linapple-pie/src/Mockingboard.cpp

1628 lines
41 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 1994-1996, Michael O'Brien
Copyright (C) 1999-2001, Oliver Schmidt
Copyright (C) 2002-2005, Tom Charlesworth
Copyright (C) 2006-2007, Tom Charlesworth, Michael Pohoreski
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Description: Mockingboard/Phasor emulation
*
* Author: Copyright (c) 2002-2006, Tom Charlesworth
*/
// History:
//
// v1.12.07.1 (30 Dec 2005)
// - Update 6522 TIMERs after every 6502 opcode, giving more precise IRQs
// - Minimum TIMER freq is now 0x100 cycles
// - Added Phasor support
//
// v1.12.06.1 (16 July 2005)
// - Reworked 6522's ORB -> AY8910 decoder
// - Changed MB output so L=All voices from AY0 & AY2 & R=All voices from AY1 & AY3
// - Added crude support for Votrax speech chip (by using SSI263 phonemes)
//
// v1.12.04.1 (14 Sep 2004)
// - Switch MB output from dual-mono to stereo.
// - Relaxed TIMER1 freq from ~62Hz (period=0x4000) to ~83Hz (period=0x3000).
//
// 25 Apr 2004:
// - Added basic support for the SSI263 speech chip
//
// 15 Mar 2004:
// - Switched to MAME's AY8910 emulation (includes envelope support)
//
// v1.12.03 (11 Jan 2004)
// - For free-running 6522 timer1 IRQ, reload with current ACCESS_TIMER1 value.
// (Fixes Ultima 4/5 playback speed problem.)
//
// v1.12.01 (24 Nov 2002)
// - Shaped the tone waveform more logarithmically
// - Added support for MB ena/dis switch on Config dialog
// - Added log file support
//
// v1.12.00 (17 Nov 2002)
// - Initial version (no AY8910 envelope support)
//
// Notes on Votrax chip (on original Mockingboards):
// From Crimewave (Penguin Software):
// . Init:
// . DDRB = 0xFF
// . PCR = 0xB0
// . IER = 0x90
// . ORB = 0x03 (PAUSE0) or 0x3F (STOP)
// . IRQ:
// . ORB = Phoneme value
// . IRQ last phoneme complete:
// . IER = 0x10
// . ORB = 0x3F (STOP)
//
/* Needs adaptation for SDL and POSIX */
#define LOG_SSI263 0
#define UINT64 unsigned __int64
#include "stdafx.h"
//#pragma hdrstop
//#include <wchar.h>
#include <assert.h>
#include "AY8910.h"
#include "SSI263Phonemes.h"
#define SY6522_DEVICE_A 0
#define SY6522_DEVICE_B 1
#define SLOT4 4
#define SLOT5 5
#define NUM_MB 2
#define NUM_DEVS_PER_MB 2
#define NUM_AY8910 (NUM_MB*NUM_DEVS_PER_MB)
#define NUM_SY6522 NUM_AY8910
#define NUM_VOICES_PER_AY8910 3
#define NUM_VOICES (NUM_AY8910*NUM_VOICES_PER_AY8910)
// Chip offsets from card base.
#define SY6522A_Offset 0x00
#define SY6522B_Offset 0x80
#define SSI263_Offset 0x40
#define Phasor_SY6522A_CS 4
#define Phasor_SY6522B_CS 7
#define Phasor_SY6522A_Offset (1<<Phasor_SY6522A_CS)
#define Phasor_SY6522B_Offset (1<<Phasor_SY6522B_CS)
typedef struct
{
SY6522 sy6522;
BYTE nAY8910Number;
BYTE nAYCurrentRegister;
BYTE nTimerStatus;
SSI263A SpeechChip;
} SY6522_AY8910;
// IFR & IER:
#define IxR_PERIPHERAL (1<<1)
#define IxR_VOTRAX (1<<4) // TO DO: Get proper name from 6522 datasheet!
#define IxR_TIMER2 (1<<5)
#define IxR_TIMER1 (1<<6)
// ACR:
#define RUNMODE (1<<6) // 0 = 1-Shot Mode, 1 = Free Running Mode
#define RM_ONESHOT (0<<6)
#define RM_FREERUNNING (1<<6)
// SSI263A registers:
#define SSI_DURPHON 0x00
#define SSI_INFLECT 0x01
#define SSI_RATEINF 0x02
#define SSI_CTTRAMP 0x03
#define SSI_FILFREQ 0x04
// Support 2 MB's, each with 2x SY6522/AY8910 pairs.
static SY6522_AY8910 g_MB[NUM_AY8910];
// Timer vars
static ULONG g_n6522TimerPeriod = 0;
static USHORT g_nMBTimerDevice = 0; // SY6522 device# which is generating timer IRQ
static unsigned __int64 g_uLastCumulativeCycles = 0;
// SSI263 vars:
static USHORT g_nSSI263Device = 0; // SSI263 device# which is generating phoneme-complete IRQ
static int g_nCurrentActivePhoneme = -1;
static bool g_bStopPhoneme = false;
static bool g_bVotraxPhoneme = false;
// sample rate defined in Common.h
//static const DWORD SAMPLE_RATE = 44100; // Use a base freq so that DirectX (or sound h/w) doesn't have to up/down-sample
static short* ppAYVoiceBuffer[NUM_VOICES] = {0};
static unsigned __int64 g_nMB_InActiveCycleCount = 0;
static bool g_bMB_RegAccessedFlag = false;
static bool g_bMB_Active = true;
static HANDLE g_hThread = NULL;
static bool g_bMBAvailable = false;
//
static eSOUNDCARDTYPE g_SoundcardType = SC_MOCKINGBOARD; // Mockingboard enable (dialog var)
static bool g_bPhasorEnable = false;
static BYTE g_nPhasorMode = 0; // 0=Mockingboard emulation, 1=Phasor native
//-------------------------------------
static const unsigned short g_nMB_NumChannels = 2;
static const DWORD g_dwDSBufferSize = 16 * 1024 * sizeof(short) * g_nMB_NumChannels;
static const SHORT nWaveDataMin = (SHORT)0x8000;
static const SHORT nWaveDataMax = (SHORT)0x7FFF;
static short g_nMixBuffer[g_dwDSBufferSize / sizeof(short)];
// do not have voices anymore??? --bb ^_^ 0_0
//static VOICE MockingboardVoice = {0};
//static VOICE SSI263Voice[64] = {0};
static const int g_nNumEvents = 2;
static HANDLE g_hSSI263Event[g_nNumEvents] = {NULL}; // 1: Phoneme finished playing, 2: Exit thread
static DWORD g_dwMaxPhonemeLen = 0;
// When 6522 IRQ is *not* active use 60Hz update freq for MB voices
