/* puce6502 - MOS 6502 cpu emulator Last modified 1st of August 2020 Copyright (c) 2018 Arthur Ferreira (arthur.ferreira2@gmail.com) This version has been modified for reinette II plus, a french Apple II plus emulator using SDL2 (https://github.com/ArthurFerreira2/reinette-II-plus). Please download the latest version from https://github.com/ArthurFerreira2/puce6502 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "puce6502.h" // function to be provided by user to handle read and writes to locations not // in ROM or in RAM : Soft Switches, extension cards ROMs, PIA, VIA, ACIA etc... extern uint8_t softSwitches(uint16_t address, uint8_t value, bool WRT); // these are the Language Card switches used in readMem and writeMem extern bool LCWR, LCRD, LCBK2; #define CARRY 0x01 #define ZERO 0x02 #define INTR 0x04 #define DECIM 0x08 #define BREAK 0x10 #define UNDEF 0x20 #define OFLOW 0x40 #define SIGN 0x80 struct Operand { uint8_t code; bool setAcc; uint8_t value; uint16_t address; } ope; struct Register { uint8_t A,X,Y,SR,SP; uint16_t PC; } reg; static int cycles[256] = { // cycles per instruction 7,6,0,0,0,3,5,0,3,2,2,0,0,4,6,0,3,5,0,0,0,4,6,0,2,4,0,0,0,4,7,0, 6,6,0,0,3,3,5,0,4,2,2,0,4,4,6,0,3,5,0,0,0,4,6,0,2,4,0,0,0,4,7,0, 6,6,0,0,0,3,5,0,3,2,2,0,3,4,6,0,3,5,0,0,0,4,6,0,2,4,0,0,0,4,7,0, 6,6,0,0,0,3,5,0,4,2,2,0,5,4,6,0,3,5,0,0,0,4,6,0,2,4,0,0,0,4,7,0, 0,6,0,0,3,3,3,0,2,0,2,0,4,4,4,0,3,6,0,0,4,4,4,0,2,5,2,0,0,5,0,0, 2,6,2,0,3,3,3,0,2,2,2,0,4,4,4,0,3,5,0,0,4,4,4,0,2,4,2,0,4,4,4,0, 2,6,0,0,3,3,5,0,2,2,2,0,4,4,6,0,3,5,0,0,0,4,6,0,2,4,0,0,0,4,7,0, 2,6,0,0,3,3,5,0,2,2,2,0,4,4,6,0,3,5,0,0,0,4,6,0,2,4,0,0,0,4,7,0 }; //=============================================================== MEMORY AND I/O inline static uint8_t readMem(uint16_t address){ if (address < RAMSIZE) return(ram[address]); // RAM if (address >= ROMSTART){ if (!LCRD) return(rom[address - ROMSTART]); // ROM if (LCBK2 && (address < 0xE000)) return(bk2[address - BK2START]); // BK2 return(lgc[address - LGCSTART]); // LC } if ((address & 0xFF00) == SL6START) return(sl6[address - SL6START]); // disk][ if (address == 0xCFFF || ((address & 0xFF00) == 0xC000)) return(softSwitches(address, 0, false)); return(ticks % 256); // catch all, give a 'floating' value } inline static void writeMem(uint16_t address, uint8_t value){ if (address < RAMSIZE) { ram[address] = value; // RAM return; } if (LCWR && (address >= ROMSTART)){ if (LCBK2 && (address < 0xE000)){ bk2[address - BK2START] = value; // BK2 return; } lgc[address - LGCSTART] = value; // LC return; } if (address == 0xCFFF || ((address & 0xFF00) == 0xC000)){ softSwitches(address, value, true); // Soft Switches return; } } //=============================================== STACK, SIGN AND OTHER ROUTINES inline static void push(uint8_t value){ writeMem(0x100 + reg.SP--, value); } inline static uint8_t pull(){ return(readMem(0x100 + ++reg.SP)); } inline static void setSZ(uint8_t value){ // update both the Sign & Zero FLAGS if (value & 0x00FF) reg.SR &= ~ZERO; else reg.SR |= ZERO; if (value & 0x80) reg.SR |= SIGN; else reg.SR &= ~SIGN; } inline static void branch(){ // used by the 8 branch instructions ticks++; if (((reg.PC & 0xFF) + ope.address) & 0xFF00) ticks++; reg.PC += ope.address; } inline static void makeUpdates(uint8_t val){ // used by ASL, LSR, ROL and ROR if (ope.setAcc){ reg.A = val; ope.setAcc = false; } else writeMem(ope.address, val); setSZ(val); } //============================================================= ADDRESSING MODES static void IMP(){ // IMPlicit } static void ACC(){ // ACCumulator ope.value = reg.A; ope.setAcc = true; } static void IMM(){ // IMMediate ope.address = reg.PC++; ope.value = readMem(ope.address); } static void ZPG(){ // Zero PaGe ope.address = readMem(reg.PC++); ope.value = readMem(ope.address); } static void ZPX(){ // Zero Page,X ope.address = (readMem(reg.PC++) + reg.X) & 0xFF; ope.value = readMem(ope.address); } static void ZPY(){ // Zero Page,Y if (readMem(reg.PC) + reg.Y > 0xFF) ticks++; ope.address = (readMem(reg.PC++) + reg.Y) & 0xFF; ope.value = readMem(ope.address); } static void REL(){ // RELative (for branch instructions) ope.address = readMem(reg.PC++); if (ope.address & 0x80) ope.address |= 0xFF00; // branch backward } static void ABS(){ // ABSolute ope.address = readMem(reg.PC) | (readMem(reg.PC + 1) << 8); ope.value = readMem(ope.address); reg.PC += 2; } static void ABX(){ // ABsolute,X if (readMem(reg.PC) + reg.X > 0xFF) ticks++; ope.address = (readMem(reg.PC) | (readMem(reg.PC + 1) << 8)) + reg.X; ope.value = readMem(ope.address); reg.PC += 2; } static void ABY(){ // ABsolute,Y if (readMem(reg.PC) + reg.Y > 0xFF) ticks++; ope.address = (readMem(reg.PC) | (readMem(reg.PC + 1) << 8)) + reg.Y; ope.value = readMem(ope.address); reg.PC += 2; } static void IND(){ // INDirect - JMP ($ABCD) with page-boundary wraparound bug uint16_t vector1 = readMem(reg.PC) | (readMem(reg.PC + 1) << 8); uint16_t vector2 = (vector1 & 0xFF00) | ((vector1 + 1) & 0x00FF); ope.address = readMem(vector1) | (readMem(vector2) << 8); ope.value = readMem(ope.address); reg.PC += 2; } static void IDX(){ // InDexed indirect X uint16_t vector1 = ((readMem(reg.PC++) + reg.X) & 0xFF); ope.address = readMem(vector1 & 0x00FF)|(readMem((vector1+1) & 0x00FF) << 8); ope.value = readMem(ope.address); } static void IDY(){ // InDirect Indexed Y uint16_t vector1 = readMem(reg.PC++); uint16_t vector2 = (vector1 & 0xFF00) | ((vector1 + 1) & 0x00FF); ope.address = (readMem(vector1) | (readMem(vector2) << 8)) + reg.Y; ope.value = readMem(ope.address); } //================================================================= INSTRUCTIONS static void NOP(){ // NO Operation } void BRK(){ // BReaK push(((++reg.PC) >> 8) & 0xFF); push(reg.PC & 0xFF); push(reg.SR | BREAK); reg.SR |= INTR; reg.PC = readMem(0xFFFE) | ((readMem(0xFFFF) << 8)); // IRQ/BRK FFFE FFFF } static void CLD(){ // CLear Decimal reg.SR &= ~DECIM; } static void SED(){ // SEt Decimal reg.SR |= DECIM; } static void CLC(){ // CLear Carry reg.SR &= ~CARRY; } static void SEC(){ // SEt Carry reg.SR |= CARRY; } static void CLI(){ // CLear Interrupt reg.SR &= ~INTR; } static void SEI(){ // SEt Interrupt reg.SR |= INTR; } static void CLV(){ // CLear oVerflow reg.SR &= ~OFLOW; } static void LDA(){ // LoaD Accumulator reg.A = ope.value; setSZ(reg.A); } static void LDX(){ // LoaD X reg.X = ope.value; setSZ(reg.X); } static void LDY(){ // LoaD Y reg.Y = ope.value; setSZ(reg.Y); } static void STA(){ // STore Accumulator writeMem(ope.address, reg.A); } static void STX(){ // STore X writeMem(ope.address, reg.X); } static void STY(){ // STore Y writeMem(ope.address, reg.Y); } static void DEC(){ // DECrement writeMem(ope.address, --ope.value); setSZ(ope.value); } static void DEX(){ // DEcrement X setSZ(--reg.X); } static void DEY(){ // DEcrement Y setSZ(--reg.Y); } static void INC(){ // INCrement writeMem(ope.address, ++ope.value); setSZ(ope.value); } static void INX(){ // INcrement X setSZ(++reg.X); } static void INY(){ // INcrement Y setSZ(++reg.Y); } static void TAX(){ // Transfer Accumulator to X reg.X = reg.A; setSZ(reg.X); } static void TAY(){ // Transfer Accumulator to Y reg.Y = reg.A; setSZ(reg.Y); } static void TXA(){ // Transfer X to Accumulator reg.A = reg.X; setSZ(reg.A); } static void TYA(){ // Transfer Y to Accumulator reg.A = reg.Y; setSZ(reg.A); } static void TSX(){ // Transfer Sp to X reg.X = reg.SP; setSZ(reg.X); } static void TXS(){ // Transfer X to Sp reg.SP = reg.X; } static void BEQ(){ // Branch on EQual (zero set) if (reg.SR & ZERO) branch(); } static void BNE(){ // Branch on Not Equal (zero clear) if (!