Fixes #44 - Implement the Disk ][ Controller

This commit is contained in:
Stefan Arentz 2016-11-29 21:51:27 -05:00
parent 5a445f1d9b
commit aa66588a47
6 changed files with 594 additions and 2 deletions

View File

@ -21,11 +21,11 @@
# SOFTWARE.
CC=cc
CFLAGS=-std=c11 -O3 -Wpedantic -Wall -Wshadow -Werror -Wshadow -Wno-gnu-binary-literal -g
CFLAGS=-std=c11 -O0 -Wpedantic -Wall -Wshadow -Werror -Wshadow -Wno-gnu-binary-literal -g
LDFLAGS=-g -L/usr/local/lib
EWM_EXECUTABLE=ewm
EWM_SOURCES=cpu.c ins.c pia.c mem.c ewm.c fmt.c a2p.c scr.c
EWM_SOURCES=cpu.c ins.c pia.c mem.c ewm.c fmt.c a2p.c scr.c dsk.c
EWM_OBJECTS=$(EWM_SOURCES:.c=.o)
EWM_LIBS=-lcurses -lSDL2 -lSDL2_ttf

7
a2p.c
View File

@ -26,6 +26,7 @@
#include "cpu.h"
#include "mem.h"
#include "dsk.h"
#include "a2p.h"
#define EWM_A2P_SS_KBD 0xc000
@ -108,9 +109,15 @@ void a2p_init(struct a2p_t *a2p, struct cpu_t *cpu) {
a2p->rom = cpu_add_rom_file(cpu, 0xd000, "roms/a2p.rom");
a2p->iom = cpu_add_iom(cpu, 0xc000, 0xc0ff, a2p, a2p_iom_read, a2p_iom_write);
a2p->dsk = ewm_dsk_create(cpu);
a2p->screen1_data = malloc(1 * 1024);
a2p->screen1 = cpu_add_iom(cpu, 0x0400, 0x07ff, a2p, a2p_screen1_read, a2p_screen1_write);
a2p->screen2_data = malloc(1 * 1024);
a2p->screen2 = cpu_add_iom(cpu, 0x0800, 0x0bff, a2p, a2p_screen2_read, a2p_screen2_write);
}
int a2p_load_disk(struct a2p_t *a2p, int drive, char *path) {
return ewm_dsk_set_disk_file(a2p->dsk, drive, false, path);
}

5
a2p.h
View File

@ -23,12 +23,16 @@
#ifndef EWM_A2P_H
#define EWM_A2P_H
#include <stdint.h>
struct mem_t;
struct ewm_dsk_t;
struct a2p_t {
struct mem_t *ram;
struct mem_t *rom;
struct mem_t *iom;
struct ewm_dsk_t *dsk;
struct mem_t *screen1;
uint8_t *screen1_data;
@ -44,5 +48,6 @@ struct a2p_t {
};
void a2p_init(struct a2p_t *a2p, struct cpu_t *cpu);
int a2p_load_disk(struct a2p_t *a2p, int drive, char *path);
#endif