static const double g_f6522TimerPeriod_NoIRQ = CLK_6502 / 60.0; // Constant whatever the CLK is set to
//---------------------------------------------------------------------------
// External global vars:
bool g_bMBTimerIrqActive = false;
UINT32 g_uTimer1IrqCount = 0; // DEBUG
//---------------------------------------------------------------------------
// Forward refs:
static DWORD SSI263Thread(LPVOID);
static void Votrax_Write(BYTE nDevice, BYTE nValue);
//---------------------------------------------------------------------------
static void StartTimer(SY6522_AY8910* pMB)
{
if((pMB->nAY8910Number & 1) != SY6522_DEVICE_A)
return;
if((pMB->sy6522.IER & IxR_TIMER1) == 0x00)
return;
USHORT nPeriod = pMB->sy6522.TIMER1_LATCH.w;
if(nPeriod <= 0xff) // Timer1L value has been written (but TIMER1H hasn't)
return;
pMB->nTimerStatus = 1;
// 6522 CLK runs at same speed as 6502 CLK
g_n6522TimerPeriod = nPeriod;
g_bMBTimerIrqActive = true;
g_nMBTimerDevice = pMB->nAY8910Number;
}
//-----------------------------------------------------------------------------
static void StopTimer(SY6522_AY8910* pMB)
{
pMB->nTimerStatus = 0;
g_bMBTimerIrqActive = false;
g_nMBTimerDevice = 0;
}
//-----------------------------------------------------------------------------
static void ResetSY6522(SY6522_AY8910* pMB)
{
memset(&pMB->sy6522,0,sizeof(SY6522));
if(pMB->nTimerStatus)
StopTimer(pMB);
pMB->nAYCurrentRegister = 0;
}
//-----------------------------------------------------------------------------
static void AY8910_Write(BYTE nDevice, BYTE nReg, BYTE nValue, BYTE nAYDevice)
{
SY6522_AY8910* pMB = &g_MB[nDevice];
if((nValue & 4) == 0)
{
// RESET: Reset AY8910 only
AY8910_reset(nDevice+2*nAYDevice);
}
else
{
// Determine the AY8910 inputs
int nBDIR = (nValue & 2) ? 1 : 0;
const int nBC2 = 1; // Hardwired to +5V
int nBC1 = nValue & 1;
int nAYFunc = (nBDIR<<2) | (nBC2<<1) | nBC1;
enum {AY_NOP0, AY_NOP1, AY_INACTIVE, AY_READ, AY_NOP4, AY_NOP5, AY_WRITE, AY_LATCH};
switch(nAYFunc)
{
case AY_INACTIVE: // 4: INACTIVE
break;
case AY_READ: // 5: READ FROM PSG (need to set DDRA to input)
break;
case AY_WRITE: // 6: WRITE TO PSG
_AYWriteReg(nDevice+2*nAYDevice, pMB->nAYCurrentRegister, pMB->sy6522.ORA);
break;
case AY_LATCH: // 7: LATCH ADDRESS
if(pMB->sy6522.ORA <= 0x0F)
pMB->nAYCurrentRegister = pMB->sy6522.ORA & 0x0F;
// else Pro-Mockingboard (clone from HK)
break;
}
}
}
static void UpdateIFR(SY6522_AY8910* pMB)
{
pMB->sy6522.IFR &= 0x7F;
if(pMB->sy6522.IFR & pMB->sy6522.IER & 0x7F)
pMB->sy6522.IFR |= 0x80;
// Now update the IRQ signal from all 6522s
// . OR-sum of all active TIMER1, TIMER2 & SPEECH sources (from all 6522s)
UINT bIRQ = 0;
for(UINT i=0; i<NUM_SY6522; i++)
bIRQ |= g_MB[i].sy6522.IFR & 0x80;
// NB. Mockingboard generates IRQ on both 6522s:
// . SSI263's IRQ (A/!R) is routed via the 2nd 6522 (at $Cx80) and must generate a 6502 IRQ (not NMI)
// . SC-01's IRQ (A/!R) is also routed via a (2nd?) 6522
// Phasor's SSI263 appears to be wired directly to the 6502's IRQ (ie. not via a 6522)
// . I assume Phasor's 6522s just generate 6502 IRQs (not NMIs)
if (bIRQ)
{
CpuIrqAssert(IS_6522);
}
else
{
CpuIrqDeassert(IS_6522);
}
}
static void SY6522_Write(BYTE nDevice, BYTE nReg, BYTE nValue)
{
g_bMB_RegAccessedFlag = true;
g_bMB_Active = true;
SY6522_AY8910* pMB = &g_MB[nDevice];
switch (nReg)
{
case 0x00: // ORB
{
nValue &= pMB->sy6522.DDRB;
pMB->sy6522.ORB = nValue;
if( (pMB->sy6522.DDRB == 0xFF) && (pMB->sy6522.PCR == 0xB0) )
{
// Votrax speech data
Votrax_Write(nDevice, nValue);
break;
}
if(g_bPhasorEnable)
{
int nAY_CS = (g_nPhasorMode & 1) ? (~(nValue >> 3) & 3) : 1;
if(nAY_CS & 1)
AY8910_Write(nDevice, nReg, nValue, 0);
if(nAY_CS & 2)
AY8910_Write(nDevice, nReg, nValue, 1);
}
else
{
AY8910_Write(nDevice, nReg, nValue, 0);
}
break;
}
case 0x01: // ORA
pMB->sy6522.ORA = nValue & pMB->sy6522.DDRA;
break;
case 0x02: // DDRB
pMB->sy6522.DDRB = nValue;
break;
case 0x03: // DDRA
pMB->sy6522.DDRA = nValue;
break;
case 0x04: // TIMER1L_COUNTER
case 0x06: // TIMER1L_LATCH
pMB->sy6522.TIMER1_LATCH.l = nValue;
break;
case 0x05: // TIMER1H_COUNTER
/* Initiates timer1 & clears time-out of timer1 */
// Clear Timer Interrupt Flag.
pMB->sy6522.IFR &= ~IxR_TIMER1;
UpdateIFR(pMB);
pMB->sy6522.TIMER1_LATCH.h = nValue;
pMB->sy6522.TIMER1_COUNTER.w = pMB->sy6522.TIMER1_LATCH.w;
StartTimer(pMB);
break;
case 0x07: // TIMER1H_LATCH
// Clear Timer1 Interrupt Flag.
pMB->sy6522.TIMER1_LATCH.h = nValue;
pMB->sy6522.IFR &= ~IxR_TIMER1;
UpdateIFR(pMB);
break;
case 0x08: // TIMER2L
pMB->sy6522.TIMER2_LATCH.l = nValue;
break;
case 0x09: // TIMER2H
// Clear Timer2 Interrupt Flag.
pMB->sy6522.IFR &= ~IxR_TIMER2;
UpdateIFR(pMB);
pMB->sy6522.TIMER2_LATCH.h = nValue;
pMB->sy6522.TIMER2_COUNTER.w = pMB->sy6522.TIMER2_LATCH.w;
break;
case 0x0a: // SERIAL_SHIFT
break;
case 0x0b: // ACR
pMB->sy6522.ACR = nValue;
break;
case 0x0c: // PCR - Used for Speech chip only
pMB->sy6522.PCR = nValue;
break;
case 0x0d: // IFR
// - Clear those bits which are set in the lower 7 bits.
