izapple2/memoryManager.go
2019-11-20 22:43:37 +01:00

269 lines
7.6 KiB
Go

package apple2
import (
"encoding/binary"
"io"
)
// See https://fabiensanglard.net/fd_proxy/prince_of_persia/Inside%20the%20Apple%20IIe.pdf
// See https://i.stack.imgur.com/yn21s.gif
type memoryManager struct {
apple2 *Apple2
// Main RAM area: 0x0000 to 0xbfff
physicalMainRAM *memoryRange // 0x0000 to 0xbfff, Up to 48 Kb
physicalMainRAMAlt *memoryRange // 0x0000 to 0xbfff, Up to 48 Kb. Additional
// Slots area: 0xc000 to 0xcfff
cardsROM [8]memoryHandler //0xcs00 to 0xcsff. 256 bytes for each card
cardsROMExtra [8]memoryHandler // 0xc800 to 0xcfff. 2048 bytes for each card
physicalROMe memoryHandler // 0xc100 to 0xcfff, Zero or 4kb in the Apple2e
// Upper area: 0xd000 to 0xffff
physicalROM [4]memoryHandler // 0xd000 to 0xffff, 12 Kb. Up to four banks
physicalDRAM []memoryHandler // 0xd000 to 0xdfff, 4KB. Up to 8 banks.
physicalDAltRAM []memoryHandler // 0xd000 to 0xdfff, 4KB. Up to 8 banks.
physicalEFRAM []memoryHandler // 0xe000 to 0xffff, 8KB. Up to 8 banks.
// Configuration switches, Language cards
lcSelectedBlock uint8 // Language card block selected. Usually, allways 0. But Saturn has 8
lcActiveRead bool // Upper RAM active for read
lcActiveWrite bool // Upper RAM active for read
lcAltBank bool // Alternate
// Configuration switches, Apple //e
altZeroPage bool // Use extra RAM from 0x0000 to 0x01ff. And additional language card block
altMainRAMActiveRead bool // Use extra RAM from 0x0200 to 0xbfff for read
altMainRAMActiveWrite bool // Use extra RAM from 0x0200 to 0xbfff for write
store80Active bool // Special pagination for text and graphics areas
slotC3ROMActive bool // Apple2e slot 3 ROM shadow
intCxROMActive bool // Apple2e slots internal ROM shadow
activeSlot uint8 // Active slot owner of 0xc800 to 0xcfff
// Configuration switches, Base64A
romPage uint8 // Active ROM page
}
const (
ioC8Off uint16 = 0xcfff
addressLimitZero uint16 = 0x01ff
addressStartText uint16 = 0x0400
addressLimitText uint16 = 0x07ff
addressStartHgr uint16 = 0x2000
addressLimitHgr uint16 = 0x3fff
addressLimitMainRAM uint16 = 0xbfff
addressLimitIO uint16 = 0xc0ff
addressLimitSlots uint16 = 0xc7ff
addressLimitSlotsExtra uint16 = 0xcfff
addressLimitDArea uint16 = 0xdfff
)
type memoryHandler interface {
peek(uint16) uint8
poke(uint16, uint8)
}
func newMemoryManager(a *Apple2) *memoryManager {
var mmu memoryManager
mmu.apple2 = a
mmu.physicalMainRAM = newMemoryRange(0, make([]uint8, 0xc000))
return &mmu
}
func (mmu *memoryManager) accessCArea(address uint16) memoryHandler {
if mmu.intCxROMActive {
return mmu.physicalROMe
}
// First slot area
if address <= addressLimitSlots {
slot := uint8((address >> 8) & 0x07)
mmu.activeSlot = slot
if !mmu.slotC3ROMActive && (slot == 3) {
return mmu.physicalROMe
}
return mmu.cardsROM[slot]
}
// Extra slot area
if address == ioC8Off {
// Reset extra slot area owner
mmu.activeSlot = 0
}
if !mmu.slotC3ROMActive && (mmu.activeSlot == 3) {
return mmu.physicalROMe
}
return mmu.cardsROMExtra[mmu.activeSlot]
}
func (mmu *memoryManager) accessLCArea(address uint16) memoryHandler {
block := mmu.lcSelectedBlock
if mmu.altZeroPage {
block = 1
}
if address <= addressLimitDArea {
if mmu.lcAltBank {
return mmu.physicalDAltRAM[block]
}
return mmu.physicalDRAM[block]
}
return mmu.physicalEFRAM[block]
}
func (mmu *memoryManager) getPhysicalMainRAM(alt bool) *memoryRange {
if alt {
return mmu.physicalMainRAMAlt
}
return mmu.physicalMainRAM
}
func (mmu *memoryManager) accessRead(address uint16) memoryHandler {
if address <= addressLimitZero {
return mmu.getPhysicalMainRAM(mmu.altZeroPage)
}
if mmu.store80Active && address <= addressLimitHgr {
altPage := mmu.apple2.io.isSoftSwitchActive(ioFlagSecondPage)
