reinette-II/reinette-II.c

573 lines
16 KiB
C

/*
Reinette II, the french Apple II emulator
Last modified 19th of March 2019
Copyright (c) 2018, 2019 Arthur Ferreira
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <ncurses.h>
#define CARRY 0x01
#define ZERO 0x02
#define INTERRUPT 0x04
#define DECIMAL 0x08
#define BREAK 0x10
#define UNDEFINED 0x20
#define OVERFLOW 0x40
#define SIGN 0x80
#define ROMSTART 0xD000
#define ROMSIZE 0x3000 // 12KB
#define RAMSIZE 0xC000 // 48KB
uint8_t rom[ROMSIZE];
uint8_t ram[RAMSIZE];
struct Operand{
bool setAcc;
uint16_t value, address;
}ope;
struct Register{
uint8_t A,X,Y,SR,SP;
uint16_t PC;
}reg;
uint8_t key = 0;
bool videoNeedsRefresh = true;
// MEMORY AND I/O
static uint8_t readMem(uint16_t address){
if (address < RAMSIZE) return(ram[address]);
if (address >= ROMSTART) return(rom[address - ROMSTART]);
if (address == 0xC000) return(key); // KBD
if (address == 0xC010){ // KBDSTRB
key &= 0x7F; // unset bit 7
return(key);
}
return(0); // catch all
}
static void writeMem(uint16_t address, uint8_t value){
if (address & 0x400) videoNeedsRefresh = true; // a change in text page 1
if (address < RAMSIZE) ram[address] = value;
else if (address == 0xC010) key &= 0x7F; // KBDSTRB, as in readMem
}
// STACK, FLAGS AND RESET ROUTINES
static void push(uint8_t value){
writeMem(0x100 + reg.SP--, value);
}
uint8_t pull(){
return(readMem(0x100 + ++reg.SP));
}
static void setSZ(uint8_t value){ // update both the Sign & Zero FLAGS
if (value) reg.SR &= ~ZERO;
else reg.SR |= ZERO;
if (value & 0x80) reg.SR |= SIGN;
else reg.SR &= ~SIGN;
}
static void reset(){ // the reset vector is in $FFFC
reg.PC = readMem(0xFFFC) | (readMem(0xFFFD) << 8);
}
// ADDRESSING MODES
static void IMP(){ // IMPlicit
}
static void ACC(){ // ACCumulator
ope.value = reg.A;
ope.setAcc = true;
}
static void IMM(){ // IMMediate
ope.address = reg.PC++;
ope.value = readMem(ope.address);
}
static void ZPG(){ // Zero PaGe
ope.address = readMem(reg.PC++);
ope.value = readMem(ope.address);
}
static void ZPX(){ // Zero Page,X
ope.address = (readMem(reg.PC++) + reg.X) & 0xFF;
ope.value = readMem(ope.address);
}
static void ZPY(){ // Zero Page,Y
ope.address = (readMem(reg.PC++) + reg.Y) & 0xFF;
ope.value = readMem(ope.address);
}
static void REL(){ // RELative (for branch instructions)
ope.address = readMem(reg.PC++);
if (ope.address & 0x80) ope.address |= 0xFF00; // branch backward
}
static void ABS(){ // ABSolute
ope.address = readMem(reg.PC) | (readMem(reg.PC + 1) << 8);
ope.value = readMem(ope.address);
reg.PC += 2;
}
static void ABX(){ // ABsolute,X
ope.address = (readMem(reg.PC) | (readMem(reg.PC + 1) << 8)) + reg.X;
ope.value = readMem(ope.address);
reg.PC += 2;
}
static void ABY(){ // ABsolute,Y
ope.address = (readMem(reg.PC) | (readMem(reg.PC + 1) << 8)) + reg.Y;
ope.value = readMem(ope.address);
reg.PC += 2;
}
static void IND(){ // INDirect - JMP ($ABCD) with page-boundary wraparound bug