// - Can't clear bit 7 directly.
nValue |= 0x80; // Set high bit
nValue ^= 0x7F; // Make mask
pMB->sy6522.IFR &= nValue;
UpdateIFR(pMB);
break;
case 0x0e: // IER
if(!(nValue & 0x80))
{
// Clear those bits which are set in the lower 7 bits.
nValue ^= 0x7F;
pMB->sy6522.IER &= nValue;
UpdateIFR(pMB);
// Check if timer has been disabled.
if(pMB->sy6522.IER & IxR_TIMER1)
break;
if(pMB->nTimerStatus == 0)
break;
pMB->nTimerStatus = 0;
// Stop timer
StopTimer(pMB);
}
else
{
// Set those bits which are set in the lower 7 bits.
nValue &= 0x7F;
pMB->sy6522.IER |= nValue;
UpdateIFR(pMB);
StartTimer(pMB);
}
break;
case 0x0f: // ORA_NO_HS
break;
}
}
//-----------------------------------------------------------------------------
static BYTE SY6522_Read(BYTE nDevice, BYTE nReg)
{
g_bMB_RegAccessedFlag = true;
g_bMB_Active = true;
SY6522_AY8910* pMB = &g_MB[nDevice];
BYTE nValue = 0x00;
switch (nReg)
{
case 0x00: // ORB
nValue = pMB->sy6522.ORB;
break;
case 0x01: // ORA
nValue = pMB->sy6522.ORA;
break;
case 0x02: // DDRB
nValue = pMB->sy6522.DDRB;
break;
case 0x03: // DDRA
nValue = pMB->sy6522.DDRA;
break;
case 0x04: // TIMER1L_COUNTER
nValue = pMB->sy6522.TIMER1_COUNTER.l;
pMB->sy6522.IFR &= ~IxR_TIMER1; // Also clears Timer1 Interrupt Flag
UpdateIFR(pMB);
break;
case 0x05: // TIMER1H_COUNTER
nValue = pMB->sy6522.TIMER1_COUNTER.h;
break;
case 0x06: // TIMER1L_LATCH
nValue = pMB->sy6522.TIMER1_LATCH.l;
break;
case 0x07: // TIMER1H_LATCH
nValue = pMB->sy6522.TIMER1_LATCH.h;
break;
case 0x08: // TIMER2L
nValue = pMB->sy6522.TIMER2_COUNTER.l;
pMB->sy6522.IFR &= ~IxR_TIMER2; // Also clears Timer2 Interrupt Flag
UpdateIFR(pMB);
break;
case 0x09: // TIMER2H
nValue = pMB->sy6522.TIMER2_COUNTER.h;
break;
case 0x0a: // SERIAL_SHIFT
break;
case 0x0b: // ACR
nValue = pMB->sy6522.ACR;
break;
case 0x0c: // PCR
nValue = pMB->sy6522.PCR;
break;
case 0x0d: // IFR
nValue = pMB->sy6522.IFR;
break;
case 0x0e: // IER
nValue = 0x80;
break;
case 0x0f: // ORA_NO_HS
nValue = pMB->sy6522.ORA;
break;
}
return nValue;
}
//---------------------------------------------------------------------------
static void SSI263_Play(unsigned int nPhoneme);
#if 0
typedef struct
{
BYTE DurationPhonome;
BYTE Inflection; // I10..I3
BYTE RateInflection;
BYTE CtrlArtAmp;
BYTE FilterFreq;
//
BYTE CurrentMode;
} SSI263A;
#endif
//static SSI263A nSpeechChip;
// Duration/Phonome
const BYTE DURATION_MODE_MASK = 0xC0;
const BYTE PHONEME_MASK = 0x3F;
const BYTE MODE_PHONEME_TRANSITIONED_INFLECTION = 0xC0; // IRQ active
const BYTE MODE_PHONEME_IMMEDIATE_INFLECTION = 0x80; // IRQ active
const BYTE MODE_FRAME_IMMEDIATE_INFLECTION = 0x40; // IRQ active
const BYTE MODE_IRQ_DISABLED = 0x00;
// Rate/Inflection
const BYTE RATE_MASK = 0xF0;
const BYTE INFLECTION_MASK_H = 0x08; // I11
const BYTE INFLECTION_MASK_L = 0x07; // I2..I0
// Ctrl/Art/Amp
const BYTE CONTROL_MASK = 0x80;
const BYTE ARTICULATION_MASK = 0x70;
const BYTE AMPLITUDE_MASK = 0x0F;
static BYTE SSI263_Read(BYTE nDevice, BYTE nReg)
{
SY6522_AY8910* pMB = &g_MB[nDevice];
// Regardless of register, just return inverted A/!R in bit7
// . A/!R is low for IRQ
return pMB->SpeechChip.CurrentMode << 7;
}
static void SSI263_Write(BYTE nDevice, BYTE nReg, BYTE nValue)
{
SY6522_AY8910* pMB = &g_MB[nDevice];
switch(nReg)
{
case SSI_DURPHON:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "DUR = 0x%02X, PHON = 0x%02X\n\n", nValue>>6, nValue&PHONEME_MASK);
#endif
// Datasheet is not clear, but a write to DURPHON must clear the IRQ
if(g_bPhasorEnable)
{
CpuIrqDeassert(IS_SPEECH);
}
else
{
pMB->sy6522.IFR &= ~IxR_PERIPHERAL;
UpdateIFR(pMB);
}
pMB->SpeechChip.CurrentMode &= ~1; // Clear SSI263's D7 pin
pMB->SpeechChip.DurationPhonome = nValue;
g_nSSI263Device = nDevice;
// Phoneme output not dependent on CONTROL bit
if(g_bPhasorEnable)
{
if(nValue || (g_nCurrentActivePhoneme<0))
SSI263_Play(nValue & PHONEME_MASK);
}
else
{
SSI263_Play(nValue & PHONEME_MASK);
}
break;
case SSI_INFLECT:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "INF = 0x%02X\n", nValue);
#endif
pMB->SpeechChip.Inflection = nValue;
break;
case SSI_RATEINF:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "RATE = 0x%02X, INF = 0x%02X\n", nValue>>4, nValue&0x0F);
#endif
pMB->SpeechChip.RateInflection = nValue;
break;
case SSI_CTTRAMP:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "CTRL = %d, ART = 0x%02X, AMP=0x%02X\n", nValue>>7, (nValue&ARTICULATION_MASK)>>4, nValue&AMPLITUDE_MASK);
#endif
if((pMB->SpeechChip.CtrlArtAmp & CONTROL_MASK) && !(nValue & CONTROL_MASK)) // H->L
pMB->SpeechChip.CurrentMode = pMB->SpeechChip.DurationPhonome & DURATION_MODE_MASK;
pMB->SpeechChip.CtrlArtAmp = nValue;
break;
case SSI_FILFREQ:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "FFREQ = 0x%02X\n", nValue);
#endif
pMB->SpeechChip.FilterFreq = nValue;
break;
default:
break;
}
}
//-------------------------------------
static BYTE Votrax2SSI263[64] =
{
0x02, // 00: EH3 jackEt -> E1 bEnt
0x0A, // 01: EH2 Enlist -> EH nEst
0x0B, // 02: EH1 hEAvy -> EH1 bElt
0x00, // 03: PA0 no sound -> PA
0x28, // 04: DT buTTer -> T Tart
0x08, // 05: A2 mAde -> A mAde
0x08, // 06: A1 mAde -> A mAde
0x2F, // 07: ZH aZure -> Z Zero
0x0E, // 08: AH2 hOnest -> AH gOt
0x07, // 09: I3 inhibIt -> I sIx
0x07, // 0A: I2 Inhibit -> I sIx
0x07, // 0B: I1 inhIbit -> I sIx
0x37, // 0C: M Mat -> More
0x38, // 0D: N suN -> N NiNe
0x24, // 0E: B Bag -> B Bag
0x33, // 0F: V Van -> V Very
//
0x32, // 10: CH* CHip -> SCH SHip (!)