if address >= addressStartText && address <= addressLimitText {
return mmu.getPhysicalMainRAM(altPage)
}
hires := mmu.apple2.io.isSoftSwitchActive(ioFlagHiRes)
if hires && address >= addressStartHgr && address <= addressLimitHgr {
return mmu.getPhysicalMainRAM(altPage)
}
}
if address <= addressLimitMainRAM {
return mmu.getPhysicalMainRAM(mmu.altMainRAMActiveRead)
}
if address <= addressLimitIO {
return mmu.apple2.io
}
if address <= addressLimitSlotsExtra {
return mmu.accessCArea(address)
}
if mmu.lcActiveRead {
return mmu.accessLCArea(address)
}
return mmu.physicalROM[mmu.romPage]
}
func (mmu *memoryManager) accessWrite(address uint16) memoryHandler {
if address <= addressLimitZero {
return mmu.getPhysicalMainRAM(mmu.altZeroPage)
}
if address <= addressLimitHgr && mmu.store80Active {
altPage := mmu.apple2.io.isSoftSwitchActive(ioFlagSecondPage)
if address >= addressStartText && address <= addressLimitText {
return mmu.getPhysicalMainRAM(altPage)
}
hires := mmu.apple2.io.isSoftSwitchActive(ioFlagHiRes)
if hires && address >= addressStartHgr && address <= addressLimitHgr {
return mmu.getPhysicalMainRAM(altPage)
}
}
if address <= addressLimitMainRAM {
return mmu.getPhysicalMainRAM(mmu.altMainRAMActiveWrite)
}
if address <= addressLimitIO {
return mmu.apple2.io
}
if address <= addressLimitSlotsExtra {
return mmu.accessCArea(address)
}
if mmu.lcActiveWrite {
return mmu.accessLCArea(address)
}
return mmu.physicalROM[mmu.romPage]
}
// Peek returns the data on the given address
func (mmu *memoryManager) Peek(address uint16) uint8 {
mh := mmu.accessRead(address)
if mh == nil {
//fmt.Printf("Reading void addressing 0x%x\n", address)
return 0xf4 // Or some random number
}
return mh.peek(address)
}
// Poke sets the data at the given address
func (mmu *memoryManager) Poke(address uint16, value uint8) {
mh := mmu.accessWrite(address)
if mh == nil {
//fmt.Printf("Writing to void addressing 0x%x\n", address)
return
}
mh.poke(address, value)
}
// Memory initialization
func (mmu *memoryManager) setCardROM(slot int, mh memoryHandler) {
mmu.cardsROM[slot] = mh
}
func (mmu *memoryManager) setCardROMExtra(slot int, mh memoryHandler) {
mmu.cardsROMExtra[slot] = mh
}
func (mmu *memoryManager) initLanguageRAM(groups int) {
mmu.physicalDRAM = make([]memoryHandler, groups)
mmu.physicalDAltRAM = make([]memoryHandler, groups)
mmu.physicalEFRAM = make([]memoryHandler, groups)
for i := 0; i < groups; i++ {
mmu.physicalDRAM[i] = newMemoryRange(0xd000, make([]uint8, 0x1000))
mmu.physicalDAltRAM[i] = newMemoryRange(0xd000, make([]uint8, 0x1000))
mmu.physicalEFRAM[i] = newMemoryRange(0xe000, make([]uint8, 0x2000))
}
}
func (mmu *memoryManager) InitRAMalt() {
mmu.physicalMainRAMAlt = newMemoryRange(0, make([]uint8, 0xc000))
}
// Memory configuration
func (mmu *memoryManager) setActiveROMPage(page uint8) {
mmu.romPage = page
}
func (mmu *memoryManager) getActiveROMPage() uint8 {
return mmu.romPage
}
func (mmu *memoryManager) setLanguageRAM(readActive bool, writeActive bool, altBank bool) {
mmu.lcActiveRead = readActive
mmu.lcActiveWrite = writeActive
mmu.lcAltBank = altBank
}
func (mmu *memoryManager) setLanguageRAMBlock(block uint8) {
block = block % uint8(len(mmu.physicalDRAM))
mmu.lcSelectedBlock = block
}
// TODO: complete save and load
func (mmu *memoryManager) save(w io.Writer) error {
err := mmu.physicalMainRAM.save(w)
if err != nil {
return err
}
err = binary.Write(w, binary.BigEndian, mmu.activeSlot)
if err != nil {
return err
}
return nil
}
func (mmu *memoryManager) load(r io.Reader) error {
err := mmu.physicalMainRAM.load(r)
if err != nil {
return err
}
err = binary.Read(r, binary.BigEndian, &mmu.activeSlot)
if err != nil {
return err
}
// mmu.activateCardRomExtra(mmu.activeSlot)
return nil
}