uint16_t vector1 = readMem(reg.PC) | (readMem(reg.PC + 1) << 8);
uint16_t vector2 = (vector1 & 0xFF00) | ((vector1 + 1) & 0x00FF);
ope.address = readMem(vector1) | (readMem(vector2) << 8);
ope.value = readMem(ope.address);
reg.PC += 2;
}
static void IDX(){ // InDexed indirect X
uint16_t vector1 = ((readMem(reg.PC++) + reg.X) & 0xFF);
ope.address = readMem(vector1 & 0x00FF)|(readMem((vector1+1) & 0x00FF) << 8);
ope.value = readMem(ope.address);
}
static void IDY(){ // InDirect Indexed Y
uint16_t vector1 = readMem(reg.PC++);
uint16_t vector2 = (vector1 & 0xFF00) | ((vector1 + 1) & 0x00FF);
ope.address = (readMem(vector1) | (readMem(vector2) << 8)) + reg.Y;
ope.value = readMem(ope.address);
}
// INSTRUCTIONS
static void NOP(){ // NO Operation
}
static void BRK(){ // BReaK
push(((++reg.PC) >> 8) & 0xFF);
push(reg.PC & 0xFF);
push(reg.SR | BREAK);
reg.SR |= INTERRUPT;
reg.PC = readMem(0xFFFE) | (readMem(0xFFFF) << 8);
}
static void CLD(){ // CLear Decimal
reg.SR &= ~DECIMAL;
}
static void SED(){ // SEt Decimal
reg.SR |= DECIMAL;
}
static void CLC(){ // CLear Carry
reg.SR &= ~CARRY;
}
static void SEC(){ // SEt Carry
reg.SR |= CARRY;
}
static void CLI(){ // CLear Interrupt
reg.SR &= ~INTERRUPT;
}
static void SEI(){ // SEt Interrupt
reg.SR |= INTERRUPT;
}
static void CLV(){ // CLear oVerflow
reg.SR &= ~OVERFLOW;
}
static void LDA(){ // LoaD Accumulator
setSZ(reg.A=ope.value);
}
static void LDX(){ // LoaD X
setSZ(reg.X=ope.value);
}
static void LDY(){ // LoaD Y
setSZ(reg.Y=ope.value);
}
static void STA(){ // STore Accumulator
writeMem(ope.address, reg.A);
}
static void STX(){ // STore X
writeMem(ope.address, reg.X);
}
static void STY(){ // STore Y
writeMem(ope.address, reg.Y);
}
static void DEC(){ // DECrement
writeMem(ope.address, --ope.value);
setSZ(ope.value);
}
static void DEX(){ // DEcrement X
setSZ(--reg.X);
}
static void DEY(){ // DEcrement Y
setSZ(--reg.Y);
}
static void INC(){ // INCrement
writeMem(ope.address, ++ope.value);
setSZ(ope.value);
}
static void INX(){ // INcrement X
setSZ(++reg.X);
}
static void INY(){ // INcrement Y
setSZ(++reg.Y);
}
static void TAX(){ // Transfer Accumulator to X
setSZ(reg.X=reg.A);
}
static void TAY(){ // Transfer Accumulator to Y
setSZ(reg.Y=reg.A);
}
static void TXA(){ // Transfer X to Accumulator
setSZ(reg.A=reg.X);
}
static void TYA(){ // Transfer Y to Accumulator
setSZ(reg.A=reg.Y);
}
static void TSX(){ // Transfer Sp to X
setSZ(reg.X=reg.SP);
}
static void TXS(){ // Transfer X to Sp
reg.SP = reg.X;
}
static void BEQ(){ // Branch on EQual (zero set)
if (reg.SR & ZERO) reg.PC += ope.address;
}
static void BNE(){ // Branch on Not Equal (zero clear)
if (!(reg.SR & ZERO)) reg.PC += ope.address;
}
static void BMI(){ // Branch if MInus (ie when negative, when SIGN is set)
if (reg.SR & SIGN) reg.PC += ope.address;
}
static void BPL(){ // Branch if PLus (ie when positive, when SIGN is clear)
if (!(reg.SR & SIGN)) reg.PC += ope.address;
}
static void BVS(){ // Branch on oVerflow Set