0x32, // 11: SH SHop -> SCH SHip
0x2F, // 12: Z Zoo -> Z Zero
0x10, // 13: AW1 lAWful -> AW Office
0x39, // 14: NG thiNG -> NG raNG
0x0F, // 15: AH1 fAther -> AH1 fAther
0x13, // 16: OO1 lOOking -> OO lOOk
0x13, // 17: OO bOOK -> OO lOOk
0x20, // 18: L Land -> L Lift
0x29, // 19: K triCK -> Kit
0x25, // 1A: J* juDGe -> D paiD (!)
0x2C, // 1B: H Hello -> HF Heart
0x26, // 1C: G Get -> KV taG
0x34, // 1D: F Fast -> F Four
0x25, // 1E: D paiD -> D paiD
0x30, // 1F: S paSS -> S Same
//
0x08, // 20: A dAY -> A mAde
0x09, // 21: AY dAY -> AI cAre
0x03, // 22: Y1 Yard -> YI Year
0x1B, // 23: UH3 missIOn -> UH3 nUt
0x0E, // 24: AH mOp -> AH gOt
0x27, // 25: P Past -> P Pen
0x11, // 26: O cOld -> O stOre
0x07, // 27: I pIn -> I sIx
0x16, // 28: U mOve -> U tUne
0x05, // 29: Y anY -> AY plEAse
0x28, // 2A: T Tap -> T Tart
0x1D, // 2B: R Red -> R Roof
0x01, // 2C: E mEEt -> E mEEt
0x23, // 2D: W Win -> W Water
0x0C, // 2E: AE dAd -> AE dAd
0x0D, // 2F: AE1 After -> AE1 After
//
0x10, // 30: AW2 sAlty -> AW Office
0x1A, // 31: UH2 About -> UH2 whAt
0x19, // 32: UH1 Uncle -> UH1 lOve
0x18, // 33: UH cUp -> UH wOnder
0x11, // 34: O2 fOr -> O stOre
0x11, // 35: O1 abOArd -> O stOre
0x14, // 36: IU yOU -> IU yOU
0x14, // 37: U1 yOU -> IU yOU
0x35, // 38: THV THe -> THV THere
0x36, // 39: TH THin -> TH wiTH
0x1C, // 3A: ER bIrd -> ER bIrd
0x0A, // 3B: EH gEt -> EH nEst
0x01, // 3C: E1 bE -> E mEEt
0x10, // 3D: AW cAll -> AW Office
0x00, // 3E: PA1 no sound -> PA
0x00, // 3F: STOP no sound -> PA
};
static void Votrax_Write(BYTE nDevice, BYTE nValue)
{
g_bVotraxPhoneme = true;
// !A/R: Acknowledge receipt of phoneme data (signal goes from high to low)
SY6522_AY8910* pMB = &g_MB[nDevice];
pMB->sy6522.IFR &= ~IxR_VOTRAX;
UpdateIFR(pMB);
g_nSSI263Device = nDevice;
SSI263_Play(Votrax2SSI263[nValue & PHONEME_MASK]);
}
//===========================================================================
static void MB_Update()
{
// if(!MockingboardVoice.bActive)
// return;
//
if(!g_bMB_RegAccessedFlag)
{
if(!g_nMB_InActiveCycleCount)
{
g_nMB_InActiveCycleCount = g_nCumulativeCycles;
}
else if(g_nCumulativeCycles - g_nMB_InActiveCycleCount > (unsigned __int64)g_fCurrentCLK6502/10)
{
// After 0.1 sec of Apple time, assume MB is not active
g_bMB_Active = false;
}
}
else
{
g_nMB_InActiveCycleCount = 0;
g_bMB_RegAccessedFlag = false;
g_bMB_Active = true;
}
//
#ifdef MOCKINGBOARD
static DWORD dwByteOffset = (DWORD)-1;
static int nNumSamplesError = 0;
int nNumSamples;
double n6522TimerPeriod = MB_GetFramePeriod();
double nIrqFreq = g_fCurrentCLK6502 / n6522TimerPeriod + 0.5; // Round-up
int nNumSamplesPerPeriod = (int) ((double)SAMPLE_RATE / nIrqFreq); // Eg. For 60Hz this is 735
nNumSamples = nNumSamplesPerPeriod + nNumSamplesError; // Apply correction
if(nNumSamples <= 0)
nNumSamples = 0;
if(nNumSamples > 2*nNumSamplesPerPeriod)
nNumSamples = 2*nNumSamplesPerPeriod;
if(nNumSamples)
for(int nChip=0; nChip<NUM_AY8910; nChip++)
AY8910Update(nChip, &ppAYVoiceBuffer[nChip*NUM_VOICES_PER_AY8910], nNumSamples);
//
// DWORD dwDSLockedBufferSize0, dwDSLockedBufferSize1;
// SHORT *pDSLockedBuffer0, *pDSLockedBuffer1;
// HRESULT hr = MockingboardVoice.lpDSBvoice->GetCurrentPosition(&dwCurrentPlayCursor, &dwCurrentWriteCursor);
// if(FAILED(hr))
// return;
/*
if(dwByteOffset == (DWORD)-1)
{
// First time in this func
dwByteOffset = dwCurrentWriteCursor;
}
else
{
// Check that our offset isn't between Play & Write positions
if(dwCurrentWriteCursor > dwCurrentPlayCursor)
{
// |-----PxxxxxW-----|
if((dwByteOffset > dwCurrentPlayCursor) && (dwByteOffset < dwCurrentWriteCursor))
dwByteOffset = dwCurrentWriteCursor;
}
else
{
// |xxW----------Pxxx|
if((dwByteOffset > dwCurrentPlayCursor) || (dwByteOffset < dwCurrentWriteCursor))
dwByteOffset = dwCurrentWriteCursor;
}
}
int nBytesRemaining = dwByteOffset - dwCurrentPlayCursor;
if(nBytesRemaining < 0)
nBytesRemaining += g_dwDSMockBufferSize;
// Calc correction factor so that play-buffer doesn't under/overflow
if(nBytesRemaining < g_dwDSMockBufferSize / 4)
nNumSamplesError++; // < 0.25 of buffer remaining
else if(nBytesRemaining > g_dwDSMockBufferSize / 2)
nNumSamplesError--; // > 0.50 of buffer remaining
else
nNumSamplesError = 0; // Acceptable amount of data in buffer*/
if(nNumSamples == 0)
return; // have nothing to produce??