479
dsk.c Normal file
View File

@ -0,0 +1,479 @@
// The MIT License (MIT)
//
// Copyright (c) 2015 Stefan Arentz - http://github.com/st3fan/ewm
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <assert.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include "mem.h"
#include "cpu.h"
#include "dsk.h"
//
// This implements a 16-sector Disk ][ controller with two drives
// attached. It is currently fixed to slot 6, which is pretty
// normal. That will be changed at a later stage when we introduce
// slots and cards in a more generic way.
//
// Most of this code is based on Beneath Apple DOS and another open
// source emulator at https://github.com/whscullin/apple2js
//
// Private
#define EWM_DISKII_PHASE0OFF 0xc0e0
#define EWM_DISKII_PHASE0ON 0xc0e1
#define EWM_DISKII_PHASE1OFF 0xc0e2
#define EWM_DISKII_PHASE1ON 0xc0e3
#define EWM_DISKII_PHASE2OFF 0xc0e4
#define EWM_DISKII_PHASE2ON 0xc0e5
#define EWM_DISKII_PHASE3OFF 0xc0e6
#define EWM_DISKII_PHASE3ON 0xc0e7
#define EWM_DISKII_DRIVEOFF 0xc0e8
#define EWM_DISKII_DRIVEON 0xc0e9
#define EWM_DISKII_DRIVE1 0xc0ea
#define EWM_DISKII_DRIVE2 0xc0eb
#define EWM_DISKII_READ 0xc0ec
#define EWM_DISKII_WRITE 0xc0ed
#define EWM_DISKII_READMODE 0xc0ee
#define EWM_DISKII_WRITEMODE 0xc0ef
#define EWM_DSK_MODE_READ 0
#define EWM_DSK_MODE_WRITE 1
static uint8_t dsk_rom[] = {
0xa2,0x20,0xa0,0x00,0xa2,0x03,0x86,0x3c,0x8a,0x0a,0x24,0x3c,0xf0,0x10,0x05,0x3c,
0x49,0xff,0x29,0x7e,0xb0,0x08,0x4a,0xd0,0xfb,0x98,0x9d,0x56,0x03,0xc8,0xe8,0x10,
0xe5,0x20,0x58,0xff,0xba,0xbd,0x00,0x01,0x0a,0x0a,0x0a,0x0a,0x85,0x2b,0xaa,0xbd,
0x8e,0xc0,0xbd,0x8c,0xc0,0xbd,0x8a,0xc0,0xbd,0x89,0xc0,0xa0,0x50,0xbd,0x80,0xc0,
0x98,0x29,0x03,0x0a,0x05,0x2b,0xaa,0xbd,0x81,0xc0,0xa9,0x56,0x20,0xa8,0xfc,0x88,
0x10,0xeb,0x85,0x26,0x85,0x3d,0x85,0x41,0xa9,0x08,0x85,0x27,0x18,0x08,0xbd,0x8c,
0xc0,0x10,0xfb,0x49,0xd5,0xd0,0xf7,0xbd,0x8c,0xc0,0x10,0xfb,0xc9,0xaa,0xd0,0xf3,
0xea,0xbd,0x8c,0xc0,0x10,0xfb,0xc9,0x96,0xf0,0x09,0x28,0x90,0xdf,0x49,0xad,0xf0,
0x25,0xd0,0xd9,0xa0,0x03,0x85,0x40,0xbd,0x8c,0xc0,0x10,0xfb,0x2a,0x85,0x3c,0xbd,
0x8c,0xc0,0x10,0xfb,0x25,0x3c,0x88,0xd0,0xec,0x28,0xc5,0x3d,0xd0,0xbe,0xa5,0x40,
0xc5,0x41,0xd0,0xb8,0xb0,0xb7,0xa0,0x56,0x84,0x3c,0xbc,0x8c,0xc0,0x10,0xfb,0x59,
0xd6,0x02,0xa4,0x3c,0x88,0x99,0x00,0x03,0xd0,0xee,0x84,0x3c,0xbc,0x8c,0xc0,0x10,
0xfb,0x59,0xd6,0x02,0xa4,0x3c,0x91,0x26,0xc8,0xd0,0xef,0xbc,0x8c,0xc0,0x10,0xfb,
0x59,0xd6,0x02,0xd0,0x87,0xa0,0x00,0xa2,0x56,0xca,0x30,0xfb,0xb1,0x26,0x5e,0x00,
0x03,0x2a,0x5e,0x00,0x03,0x2a,0x91,0x26,0xc8,0xd0,0xee,0xe6,0x27,0xe6,0x3d,0xa5,
0x3d,0xcd,0x00,0x08,0xa6,0x2b,0x90,0xdb,0x4c,0x01,0x08,0x00,0x00,0x00,0x00,0x00
};
// See Beneath Apple DOS 3-21
static uint8_t dsk_wr_table[] = {
0x96, 0x97, 0x9a, 0x9b, 0x9d, 0x9e, 0x9f, 0xa6,
0xa7, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb2, 0xb3,
0xb4, 0xb5, 0xb6, 0xb7, 0xb9, 0xba, 0xbb, 0xbc,
0xbd, 0xbe, 0xbf, 0xcb, 0xcd, 0xce, 0xcf, 0xd3,
0xd6, 0xd7, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde,