(reg.SR & ZERO)) branch(); } static void BMI(){ // Branch if MInus : when negative, when SIGN is set if (reg.SR & SIGN) branch(); } static void BPL(){ // Branch if PLus : when positive, when SIGN is clear if (!(reg.SR & SIGN)) branch(); } static void BVS(){ // Branch on oVerflow Set if (reg.SR & OFLOW) branch(); } static void BVC(){ // Branch on oVerflow Clear if (!(reg.SR & OFLOW)) branch(); } static void BCS(){ // Branch on Carry Set if (reg.SR & CARRY) branch(); } static void BCC(){ // Branch on Carry Clear if (!(reg.SR & CARRY)) branch(); } static void PHA(){ // PusH A to the stack push(reg.A); } static void PLA(){ // PulL stack into A reg.A = pull(); setSZ(reg.A); } static void PHP(){ // PusH Programm (Status) register to the stack push(reg.SR | BREAK); } static void PLP(){ // PulL stack into Programm (SR) register reg.SR = pull() | UNDEF; } static void JMP(){ // JuMP reg.PC = ope.address; } static void JSR(){ // Jump Sub-Routine push((--reg.PC >> 8) & 0xFF); push(reg.PC & 0xFF); reg.PC = ope.address; } static void RTS(){ // ReTurn from Sub-routine reg.PC = (pull() | (pull() << 8)) + 1; } static void RTI(){ // ReTurn from Interrupt reg.SR = pull(); reg.PC = pull() | (pull() << 8); } static void CMP(){ // Compare with A setSZ(reg.A - ope.value); if (reg.A >= ope.value) reg.SR |= CARRY; else reg.SR &= ~CARRY; } static void CPX(){ // Compare with X setSZ(reg.X - ope.value); if (reg.X >= ope.value) reg.SR |= CARRY; else reg.SR &= ~CARRY; } static void CPY(){ // Compare with Y setSZ(reg.Y - ope.value); if (reg.Y >= ope.value) reg.SR |= CARRY; else reg.SR &= ~CARRY; } static void AND(){ // AND with A reg.A &= ope.value; setSZ(reg.A); } static void ORA(){ // OR with A reg.A |= ope.value; setSZ(reg.A); } static void EOR(){ // Exclusive Or with A reg.A ^= ope.value; setSZ(reg.A); } static void BIT(){ // BIT with A - http://www.6502.org/tutorials/vflag.html if (reg.A & ope.value) reg.SR &= ~ZERO; else reg.SR |= ZERO; reg.SR = (reg.SR & 0x3F) | (ope.value & 0xC0); // update SIGN & OFLOW } static void ASL(){ // Arithmetic Shift Left uint16_t result = (ope.value << 1); if (result & 0xFF00) reg.SR |= CARRY; else reg.SR &= ~CARRY; makeUpdates((uint8_t)(result & 0xFF)); } static void LSR(){ // Logical Shift Right if (ope.value & 1) reg.SR |= CARRY; else reg.SR &= ~CARRY; makeUpdates((uint8_t)((ope.value >> 1) & 0xFF)); } static void ROL(){ // ROtate Left uint16_t result = ((ope.value << 1) | (reg.SR & CARRY)); if (result & 0x100) reg.SR |= CARRY; else reg.SR &= ~CARRY; makeUpdates((uint8_t)(result & 0xFF)); } static void ROR(){ // ROtate Right uint16_t result = (ope.value >> 1) | ((reg.SR & CARRY) << 7); if (ope.value & 0x1) reg.SR |= CARRY; else reg.SR &= ~CARRY; makeUpdates((uint8_t)(result & 0xFF)); } static void ADC(){ // ADd with Carry uint16_t result = reg.A + ope.value + (reg.SR & CARRY); setSZ(result); if (((result)^(reg.A))&((result)^(ope.value))&0x0080) reg.SR |= OFLOW; else reg.SR &= ~OFLOW; if (reg.SR&DECIM) result += ((((result+0x66)^reg.A^ope.value)>>3)&0x22)*3; if (result & 0xFF00) reg.SR |= CARRY; else reg.SR &= ~CARRY; reg.A = (result & 0xFF); } static void SBC(){ // SuBtract with Carry ope.value ^= 0xFF; if (reg.SR & DECIM) ope.value -= 0x0066; uint16_t result = reg.A + ope.value + (reg.SR & CARRY); setSZ(result); if (((result)^(reg.A))&((result)^(ope.value))&0x0080) reg.SR |= OFLOW; else reg.SR &= ~OFLOW; if (reg.SR&DECIM) result += ((((result+0x66)^reg.A^ope.value)>>3)&0x22)*3; if (result & 0xFF00) reg.SR |= CARRY; else reg.SR &= ~CARRY; reg.A = (result & 0xFF); } static void UND(){ // UNDefined (not a valid or supported 6502 opcode) BRK(); } //================================================================== JUMP TABLES static void (*instruction[])(void) = { BRK, ORA, UND, UND, UND, ORA, ASL, UND, PHP, ORA, ASL, UND, UND, ORA, ASL, UND, BPL, ORA, UND, UND, UND, ORA, ASL, UND, CLC, ORA, UND, UND, UND, ORA, ASL, UND, JSR, AND, UND, UND, BIT, AND, ROL, UND, PLP, AND, ROL, UND, BIT, AND, ROL, UND, BMI, AND, UND, UND, UND, AND, ROL, UND, SEC, AND, UND, UND, UND, AND, ROL, UND, RTI, EOR, UND, UND, UND, EOR, LSR, UND, PHA, EOR, LSR, UND, JMP, EOR, LSR, UND, BVC, EOR, UND, UND, UND, EOR, LSR, UND, CLI, EOR, UND, UND, UND, EOR, LSR, UND, RTS, ADC, UND, UND, UND, ADC, ROR, UND, PLA, ADC, ROR, UND, JMP, ADC, ROR, UND, BVS, ADC, UND, UND, UND, ADC, ROR, UND, SEI, ADC, UND, UND, UND, ADC, ROR, UND, UND, STA, UND, UND, STY, STA, STX, UND, DEY, UND, TXA, UND, STY, STA, STX, UND, BCC, STA, UND, UND, STY, STA, STX, UND, TYA, STA, TXS, UND, UND, STA, UND, UND, LDY, LDA, LDX, UND, LDY, LDA, LDX, UND, TAY, LDA, TAX, UND, LDY, LDA, LDX, UND, BCS, LDA, UND, UND, LDY, LDA, LDX, UND, CLV, LDA, TSX, UND, LDY, LDA, LDX, UND, CPY, CMP, UND, UND, CPY, CMP, DEC, UND, INY, CMP, DEX, UND, CPY, CMP, DEC, UND, BNE, CMP, UND, UND, UND, CMP, DEC, UND, CLD, CMP, UND, UND, UND, CMP, DEC, UND, CPX, SBC, UND, UND, CPX, SBC, INC, UND, INX, SBC, NOP, UND, CPX, SBC, INC, UND, BEQ, SBC, UND, UND, UND, SBC, INC, UND, SED, SBC, UND, UND, UND, SBC, INC, UND }; static void (*addressing[])(void) = { IMP, IDX, IMP, IMP, IMP, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, IMP, ABS, ABS, IMP, REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP, ABS, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, ABS, ABS, ABS, IMP, REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP, IMP, IDX, IMP, IMP, IMP, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, ABS, ABS, ABS, IMP, REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP, IMP, IDX, IMP, IMP, IMP, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, IND, ABS, ABS, IMP, REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP, IMP, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMP, IMP, IMP, ABS, ABS, ABS, IMP, REL, IDY, IMP, IMP, ZPX, ZPX, ZPY, IMP, IMP, ABY, IMP, IMP, IMP, ABX, IMP, IMP, IMM, IDX, IMM, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, IMP, IMP, ABS, ABS, ABS, IMP, REL, IDY, IMP, IMP, ZPX, ZPX, ZPY, IMP, IMP, ABY, IMP, IMP, ABX, ABX, ABY, IMP, IMM, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, IMP, IMP, ABS, ABS, ABS, IMP, REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP, IMM, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, IMP, IMP, ABS, ABS, ABS, IMP, REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP }; //========================================================= USER INTERFACE (API) void puce6502Reset(){ reg.PC = readMem(0xFFFC) | (readMem(0xFFFD) << 8); // RESET FFFC FFFD reg.SP = 0xFF; reg.SR = (reg.SR | INTR) & ~DECIM; ope.setAcc = false; ticks += 7; } void puce6502Exec(long long int cycleCount){ cycleCount += ticks; // cycleCount becomes the target ticks value while (ticks < cycleCount) { ope.code = readMem(reg.PC++); // FETCH and increment the Program Counter addressing[ope.code](); // DECODE against the addressing mode instruction[ope.code](); // EXECUTE the instruction ticks += cycles[ope.code]; // update ticks count } } //=================================================== ADDED FOR REINETTE II PLUS void puce6502Break(){ BRK(); }