double fAttenuation = g_bPhasorEnable ? 2.0/3.0 : 1.0;
// fill data with samples
for(int i=0; i<nNumSamples; i++)
{
// Mockingboard stereo (all voices on an AY8910 wire-or'ed together)
// L = Address.b7=0, R = Address.b7=1
int nDataL = 0, nDataR = 0;
for(unsigned int j=0; j<NUM_VOICES_PER_AY8910; j++)
{
// Slot4
nDataL += (int) ((double)ppAYVoiceBuffer[0*NUM_VOICES_PER_AY8910+j][i] * fAttenuation);
nDataR += (int) ((double)ppAYVoiceBuffer[1*NUM_VOICES_PER_AY8910+j][i] * fAttenuation);
// Slot5
nDataL += (int) ((double)ppAYVoiceBuffer[2*NUM_VOICES_PER_AY8910+j][i] * fAttenuation);
nDataR += (int) ((double)ppAYVoiceBuffer[3*NUM_VOICES_PER_AY8910+j][i] * fAttenuation);
}
// Cap the superpositioned output
if(nDataL < nWaveDataMin)
nDataL = nWaveDataMin;
else if(nDataL > nWaveDataMax)
nDataL = nWaveDataMax;
if(nDataR < nWaveDataMin)
nDataR = nWaveDataMin;
else if(nDataR > nWaveDataMax)
nDataR = nWaveDataMax;
g_nMixBuffer[i*g_nMB_NumChannels+0] = (short)nDataL; // L
g_nMixBuffer[i*g_nMB_NumChannels+1] = (short)nDataR; // R
}
// now we have sample data in g_nMixBuffer of size nNumSamples?? Ok, upload it for playing
// NOTE: when you delete the comment of the line below, speakers will work badly, but Mockingboard should work?
DSUploadMockBuffer(g_nMixBuffer, nNumSamples * 2); // submit stereo wave data
/* if(!DSGetLock(MockingboardVoice.lpDSBvoice,
dwByteOffset, (DWORD)nNumSamples*sizeof(short)*g_nMB_NumChannels,
&pDSLockedBuffer0, &dwDSLockedBufferSize0,
&pDSLockedBuffer1, &dwDSLockedBufferSize1))
return;
memcpy(pDSLockedBuffer0, &g_nMixBuffer[0], dwDSLockedBufferSize0);
if(pDSLockedBuffer1)
memcpy(pDSLockedBuffer1, &g_nMixBuffer[dwDSLockedBufferSize0/sizeof(short)], dwDSLockedBufferSize1);
// Commit sound buffer
hr = MockingboardVoice.lpDSBvoice->Unlock((void*)pDSLockedBuffer0, dwDSLockedBufferSize0,
(void*)pDSLockedBuffer1, dwDSLockedBufferSize1);*/
// dwByteOffset = (dwByteOffset + (DWORD)nNumSamples*sizeof(short)*g_nMB_NumChannels) % g_dwDSMockBufferSize;
// write some data to disk (in RIFF format - thanx to M$) --bb
#ifdef RIFF_MB
RiffPutSamples(&g_nMixBuffer[0], nNumSamples);
#endif
#endif // if defined MOCKINGBOARD
}
//-----------------------------------------------------------------------------
static DWORD SSI263Thread(LPVOID lpParameter)
{
#if 0
while(1)
{
DWORD dwWaitResult = WaitForMultipleObjects(
g_nNumEvents, // number of handles in array
g_hSSI263Event, // array of event handles
FALSE, // wait until any one is signaled
INFINITE);
if((dwWaitResult < WAIT_OBJECT_0) || (dwWaitResult > WAIT_OBJECT_0+g_nNumEvents-1))
continue;
dwWaitResult -= WAIT_OBJECT_0; // Determine event # that signaled
if(dwWaitResult == (g_nNumEvents-1)) // Termination event
break;
// Phoneme completed playing
if (g_bStopPhoneme)
{
g_bStopPhoneme = false;
continue;
}
#if LOG_SSI263
//if(g_fh) fprintf(g_fh, "IRQ: Phoneme complete (0x%02X)\n\n", g_nCurrentActivePhoneme);
#endif
SSI263Voice[g_nCurrentActivePhoneme].bActive = false;
g_nCurrentActivePhoneme = -1;
// Phoneme complete, so generate IRQ if necessary
SY6522_AY8910* pMB = &g_MB[g_nSSI263Device];
if(g_bPhasorEnable)
{
if((pMB->SpeechChip.CurrentMode != MODE_IRQ_DISABLED))
{
pMB->SpeechChip.CurrentMode |= 1; // Set SSI263's D7 pin
// Phasor's SSI263.IRQ line appears to be wired directly to IRQ (Bypassing the 6522)
CpuIrqAssert(IS_SPEECH);
}
}
else
{
if((pMB->SpeechChip.CurrentMode != MODE_IRQ_DISABLED) && (pMB->sy6522.PCR == 0x0C))
{
pMB->sy6522.IFR |= IxR_PERIPHERAL;
UpdateIFR(pMB);
pMB->SpeechChip.CurrentMode |= 1; // Set SSI263's D7 pin
}
}
//
if(g_bVotraxPhoneme && (pMB->sy6522.PCR == 0xB0))
{
// !A/R: Time-out of old phoneme (signal goes from low to high)
pMB->sy6522.IFR |= IxR_VOTRAX;
UpdateIFR(pMB);
g_bVotraxPhoneme = false;
}
}
return 0;
#endif
}
//-----------------------------------------------------------------------------
static void SSI263_Play(unsigned int nPhoneme)
{
#if 0
HRESULT hr;
if(g_nCurrentActivePhoneme >= 0)
{
// A write to DURPHON before previous phoneme has completed
g_bStopPhoneme = true;
hr = SSI263Voice[g_nCurrentActivePhoneme].lpDSBvoice->Stop();
}
g_nCurrentActivePhoneme = nPhoneme;
hr = SSI263Voice[g_nCurrentActivePhoneme].lpDSBvoice->SetCurrentPosition(0);
if(FAILED(hr))
return;
hr = SSI263Voice[g_nCurrentActivePhoneme].lpDSBvoice->Play(0,0,0); // Not looping
if(FAILED(hr))
return;
SSI263Voice[g_nCurrentActivePhoneme].bActive = true;
#endif
}
//-----------------------------------------------------------------------------
static bool MB_DSInit()
{
//
// Create single Mockingboard voice
//
//---------------------------------
//
// Create SSI263 voice
//
#if 0
g_hSSI263Event[0] = CreateEvent(NULL, // lpEventAttributes
FALSE, // bManualReset (FALSE = auto-reset)
FALSE, // bInitialState (FALSE = non-signaled)
NULL); // lpName
g_hSSI263Event[1] = CreateEvent(NULL, // lpEventAttributes