0xdf, 0xe5, 0xe6, 0xe7, 0xe9, 0xea, 0xeb, 0xec,
0xed, 0xee, 0xef, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6,
0xf7, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};
static int dsk_phase_delta[4][4] = {
{ 0, 1, 2,-1},
{-1, 0, 1, 2},
{-2,-1, 0, 1},
{ 1,-2,-1, 0}
};
static struct ewm_dsk_drive_t *dsk_drive(struct ewm_dsk_t *dsk) {
return &dsk->drives[dsk->drive];
}
static void dsk_phase(struct ewm_dsk_t *dsk, int phase, bool on) {
if (on) {
//printf("[DSK] Disk #%d phase %d on\n", dsk->drive, phase);
struct ewm_dsk_drive_t *drive = dsk_drive(dsk);
drive->track += dsk_phase_delta[drive->phase][phase];
drive->phase = phase;
if (drive->track > EWM_DSK_TRACKS * 2 - 1) {
drive->track = EWM_DSK_TRACKS * 2 - 1;
}
if (drive->track < 0) {
drive->track = 0;
}
//printf("[DSK] Disk #%d track = %d\n", dsk->drive, drive->track);
} else {
//printf("[DSK] Disk #%d phase %d off\n", dsk->drive, phase);
}
}
static void dsk_write_next(struct ewm_dsk_t *dsk, uint8_t v) {
if (dsk->mode == EWM_DSK_MODE_WRITE) {
dsk->latch = v;
}
}
static uint8_t dsk_read_next(struct ewm_dsk_t *dsk) {
uint8_t result = 0;
if (dsk->skip || dsk->mode == EWM_DSK_MODE_WRITE) {
struct ewm_dsk_drive_t *drive = dsk_drive(dsk);
struct ewm_dsk_track_t track = drive->tracks[drive->track >> 1]; // TODO Because drv->track actually goes to 70?
//printf("Reading track.data[%d] (track.length = %zu): %.2X\n", drive->head, track.length, track.data[drive->head]);
if (drive->head >= track.length) {
drive->head = 0;
}
if (dsk->mode == EWM_DSK_MODE_WRITE) {
track.data[drive->head] = dsk->latch; // TODO Implement write support
} else {
result = track.data[drive->head];
}
drive->head += 1;
}
dsk->skip = (++dsk->skip % 4); // TODO Why is this done? To simulate a slow disk?
return result;
}
static uint8_t dsk_read(struct cpu_t *cpu, struct mem_t *mem, uint16_t addr) {
//printf("[DSK] dsk_read at $%.4X\n", addr);
struct ewm_dsk_t *dsk = (struct ewm_dsk_t*) mem->obj;
uint8_t result = 0x00;
switch (addr) {
case EWM_DISKII_PHASE0OFF:
dsk_phase(dsk, 0, false);
break;
case EWM_DISKII_PHASE0ON:
dsk_phase(dsk, 0, true);
break;
case EWM_DISKII_PHASE1OFF:
dsk_phase(dsk, 1, false);
break;
case EWM_DISKII_PHASE1ON:
dsk_phase(dsk, 1, true);
break;
case EWM_DISKII_PHASE2OFF:
dsk_phase(dsk, 2, false);
break;
case EWM_DISKII_PHASE2ON:
dsk_phase(dsk, 2, true);
break;
case EWM_DISKII_PHASE3OFF:
dsk_phase(dsk, 3, false);
break;
case EWM_DISKII_PHASE3ON:
dsk_phase(dsk, 3, true);
break;
case EWM_DISKII_DRIVEOFF:
//printf("[DSK] Drive #%d off\n", dsk->drive);
dsk->on = false;
// TODO Drive light
break;
case EWM_DISKII_DRIVEON:
//printf("[DSK] Drive #%d on\n", dsk->drive);
dsk->on = true;
// TODO Drive light
break;
case EWM_DISKII_DRIVE1:
//printf("[DSK] Select drive #%d\n", dsk->drive);
dsk->drive = EWM_DSK_DRIVE1;
// TODO Drive light
break;
case EWM_DISKII_DRIVE2:
//printf("[DSK] Select drive #%d\n", dsk->drive);
dsk->drive = EWM_DSK_DRIVE2;
