCOLOR=5 135 100 50 255 106 60
brown COLOR=8 180 60 25 96 114 3
yellow COLOR=13 180 60 75 208 221 141
lt green COLOR=12 225 100 50 20 245 60
green HCOLOR=1 225 100 50 20 245 60
dk green COLOR=4 270 60 25 0 163 96
aqua COLOR=14 270 60 75 114 255 208
med blue COLOR=6 315 100 50 20 207 253
blue HCOLOR=6 315 100 50 20 207 253
NTSC Hsync 0 0 -40 0 0 0
NTSC black 0 0 7.5 41 41 41
NTSC Gray75 0 0 77 212 212 212
YIQ +Q 33 100 50 255 81 255
NTSC magenta 61 82 36 255 40 181
NTSC red 104 88 28 255 28 76
YIQ +I 123 100 50 255 89 82
NTSC yellow 167 62 69 221 198 121
Color burst 180 40 0 0 4 0
YIQ -Q 213 100 50 51 232 41
NTSC green 241 82 48 12 234 97
NTSC cyan 284 88 56 10 245 198
YIQ -I 303 100 50 0 224 231
NTSC blue 347 62 15 38 65 155
---
I don't think these are 100% correct, e.g. he only found one value for both
grey colors, even though one is noticeably darker than the other on-screen.
The IIgs tech note #63 uses the following for border colors:
Color Color Register Master Color
Name Value Value
---------------------------------------
Black $0 $0000
Deep Red $1 $0D03
Dark Blue $2 $0009
Purple $3 $0D2D
Dark Green $4 $0072
Dark Gray $5 $0555
Medium Blue $6 $022F
Light Blue $7 $06AF
Brown $8 $0850
Orange $9 $0F60
Light Gray $A $0AAA
Pink $B $0F98
Light Green $C $01D0
Yellow $D $0FF0
Aquamarine $E $04F9
White $F $0FFF
---------------------------------------
KEGS uses this (rearranged slightly to match the order above):
const int g_dbhires_colors[] = {
\* rgb *\
0x000, \* 0x0 black *\
0xd03, \* 0x1 deep red *\
0x009, \* 0x8 dark blue *\
0xd0d, \* 0x9 purple *\
0x070, \* 0x4 dark green *\
0x555, \* 0x5 dark gray *\
0x22f, \* 0xc medium blue *\
0x6af, \* 0xd light blue *\
0x852, \* 0x2 brown *\
0xf60, \* 0x3 orange *\
0xaaa, \* 0xa light gray *\
0xf98, \* 0xb pink *\
0x0d0, \* 0x6 green *\
0xff0, \* 0x7 yellow *\
0x0f9, \* 0xe aquamarine *\
0xfff \* 0xf white *\
};
The Apple values seem to be good.
*/
/*
* Decide whether or not we want to handle this file.
*
* FOT with auxtype $4000 is a compressed hi-res image. FOT with auxtype
* $4001 is a compressed DHR image. In practice, nobody uses these, so
* any FOT file with a correct-looking length is treated as hi-res.
*/
void ReformatHiRes::Examine(ReformatHolder* pHolder)
{
ReformatHolder::ReformatApplies applies = ReformatHolder::kApplicNot;
long fileLen = pHolder->GetSourceLen(ReformatHolder::kPartData);
long fileType = pHolder->GetFileType();
long auxType = pHolder->GetAuxType();
bool dosStructure =
(pHolder->GetSourceFormat() == ReformatHolder::kSourceFormatDOS);
bool relaxed;
relaxed = pHolder->GetOption(ReformatHolder::kOptRelaxGfxTypeCheck) != 0;
if (dosStructure) {
if (fileType == kTypeBIN &&
(fileLen >= kExpectedSize-8 && fileLen <= kExpectedSize+1) /*&&
(auxType == 0x2000 || auxType == 0x4000)*/)
{
applies = ReformatHolder::kApplicProbably;
}
} else {
if (fileType == kTypeFOT) {
if (auxType == 0x8066) {
// fhpack LZ4FH-compressed file
applies = ReformatHolder::kApplicYes;
} else if (fileLen >= kExpectedSize-8 &&
fileLen <= kExpectedSize + 1) {
// uncompressed FOT file... probably
applies = ReformatHolder::kApplicProbably;
}
} else if (relaxed && fileType == kTypeBIN &&
(fileLen >= kExpectedSize-8 && fileLen <= kExpectedSize+1))
{
applies = ReformatHolder::kApplicProbably;
}
}
pHolder->SetApplic(ReformatHolder::kReformatHiRes, applies,
ReformatHolder::kApplicNot, ReformatHolder::kApplicNot);
pHolder->SetApplic(ReformatHolder::kReformatHiRes_BW, applies,
ReformatHolder::kApplicNot, ReformatHolder::kApplicNot);
/*
* Set the "preferred" flag on one option.