FALSE, // bManualReset (FALSE = auto-reset)
FALSE, // bInitialState (FALSE = non-signaled)
NULL); // lpName
if((g_hSSI263Event[0] == NULL) || (g_hSSI263Event[1] == NULL))
{
if(g_fh) fprintf(g_fh, "SSI263: CreateEvent failed\n");
return false;
}
for(int i=0; i<64; i++)
{
unsigned int nPhoneme = i;
bool bPause;
if(nPhoneme == 1)
nPhoneme = 2; // Missing this sample, so map to phoneme-2
if(nPhoneme == 0)
{
bPause = true;
}
else
{
// nPhoneme--;
nPhoneme-=2; // Missing phoneme-1
bPause = false;
}
unsigned int nPhonemeByteLength = g_nPhonemeInfo[nPhoneme].nLength * sizeof(SHORT);
// NB. DSBCAPS_LOCSOFTWARE required for Phoneme+2==0x28 - sample too short (see KB327698)
hr = DSGetSoundBuffer(&SSI263Voice[i], DSBCAPS_CTRLVOLUME+DSBCAPS_CTRLPOSITIONNOTIFY+DSBCAPS_LOCSOFTWARE, nPhonemeByteLength, 22050, 1);
if(FAILED(hr))
{
if(g_fh) fprintf(g_fh, "SSI263: DSGetSoundBuffer failed (%08X)\n",hr);
return false;
}
hr = DSGetLock(SSI263Voice[i].lpDSBvoice, 0, 0, &pDSLockedBuffer, &dwDSLockedBufferSize, NULL, 0);
if(FAILED(hr))
{
if(g_fh) fprintf(g_fh, "SSI263: DSGetLock failed (%08X)\n",hr);
return false;
}
if(bPause)
{
// 'pause' length is length of 1st phoneme (arbitrary choice, since don't know real length)
memset(pDSLockedBuffer, 0x00, nPhonemeByteLength);
}
else
{
memcpy(pDSLockedBuffer, &g_nPhonemeData[g_nPhonemeInfo[nPhoneme].nOffset], nPhonemeByteLength);
}
hr = SSI263Voice[i].lpDSBvoice->QueryInterface(IID_IDirectSoundNotify, (LPVOID *)&SSI263Voice[i].lpDSNotify);
if(FAILED(hr))
{
if(g_fh) fprintf(g_fh, "SSI263: QueryInterface failed (%08X)\n",hr);
return false;
}
DSBPOSITIONNOTIFY PositionNotify;
// PositionNotify.dwOffset = nPhonemeByteLength - 1; // End of buffer
PositionNotify.dwOffset = DSBPN_OFFSETSTOP; // End of buffer
PositionNotify.hEventNotify = g_hSSI263Event[0];
hr = SSI263Voice[i].lpDSNotify->SetNotificationPositions(1, &PositionNotify);
if(FAILED(hr))
{
if(g_fh) fprintf(g_fh, "SSI263: SetNotifyPos failed (%08X)\n",hr);
return false;
}
hr = SSI263Voice[i].lpDSBvoice->Unlock((void*)pDSLockedBuffer, dwDSLockedBufferSize, NULL, 0);
if(FAILED(hr))
{
if(g_fh) fprintf(g_fh, "SSI263: DSUnlock failed (%08X)\n",hr);
return false;
}
SSI263Voice[i].bActive = false;
SSI263Voice[i].nVolume = MockingboardVoice.nVolume; // Use same volume as MB
SSI263Voice[i].lpDSBvoice->SetVolume(SSI263Voice[i].nVolume);
}
//
DWORD dwThreadId;
g_hThread = CreateThread(NULL, // lpThreadAttributes
0, // dwStackSize
SSI263Thread,
NULL, // lpParameter
0, // dwCreationFlags : 0 = Run immediately
&dwThreadId); // lpThreadId
SetThreadPriority(g_hThread, THREAD_PRIORITY_TIME_CRITICAL);
#endif
return true;
}
static void MB_DSUninit()
{
#if 0
if(g_hThread)
{
DWORD dwExitCode;
SetEvent(g_hSSI263Event[g_nNumEvents-1]); // Signal to thread that it should exit
do
{
if(GetExitCodeThread(g_hThread, &dwExitCode))
{
if(dwExitCode == STILL_ACTIVE)
Sleep(10);
else
break;
}
}
while(1);
CloseHandle(g_hThread);
g_hThread = NULL;
}
//
//
for(int i=0; i<64; i++)
{
if(SSI263Voice[i].lpDSBvoice && SSI263Voice[i].bActive)
{
SSI263Voice[i].lpDSBvoice->Stop();
SSI263Voice[i].bActive = false;
}
DSReleaseSoundBuffer(&SSI263Voice[i]);
}
//
if(g_hSSI263Event[0])
{
CloseHandle(g_hSSI263Event[0]);
g_hSSI263Event[0] = NULL;
}
if(g_hSSI263Event[1])
{
CloseHandle(g_hSSI263Event[1]);
g_hSSI263Event[1] = NULL;
}
#endif
}
//=============================================================================
//
// ----- ALL GLOBALLY ACCESSIBLE FUNCTIONS ARE BELOW THIS LINE -----
//
//=============================================================================
static BYTE /*__stdcall*/ PhasorIO (WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nCyclesLeft);
static BYTE /*__stdcall*/ MB_Read(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nCyclesLeft);
static BYTE /*__stdcall*/ MB_Write(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nCyclesLeft);
void MB_Initialize()
{
if(g_bDisableDirectSound)
{
// MockingboardVoice.bMute = true;
g_SoundcardType = SC_NONE;
}
else
{
memset(&g_MB,0,sizeof(g_MB));
int i;
for(i=0; i<NUM_VOICES; i++)
ppAYVoiceBuffer[i] = new short [SAMPLE_RATE]; // Buffer can hold a max of 1 seconds worth of samples
AY8910_InitAll((int)g_fCurrentCLK6502, SAMPLE_RATE);
for(i=0; i<NUM_AY8910; i++)
g_MB[i].nAY8910Number = i;
//
//DSInit();
g_bMBAvailable = MB_DSInit();
MB_Reset();
}
//
g_bMB_Active = (g_SoundcardType != SC_NONE);
//
if (g_Slot4 == CT_Mockingboard)
{
const UINT uSlot4 = 4;
RegisterIoHandler(uSlot4, PhasorIO, PhasorIO, MB_Read, MB_Write, NULL, NULL);
}
const UINT uSlot5 = 5;
RegisterIoHandler(uSlot5, PhasorIO, PhasorIO, MB_Read, MB_Write, NULL, NULL);
}
//-----------------------------------------------------------------------------
// NB. Called when /g_fCurrentCLK6502/ changes
void MB_Reinitialize()
{
AY8910_InitClock((int)g_fCurrentCLK6502);