// TODO Drive light
break;
case EWM_DISKII_READMODE:
dsk->mode = EWM_DSK_MODE_READ;
if (dsk_drive(dsk)->loaded) {
result = (dsk_read_next(dsk) & 0x7f) | (dsk_drive(dsk)->readonly ? 0x80 : 0x00);
}
break;
case EWM_DISKII_WRITEMODE:
dsk->mode = EWM_DSK_MODE_WRITE;
break;
case EWM_DISKII_READ:
if (dsk_drive(dsk)->loaded) {
result = dsk_read_next(dsk);
}
break;
case EWM_DISKII_WRITE:
// Called by code, but doesn't do anything?
break;
default:
fprintf(stderr, "[DSK] Got an unhandled read from $%.4X\n", addr);
break;
}
return result;
}
static void dsk_write(struct cpu_t *cpu, struct mem_t *mem, uint16_t addr, uint8_t b) {
//printf("[DSK] dsk_write at $%.4X\n", addr);
// TODO It is entirely possible that we need to handle to the exact same soft switches as in read
struct ewm_dsk_t *dsk = (struct ewm_dsk_t*) mem->obj;
switch (addr) {
case EWM_DISKII_WRITE:
dsk_write_next(dsk, b);
break;
case EWM_DISKII_WRITEMODE:
dsk->mode = EWM_DSK_MODE_WRITE;
break;
default:
fprintf(stderr, "[DSK] Got an unhandled write to $%.4X\n", addr);
break;
}
}
static int dsk_native_track_length(int track_idx) {
int length = 0;
for (int sector_idx = 0; sector_idx < EWM_DSK_SECTORS; sector_idx++) {
// Gap 1
if (sector_idx == 0) {
length += 0x80;
} else {
if (track_idx == 0) {
length += 0x28;
} else {
length += 0x26;
}
}
// Address field
length += 14;
// Gap 2
length += 5;
// Data field
length += 3 + 342 + 1 + 3;
// Gap 3
length += 1;
}
return length;
}
static uint8_t dsk_fourxfour_hi(uint8_t v) {
return ((v & 0b10101010) >> 1) | 0b10101010;
}
static uint8_t dsk_fourxfour_lo(uint8_t v) {
return (v & 0b01010101) | 0b10101010;
}
static uint8_t dsk_sector_ordering[EWM_DSK_SECTORS] = {
0x0,0xD,0xB,0x9,0x7,0x5,0x3,0x1,0xE,0xC,0xA,0x8,0x6,0x4,0x2,0xF
};
static uint8_t *dsk_convert_sector(struct ewm_dsk_t *dsk, struct ewm_dsk_drive_t *drive, int track_idx, int sector_idx, uint8_t *src, uint8_t *dst) {
// Gap 1
if (sector_idx == 0) {
for (int i = 0; i < 0x80; i++) {
*dst++ = 0xff;
}
} else {
if (track_idx == 0) {
for (int i = 0; i < 0x28; i++) {
*dst++ = 0xff;
}
} else {
for (int i = 0; i < 0x26; i++) {
*dst++ = 0xff;
}
}
}
// Address Field
uint8_t checksum = drive->volume ^ track_idx ^ sector_idx;
*dst++ = 0xd5;
*dst++ = 0xaa;
*dst++ = 0x96;
*dst++ = dsk_fourxfour_hi(drive->volume);
*dst++ = dsk_fourxfour_lo(drive->volume);
*dst++ = dsk_fourxfour_hi(track_idx);
*dst++ = dsk_fourxfour_lo(track_idx);
*dst++ = dsk_fourxfour_hi(sector_idx);
*dst++ = dsk_fourxfour_lo(sector_idx);
*dst++ = dsk_fourxfour_hi(checksum);
*dst++ = dsk_fourxfour_lo(checksum);
*dst++ = 0xde;
*dst++ = 0xaa;
*dst++ = 0xeb;
// Gap 2
for (int i = 0; i < 5; i++) {
*dst++ = 0xff;
}
// Data Field
*dst++ = 0xd5;
*dst++ = 0xaa;
*dst++ = 0xad;
uint8_t nibbles[0x156];
uint8_t ptr2 = 0;
uint8_t ptr6 = 0x56;
for (int i = 0; i < 0x156; i++) {
nibbles[i] = 0;
}
int idx2 = 0x55;
for (int idx6 = 0x101; idx6 >= 0; idx6--) {
uint8_t val6 = src[idx6 % 0x100]; // TODO % 0x100 makes no sense on an uint8_t