*/
if (pHolder->GetOption(ReformatHolder::kOptHiResBW) == 0)
pHolder->SetApplicPreferred(ReformatHolder::kReformatHiRes);
else
pHolder->SetApplicPreferred(ReformatHolder::kReformatHiRes_BW);
}
/*
* Convert a Hi-Res image to a bitmap.
*/
int ReformatHiRes::Process(const ReformatHolder* pHolder,
ReformatHolder::ReformatID id, ReformatHolder::ReformatPart part,
ReformatOutput* pOutput)
{
MyDIBitmap* pDib;
const uint8_t* srcBuf = pHolder->GetSourceBuf(part);
long srcLen = pHolder->GetSourceLen(part);
int retval = -1;
if (id == ReformatHolder::kReformatHiRes_BW) {
fBlackWhite = true;
}
uint8_t expandBuf[kExpectedSize];
if (pHolder->GetFileType() == kTypeFOT &&
pHolder->GetAuxType() == 0x8066)
{
srcLen = ExpandLZ4FH(expandBuf, srcBuf, srcLen);
if (srcLen == 0) {
goto bail; // fail
}
srcBuf = expandBuf;
}
if (srcLen > kExpectedSize+1 || srcLen < kExpectedSize-8) {
LOGI(" HiRes file is not ~%d bytes long (got %d)",
kExpectedSize, srcLen);
goto bail;
}
InitLineOffset(fLineOffset);
pDib = HiResScreenToBitmap(srcBuf);
if (pDib == NULL)
goto bail;
SetResultBuffer(pOutput, pDib);
retval = 0;
bail:
return retval;
}
/*
* Set up the line offset table.
*
* Table must be able to hold kNumLines values.
*/
/*static*/ void ReformatHiRes::InitLineOffset(int* pOffsetBuf)
{
long offset;
int line;
ASSERT(pOffsetBuf != NULL);
for (line = 0; line < kNumLines; line++) {
offset = (line & 0x07) << 10 | (line & 0x38) << 4 |
(line & 0xc0) >> 1 | (line & 0xc0) >> 3;
ASSERT(offset >= 0 && offset < (8192 - 40));
pOffsetBuf[line] = offset;
}
}
/*
* (Lifted directly from fhpack.)
*
* Uncompress LZ4FH data from "srcBuf" to "dstBuf". "dstBuf" must hold
* kExpectedSize bytes.
*
* Returns the uncompressed length on success, 0 on failure.