}
//-----------------------------------------------------------------------------
void MB_Destroy()
{
MB_DSUninit();
//DSUninit();
for(int i=0; i<NUM_VOICES; i++)
delete [] ppAYVoiceBuffer[i];
}
//-----------------------------------------------------------------------------
void MB_Reset()
{
if(!g_bDSAvailable)
return;
for(int i=0; i<NUM_AY8910; i++)
{
ResetSY6522(&g_MB[i]);
AY8910_reset(i);
}
g_nPhasorMode = 0;
MB_Reinitialize(); // Reset CLK for AY8910s
}
//-----------------------------------------------------------------------------
static BYTE /*__stdcall*/ MB_Read(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nCyclesLeft)
{
MB_UpdateCycles(nCyclesLeft);
if(!IS_APPLE2 && !MemCheckSLOTCXROM())
return mem[nAddr];
if(g_SoundcardType == SC_NONE)
return 0;
BYTE nMB = (nAddr>>8)&0xf - SLOT4;
BYTE nOffset = nAddr&0xff;
if(g_bPhasorEnable)
{
if(nMB != 0) // Slot4 only
return 0;
BYTE nRes = 0;
int CS;
if(g_nPhasorMode & 1)
CS = ( ( nAddr & 0x80 ) >> 6 ) | ( ( nAddr & 0x10 ) >> 4 ); // 0, 1, 2 or 3
else // Mockingboard Mode
CS = ( ( nAddr & 0x80 ) >> 7 ) + 1; // 1 or 2
if(CS & 1)
nRes |= SY6522_Read(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_A, nAddr&0xf);
if(CS & 2)
nRes |= SY6522_Read(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_B, nAddr&0xf);
if((nOffset >= SSI263_Offset) && (nOffset <= (SSI263_Offset+0x05)))
nRes |= SSI263_Read(nMB, nAddr&0xf);
return nRes;
}
if(nOffset <= (SY6522A_Offset+0x0F))
return SY6522_Read(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_A, nAddr&0xf);
else if((nOffset >= SY6522B_Offset) && (nOffset <= (SY6522B_Offset+0x0F)))
return SY6522_Read(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_B, nAddr&0xf);
else if((nOffset >= SSI263_Offset) && (nOffset <= (SSI263_Offset+0x05)))
return SSI263_Read(nMB, nAddr&0xf);
else
return 0;
}
//-----------------------------------------------------------------------------
static BYTE /*__stdcall*/ MB_Write(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nCyclesLeft)
{
MB_UpdateCycles(nCyclesLeft);
if(!IS_APPLE2 && !MemCheckSLOTCXROM())
return 0;
if(g_SoundcardType == SC_NONE)
return 0;
BYTE nMB = (nAddr>>8)&0xf - SLOT4;
BYTE nOffset = nAddr&0xff;
if(g_bPhasorEnable)
{
if(nMB != 0) // Slot4 only
return 0;
int CS;
if(g_nPhasorMode & 1)
CS = ( ( nAddr & 0x80 ) >> 6 ) | ( ( nAddr & 0x10 ) >> 4 ); // 0, 1, 2 or 3
else // Mockingboard Mode
CS = ( ( nAddr & 0x80 ) >> 7 ) + 1; // 1 or 2
if(CS & 1)
SY6522_Write(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_A, nAddr&0xf, nValue);
if(CS & 2)
SY6522_Write(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_B, nAddr&0xf, nValue);
if((nOffset >= SSI263_Offset) && (nOffset <= (SSI263_Offset+0x05)))
SSI263_Write(nMB*2+1, nAddr&0xf, nValue); // Second 6522 is used for speech chip
return 0;
}
if(nOffset <= (SY6522A_Offset+0x0F))
SY6522_Write(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_A, nAddr&0xf, nValue);
else if((nOffset >= SY6522B_Offset) && (nOffset <= (SY6522B_Offset+0x0F)))
SY6522_Write(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_B, nAddr&0xf, nValue);
else if((nOffset >= SSI263_Offset) && (nOffset <= (SSI263_Offset+0x05)))
SSI263_Write(nMB*2+1, nAddr&0xf, nValue); // Second 6522 is used for speech chip
return 0;
}
//-----------------------------------------------------------------------------
static BYTE /*__stdcall*/ PhasorIO (WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nCyclesLeft)
{
if(!g_bPhasorEnable)
return MemReadFloatingBus(nCyclesLeft);
if(g_nPhasorMode < 2)
g_nPhasorMode = nAddr & 1;
double fCLK = (nAddr & 4) ? CLK_6502*2 : CLK_6502;
AY8910_InitClock((int)fCLK);
return MemReadFloatingBus(nCyclesLeft);
}
//-----------------------------------------------------------------------------
void MB_Mute()
{
if(g_SoundcardType == SC_NONE)
return;
#if 0
if(MockingboardVoice.bActive && !MockingboardVoice.bMute)
{
MockingboardVoice.lpDSBvoice->SetVolume(DSBVOLUME_MIN);
MockingboardVoice.bMute = true;
}
if(g_nCurrentActivePhoneme >= 0)
SSI263Voice[g_nCurrentActivePhoneme].lpDSBvoice->SetVolume(DSBVOLUME_MIN);
#endif
}
//-----------------------------------------------------------------------------
void MB_Demute()
{
if(g_SoundcardType == SC_NONE)
return;
#if 0
if(MockingboardVoice.bActive && MockingboardVoice.bMute)
{
MockingboardVoice.lpDSBvoice->SetVolume(MockingboardVoice.nVolume);
MockingboardVoice.bMute = false;
}
if(g_nCurrentActivePhoneme >= 0)
SSI263Voice[g_nCurrentActivePhoneme].lpDSBvoice->SetVolume(SSI263Voice[g_nCurrentActivePhoneme].nVolume);
#endif
}
//-----------------------------------------------------------------------------
// Called by CpuExecute() before doing CPU emulation
void MB_StartOfCpuExecute()
{
g_uLastCumulativeCycles = g_nCumulativeCycles;
}
// Called by ContinueExecution() at the end of every video frame