uint8_t val2 = nibbles[ptr2 + idx2];
val2 = (val2 << 1) | (val6 & 1);
val6 >>= 1;
val2 = (val2 << 1) | (val6 & 1);
val6 >>= 1;
nibbles[ptr6 + idx6] = val6;
nibbles[ptr2 + idx2] = val2;
if (--idx2 < 0) {
idx2 = 0x55;
}
}
uint8_t last = 0;
for (int i = 0; i < 0x156; i++) {
uint8_t val = nibbles[i];
*dst++ = dsk_wr_table[last ^ val];
last = val;
}
*dst++ = dsk_wr_table[last];
*dst++ = 0xde;
*dst++ = 0xaa;
*dst++ = 0xeb;
// Gap 3
*dst++ = 0xff;
return dst;
}
static struct ewm_dsk_track_t dsk_convert_track(struct ewm_dsk_t *disk, struct ewm_dsk_drive_t *drive, uint8_t *data, int track_idx) {
struct ewm_dsk_track_t track;
track.length = dsk_native_track_length(track_idx);
track.data = malloc(track.length);
uint8_t *dst = track.data;
for (int sector_idx = 0; sector_idx < EWM_DSK_SECTORS; sector_idx++) {
int _s = 15 - sector_idx;
uint8_t *src = data
+ (track_idx * EWM_DSK_SECTORS * EWM_DSK_SECTOR_SIZE) // Start of track_idx
+ (_s * EWM_DSK_SECTOR_SIZE); // Start of sector_idx
dst = dsk_convert_sector(disk, drive, track_idx, dsk_sector_ordering[_s], src, dst);
}
return track;
}
// Disk file parsing
// Public
int ewm_dsk_init(struct ewm_dsk_t *dsk, struct cpu_t *cpu) {
memset(dsk, 0x00, sizeof(struct ewm_dsk_t));
dsk->rom = cpu_add_rom_data(cpu, 0xc600, 0xc6ff, dsk_rom);
dsk->iom = cpu_add_iom(cpu, 0xc0e0, 0xc0ef, dsk, dsk_read, dsk_write);
return 0;
}
struct ewm_dsk_t *ewm_dsk_create(struct cpu_t *cpu) {
struct ewm_dsk_t *dsk = (struct ewm_dsk_t*) malloc(sizeof(struct ewm_dsk_t));
ewm_dsk_init(dsk, cpu);
return dsk;
}
int ewm_dsk_set_disk_data(struct ewm_dsk_t *dsk, uint8_t index, bool readonly, void *data, size_t length) {
assert(index < 2);
assert(length == (EWM_DSK_TRACKS * EWM_DSK_SECTORS * EWM_DSK_SECTOR_SIZE));
struct ewm_dsk_drive_t *drive = &dsk->drives[index];
for (int t = 0; t < EWM_DSK_TRACKS; t++) {
if (drive->tracks[t].data != NULL) {
free(drive->tracks[t].data);
drive->tracks[t].data = NULL;
drive->tracks[t].length = 0;
}
}
drive->loaded = true;
drive->volume = 254; // TODO Find Volume from disk image. Or does this not matter? I guess this gets lost in .dsk files.
drive->track = 0;
drive->head = 0;
drive->phase = 0;
drive->readonly = readonly;
drive->dirty = false;
for (int t = 0; t < EWM_DSK_TRACKS; t++) {
drive->tracks[t] = dsk_convert_track(dsk, drive, data, t);
}
return 0;
}
int ewm_dsk_set_disk_file(struct ewm_dsk_t *dsk, uint8_t drive, bool readonly, char *path) {
int fd = open(path, O_RDONLY);
if (fd == -1) {
return -1;
}
struct stat file_info;
if (fstat(fd, &file_info) == -1) {
close(fd);
return -1;
}
if (file_info.st_size != (EWM_DSK_TRACKS * EWM_DSK_SECTORS * 256)) {
close(fd);
return -1;
}
char *data = calloc(file_info.st_size, 1);
if (read(fd, data, file_info.st_size) != file_info.st_size) {
close(fd);
return -1;
}
close(fd);
int result = ewm_dsk_set_disk_data(dsk, drive, readonly, data, file_info.st_size);
free(data);
return result;
}