*/
/*static*/ long ReformatHiRes::ExpandLZ4FH(uint8_t* outBuf,
const uint8_t* inBuf, long inLen)
{
// constants
static const uint8_t LZ4FH_MAGIC = 0x66;
static const int MIN_MATCH_LEN = 4;
static const int INITIAL_LEN = 15;
static const int EMPTY_MATCH_TOKEN = 253;
static const int EOD_MATCH_TOKEN = 254;
static const int MAX_SIZE = kExpectedSize;
uint8_t* outPtr = outBuf;
const uint8_t* inPtr = inBuf;
LOGD("Expanding LZ4FH");
if (*inPtr++ != LZ4FH_MAGIC) {
LOGE("Missing LZ4FH magic");
return 0;
}
while (true) {
uint8_t mixedLen = *inPtr++;
int literalLen = mixedLen >> 4;
if (literalLen != 0) {
if (literalLen == INITIAL_LEN) {
literalLen += *inPtr++;
}
if ((outPtr - outBuf) + literalLen > MAX_SIZE ||
(inPtr - inBuf) + literalLen > inLen) {
LOGE("Buffer overrun");
return 0;
}
memcpy(outPtr, inPtr, literalLen);
outPtr += literalLen;
inPtr += literalLen;
}
int matchLen = mixedLen & 0x0f;
if (matchLen == INITIAL_LEN) {
uint8_t addon = *inPtr++;
if (addon == EMPTY_MATCH_TOKEN) {
matchLen = - MIN_MATCH_LEN;
} else if (addon == EOD_MATCH_TOKEN) {
break; // out of while
} else {
matchLen += addon;
}
}
matchLen += MIN_MATCH_LEN;
if (matchLen != 0) {
int matchOffset = *inPtr++;
matchOffset |= (*inPtr++) << 8;
// Can't use memcpy() here, because we need to guarantee
// that the match is overlapping.
uint8_t* srcPtr = outBuf + matchOffset;
if ((outPtr - outBuf) + matchLen > MAX_SIZE ||
(srcPtr - outBuf) + matchLen > MAX_SIZE) {
LOGE("Buffer overrun");
return 0;
}
while (matchLen-- != 0) {
*outPtr++ = *srcPtr++;
}
}
}
if (inPtr - inBuf != (long) inLen) {
LOGW("Warning: LZ4FH uncompress used only %ld of %zd bytes",
inPtr - inBuf, inLen);
}
return outPtr - outBuf;
}
/*
* Convert an 8KB buffer of hi-res data to a 16-color 560x384 DIB.
*/
MyDIBitmap* ReformatHiRes::HiResScreenToBitmap(const uint8_t* buf)
{
MyDIBitmap* pDib = new MyDIBitmap;
uint8_t* outBuf;
const int kLeadIn = 4;
unsigned int colorBuf[kLeadIn+kOutputWidth +1]; // 560 half-pixels
int pixelBits[kPixelsPerLine];
int shiftBits[kPixelsPerLine];
int line;
/* color map */
enum {
kColorBlack0 = 0,
kColorGreen,
kColorPurple,
kColorWhite0,
kColorBlack1,
kColorOrange,
kColorBlue,
kColorWhite1,
kColorNone, // really only useful for debugging
kNumColors
};
RGBQUAD colorConv[kNumColors];
colorConv[0] = fPalette[kPaletteBlack];
colorConv[1] = fPalette[kPaletteGreen];
colorConv[2] = fPalette[kPalettePurple];
colorConv[3] = fPalette[kPaletteWhite];
colorConv[4] = fPalette[kPaletteBlack];
colorConv[5] = fPalette[kPaletteOrange];
colorConv[6] = fPalette[kPaletteMediumBlue];
colorConv[7] = fPalette[kPaletteWhite];
colorConv[8] = fPalette[kPaletteBlack]; // for "blank spaces"
ASSERT(kOutputWidth == 2*kPixelsPerLine);
if (pDib == NULL)
goto bail;
outBuf = (uint8_t*) pDib->Create(kOutputWidth, kOutputHeight,
4, kNumColors);
if (outBuf == NULL) {
delete pDib;
pDib = NULL;
goto bail;
}
pDib->SetColorTable(colorConv);
/*
* Run through the lines.
*/
for (line = 0; line < kNumLines; line++) {
const uint8_t* lineData = buf + fLineOffset[line];
int* bitPtr = pixelBits;
int* shiftPtr = shiftBits;
/* unravel the bits */
for (int byt = 0; byt < kPixelsPerLine / 7; byt++) {
uint8_t val = *lineData;
int shifted = (val & 0x80) != 0;
for (int bit = 0; bit < 7; bit++) {
*bitPtr++ = val & 0x01;
*shiftPtr++ = shifted;
val >>= 1;
}
lineData++;
}
ASSERT(lineData <= buf + kExpectedSize);
ASSERT((char*)bitPtr == (char*)pixelBits + sizeof(pixelBits));
ASSERT((char*)shiftPtr == (char*)shiftBits + sizeof(shiftBits));
/*
* Convert the bits to colors, taking half-pixel shifts into account.