void MB_EndOfVideoFrame()
{
if(g_SoundcardType == SC_NONE)
return;
if(!g_bFullSpeed && !g_bMBTimerIrqActive && !(g_MB[0].sy6522.IFR & IxR_TIMER1))
MB_Update();
}
//-----------------------------------------------------------------------------
// Called by InternalCpuExecute() after every N opcodes
// OLD: Called by InternalCpuExecute() after every opcode
// OLD: void MB_UpdateCycles(USHORT nClocks)
void MB_UpdateCycles(ULONG uExecutedCycles)
{
if(g_SoundcardType == SC_NONE)
return;
CpuCalcCycles(uExecutedCycles);
UINT64 uCycles = g_nCumulativeCycles - g_uLastCumulativeCycles;
g_uLastCumulativeCycles = g_nCumulativeCycles;
_ASSERT(uCycles < 0x10000);
USHORT nClocks = (USHORT) uCycles;
for(int i=0; i<NUM_SY6522; i++)
{
SY6522_AY8910* pMB = &g_MB[i];
USHORT OldTimer1 = pMB->sy6522.TIMER1_COUNTER.w;
USHORT OldTimer2 = pMB->sy6522.TIMER2_COUNTER.w;
pMB->sy6522.TIMER1_COUNTER.w -= nClocks;
pMB->sy6522.TIMER2_COUNTER.w -= nClocks;
// Check for counter underflow
bool bTimer1Underflow = (!(OldTimer1 & 0x8000) && (pMB->sy6522.TIMER1_COUNTER.w & 0x8000));
bool bTimer2Underflow = (!(OldTimer2 & 0x8000) && (pMB->sy6522.TIMER2_COUNTER.w & 0x8000));
if( bTimer1Underflow && (g_nMBTimerDevice == i) && g_bMBTimerIrqActive )
{
g_uTimer1IrqCount++; // DEBUG
pMB->sy6522.IFR |= IxR_TIMER1;
UpdateIFR(pMB);
if((pMB->sy6522.ACR & RUNMODE) == RM_ONESHOT)
{
// One-shot mode
StopTimer(pMB); // Phasor's playback code uses one-shot mode
}
else
{
// Free-running mode
// - Ultima4/5 change ACCESS_TIMER1 after a couple of IRQs into tune
pMB->sy6522.TIMER1_COUNTER.w = pMB->sy6522.TIMER1_LATCH.w;
StartTimer(pMB);
}
if(!g_bFullSpeed)
MB_Update();
}
}
}
//-----------------------------------------------------------------------------
eSOUNDCARDTYPE MB_GetSoundcardType()
{
return g_SoundcardType;
}
void MB_SetSoundcardType(eSOUNDCARDTYPE NewSoundcardType)
{
if ((NewSoundcardType == SC_UNINIT) || (g_SoundcardType == NewSoundcardType))
return;
g_SoundcardType = NewSoundcardType;
if(g_SoundcardType == SC_NONE)
MB_Mute();
g_bPhasorEnable = (g_SoundcardType == SC_PHASOR);
}
//-----------------------------------------------------------------------------
double MB_GetFramePeriod()
{
return (g_bMBTimerIrqActive||(g_MB[0].sy6522.IFR & IxR_TIMER1)) ? (double)g_n6522TimerPeriod : g_f6522TimerPeriod_NoIRQ;
}
bool MB_IsActive()
{
// if(!MockingboardVoice.bActive)
// return false;
// Ignore /g_bMBTimerIrqActive/ as timer's irq handler will access 6522 regs affecting /g_bMB_Active/
return g_bMB_Active;
}
//-----------------------------------------------------------------------------
DWORD MB_GetVolume()
{
// return MockingboardVoice.dwUserVolume;
}
void MB_SetVolume(DWORD dwVolume, DWORD dwVolumeMax)
{
/* MockingboardVoice.dwUserVolume = dwVolume;
MockingboardVoice.nVolume = NewVolume(dwVolume, dwVolumeMax);
if(MockingboardVoice.bActive)
MockingboardVoice.lpDSBvoice->SetVolume(MockingboardVoice.nVolume);*/
}
//===========================================================================
DWORD MB_GetSnapshot(SS_CARD_MOCKINGBOARD* pSS, DWORD dwSlot)
{
pSS->Hdr.UnitHdr.dwLength = sizeof(SS_CARD_DISK2);
pSS->Hdr.UnitHdr.dwVersion = MAKE_VERSION(1,0,0,0);
pSS->Hdr.dwSlot = dwSlot;
pSS->Hdr.dwType = CT_Mockingboard;
UINT nMbCardNum = dwSlot - SLOT4;
UINT nDeviceNum = nMbCardNum*2;
SY6522_AY8910* pMB = &g_MB[nDeviceNum];
for(UINT i=0; i<MB_UNITS_PER_CARD; i++)
{
memcpy(&pSS->Unit[i].RegsSY6522, &pMB->sy6522, sizeof(SY6522));
memcpy(&pSS->Unit[i].RegsAY8910, AY8910_GetRegsPtr(nDeviceNum), 16);
memcpy(&pSS->Unit[i].RegsSSI263, &pMB->SpeechChip, sizeof(SSI263A));
pSS->Unit[i].nAYCurrentRegister = pMB->nAYCurrentRegister;
nDeviceNum++;
pMB++;
}
return 0;
}
DWORD MB_SetSnapshot(SS_CARD_MOCKINGBOARD* pSS, DWORD /*dwSlot*/)
{
if(pSS->Hdr.UnitHdr.dwVersion != MAKE_VERSION(1,0,0,0))
return -1;
UINT nMbCardNum = pSS->Hdr.dwSlot - SLOT4;
UINT nDeviceNum = nMbCardNum*2;
SY6522_AY8910* pMB = &g_MB[nDeviceNum];
g_nSSI263Device = 0;
g_nCurrentActivePhoneme = -1;
for(UINT i=0; i<MB_UNITS_PER_CARD; i++)
{
memcpy(&pMB->sy6522, &pSS->Unit[i].RegsSY6522, sizeof(SY6522));
memcpy(AY8910_GetRegsPtr(nDeviceNum), &pSS->Unit[i].RegsAY8910, 16);
memcpy(&pMB->SpeechChip, &pSS->Unit[i].RegsSSI263, sizeof(SSI263A));
pMB->nAYCurrentRegister = pSS->Unit[i].nAYCurrentRegister;
StartTimer(pMB); // Attempt to start timer
//
// Crude - currently only support a single speech chip
// FIX THIS:
// . Speech chip could be Votrax instead
// . Is this IRQ compatible with Phasor?
if(pMB->SpeechChip.DurationPhonome)
{
g_nSSI263Device = nDeviceNum;
if((pMB->SpeechChip.CurrentMode != MODE_IRQ_DISABLED) && (pMB->sy6522.PCR == 0x0C) && (pMB->sy6522.IER & IxR_PERIPHERAL))
{
pMB->sy6522.IFR |= IxR_PERIPHERAL;
UpdateIFR(pMB);
pMB->SpeechChip.CurrentMode |= 1; // Set SSI263's D7 pin
}
}
nDeviceNum++;
pMB++;
}
return 0;
}