70
dsk.h Normal file
View File

@ -0,0 +1,70 @@
// The MIT License (MIT)
//
// Copyright (c) 2015 Stefan Arentz - http://github.com/st3fan/ewm
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef EWM_DSK_H
#define EWM_DSK_H
#include <stdbool.h>
#include <stdint.h>
struct cpu_t;
struct mem_t;
#define EWM_DSK_DRIVE1 0
#define EWM_DSK_DRIVE2 1
#define EWM_DSK_TRACKS 35
#define EWM_DSK_SECTORS 16
#define EWM_DSK_SECTOR_SIZE 256
struct ewm_dsk_track_t {
size_t length;
uint8_t *data;
};
struct ewm_dsk_drive_t {
bool loaded;
uint8_t volume;
int track, head, phase;
bool readonly;
bool dirty;
struct ewm_dsk_track_t tracks[EWM_DSK_TRACKS];
};
struct ewm_dsk_t {
struct mem_t *rom;
struct mem_t *iom;
bool on;
int active_drive;
int mode;
uint8_t latch;
struct ewm_dsk_drive_t drives[2];
uint8_t drive; // 0 based
int skip;
};
int ewm_dsk_init(struct ewm_dsk_t *dsk, struct cpu_t *cpu);
struct ewm_dsk_t *ewm_dsk_create(struct cpu_t *cpu);
int ewm_dsk_set_disk_data(struct ewm_dsk_t *dsk, uint8_t index, bool readonly, void *data, size_t length);
int ewm_dsk_set_disk_file(struct ewm_dsk_t *dsk, uint8_t index, bool readonly, char *path);
#endif

31
ewm.c
View File

@ -33,6 +33,7 @@
#include "a2p.h"
#include "scr.h"
#include "dsk.h"
// Apple 1 / 6502 / 8K RAM / WOZ Monitor
@ -130,6 +131,8 @@ static struct option options[] = {
{ "strict", no_argument, NULL, 's' },
{ "trace", optional_argument, NULL, 't' },
{ "memory", required_argument, NULL, 'x' },
{ "drive1", required_argument, NULL, 'a' },
{ "drive2", required_argument, NULL, 'b' },
{ NULL, 0, NULL, 0 }
};
@ -147,6 +150,8 @@ int main(int argc, char **argv) {
bool strict = false;
char *trace_path = NULL;
struct ewm_memory_t *memory;
char *drive1 = NULL;
char *drive2 = NULL;
char ch;
while ((ch = getopt_long(argc, argv, "m:", options, NULL)) != -1) {
@ -172,6 +177,12 @@ int main(int argc, char **argv) {
}
break;
}
case 'a':
drive1 = optarg;
break;
case 'b':
drive2 = optarg;
break;
}
}
@ -191,6 +202,26 @@ int main(int argc, char **argv) {
machine->setup(&cpu);
// TODO This really does not belong here. it is probably better to
// pass arguments to setup_apple2plus so that it can handle its
// specific arguments like --drive1/drive2 and probably some more
// in the future.
if (a2p != NULL) {
if (drive1 != NULL) {
if (a2p_load_disk(a2p, EWM_DSK_DRIVE1, drive1) != 0) {
fprintf(stderr, "[A2P] Cannot load Drive 1 with %s\n", drive1);
exit(1);
}
}
if (drive2 != NULL) {
if (a2p_load_disk(a2p, EWM_DSK_DRIVE2, drive2) != 0) {
fprintf(stderr, "[A2P] Cannot load Drive 2 with %s\n", drive2);
exit(1);
}
}
}
struct ewm_memory_t *m = memory;
while (m != NULL) {
fprintf(stderr, "[EWM] Adding %s $%.4X %s\n", m->type == EWM_MEMORY_TYPE_RAM ? "RAM" : "ROM", m->address, m->path);