*/
int idx;
for (idx = 0; idx < NELEM(colorBuf); idx++)
colorBuf[idx] = kColorNone;
if (fBlackWhite) {
for (idx = 0; idx < kPixelsPerLine; idx ++) {
int bufShift = (int) shiftBits[idx];
// simulate GS RGB by setting bufShift=0
ASSERT(bufShift == 0 || bufShift == 1);
int bufTarget = kLeadIn + idx * 2 + bufShift;
if (!pixelBits[idx]) {
colorBuf[bufTarget] = kColorBlack0;
colorBuf[bufTarget+1] = kColorBlack0;
} else {
colorBuf[bufTarget] = kColorWhite0;
colorBuf[bufTarget+1] = kColorWhite0;
}
}
} else {
for (idx = 0; idx < kPixelsPerLine; idx ++) {
int bufShift = (int) shiftBits[idx];
ASSERT(bufShift == 0 || bufShift == 1);
int colorShift = 4 * bufShift;
int bufTarget = kLeadIn + idx * 2 + bufShift;
if (!pixelBits[idx]) {
colorBuf[bufTarget] = kColorBlack0 + colorShift;
colorBuf[bufTarget+1] = kColorBlack0 + colorShift;
} else {
if (colorBuf[bufTarget-2] != kColorBlack0 &&
colorBuf[bufTarget-2] != kColorBlack1 &&
colorBuf[bufTarget-2] != kColorNone)
{
/* previous bit was set, this is white */
colorBuf[bufTarget] = kColorWhite0 + colorShift;
colorBuf[bufTarget+1] = kColorWhite0 + colorShift;
/* make sure the previous bit is in with us */
colorBuf[bufTarget-2] = kColorWhite0 + colorShift;
colorBuf[bufTarget-1] = kColorWhite0 + colorShift;
} else {
/* previous bit was zero, this is color */
if (idx & 0x01) {
colorBuf[bufTarget] = kColorGreen + colorShift;
colorBuf[bufTarget+1] = kColorGreen + colorShift;
} else {
colorBuf[bufTarget] = kColorPurple + colorShift;
colorBuf[bufTarget+1] = kColorPurple + colorShift;
}
/*
* Do we have a run of the same color? If so, smooth
* the color out. Note that white blends smoothly
* with everything.
*/
if (colorBuf[bufTarget-4] == colorBuf[bufTarget] ||
colorBuf[bufTarget-4] == kColorWhite0 ||
colorBuf[bufTarget-4] == kColorWhite1)
{
/* back-fill previous gap with color */
ASSERT(colorBuf[bufTarget-2] == kColorBlack0 ||
colorBuf[bufTarget-2] == kColorBlack1);
colorBuf[bufTarget-2] = colorBuf[bufTarget];
colorBuf[bufTarget-1] = colorBuf[bufTarget];
}
}
}
} /*for boolean pixels*/
} /*!black&white*/
/* convert colors to 4-bit bitmap pixels */
/* (NOTE: should advance by GetPitch(), not assume it's equal to width) */
#define SetPix(x, y, twoval) \
outBuf[((kOutputHeight-1) - (y)) * (kOutputWidth/2) + (x)] = twoval
uint8_t pix4;
for (int pix = 0; pix < kPixelsPerLine; pix++) {
int bufPosn = kLeadIn + pix * 2;
ASSERT(colorBuf[bufPosn] < kNumColors);
ASSERT(colorBuf[bufPosn+1] < kNumColors);
pix4 = colorBuf[bufPosn] << 4 | colorBuf[bufPosn+1];
SetPix(pix, line*2, pix4);
SetPix(pix, line*2+1, pix4);
//SetPix(pix*2, line*2, colorBuf[bufPosn]);
//SetPix(pix*2, line*2+1, colorBuf[bufPosn]);
//SetPix(pix*2+1, line*2, colorBuf[bufPosn+1]);
//SetPix(pix*2+1, line*2+1, colorBuf[bufPosn+1]);
}
} /*for each line*/
#undef SetPix
bail:
return pDib;
}