if (reg.SR & OVERFLOW) reg.PC += ope.address;
}
static void BVC(){ // Branch on oVerflow Clear
if (!(reg.SR & OVERFLOW)) reg.PC += ope.address;
}
static void BCS(){ // Branch on Carry Set
if (reg.SR & CARRY) reg.PC +=ope.address;
}
static void BCC(){ // Branch on Carry Clear
if (!(reg.SR & CARRY)) reg.PC += ope.address;
}
static void PHA(){ // PusH A to the stack
push(reg.A);
}
static void PLA(){ // PulL stack into A
setSZ(reg.A=pull());
}
static void PHP(){ // PusH Programm (Status) register to the stack
push(reg.SR | BREAK);
}
static void PLP(){ // PulL stack into Programm (SR) register
reg.SR = pull() | UNDEFINED;
}
static void JMP(){ // JuMP
reg.PC = ope.address;
}
static void JSR(){ // Jump Sub-Routine
push((--reg.PC >> 8) & 0xFF);
push(reg.PC & 0xFF);
reg.PC = ope.address;
}
static void RTS(){ // ReTurn from Sub-routine
reg.PC = (pull() | (pull() << 8)) + 1;
}
static void RTI(){ // ReTurn from Interrupt
reg.SR = pull();
reg.PC = pull() | (pull() << 8);
}
static void CMP(){ // Compare with A
setSZ(reg.A - ope.value);
if (reg.A >= ope.value) reg.SR |= CARRY;
else reg.SR &= ~CARRY;
}
static void CPX(){ // Compare with X
setSZ(reg.X - ope.value);
if (reg.X >= ope.value) reg.SR |= CARRY;
else reg.SR &= ~CARRY;
}
static void CPY(){ // Compare with Y
setSZ(reg.Y - ope.value);
if (reg.Y >= ope.value) reg.SR |= CARRY;
else reg.SR &= ~CARRY;
}
static void AND(){ // AND with A
setSZ(reg.A &= ope.value);
}
static void ORA(){ // OR with A
setSZ(reg.A |= ope.value);
}
static void EOR(){ // Exclusive Or with A
setSZ(reg.A ^= ope.value);
}
static void BIT(){ // BIT with A - http://www.6502.org/tutorials/vflag.html
if (reg.A & ope.value) reg.SR &= ~ZERO;
else reg.SR |= ZERO;
reg.SR = (reg.SR & 0x3F) | (ope.value & 0xC0); // update SIGN & OVERFLOW
}
static void makeUpdates(uint8_t val){
if (ope.setAcc) {
reg.A = val;
ope.setAcc = false;
}
else writeMem(ope.address, val);
setSZ(val);
}
static void ASL(){ // Arithmetic Shift Left
uint16_t result = (ope.value << 1);
if (result & 0xFF00) reg.SR |= CARRY;
else reg.SR &= ~CARRY;
makeUpdates((uint8_t)(result & 0xFF));
}
static void LSR(){ // Logical Shift Right
if (ope.value & 1) reg.SR |= CARRY;
else reg.SR &= ~CARRY;
makeUpdates((uint8_t)((ope.value >> 1) & 0xFF));
}
static void ROL(){ // ROtate Left
uint16_t result = ((ope.value << 1) | (reg.SR & CARRY));
if (result & 0x100) reg.SR |= CARRY;
else reg.SR &= ~CARRY;
makeUpdates((uint8_t)(result & 0xFF));
}
static void ROR(){ // ROtate Right
uint16_t result = (ope.value >> 1) | ((reg.SR & CARRY) << 7);
if (ope.value & 0x1) reg.SR |= CARRY;
else reg.SR &= ~CARRY;
makeUpdates((uint8_t)(result & 0xFF));
}
static void ADC(){ // ADd with Carry
uint16_t result = reg.A + ope.value + (reg.SR & CARRY);
setSZ(result);
if (((result)^(reg.A )) & ((result)^(ope.value)) & 0x80) reg.SR |= OVERFLOW;
else reg.SR &= ~OVERFLOW;
if (reg.SR&DECIMAL) result += ((((result+0x66)^reg.A^ope.value)>>3) & 0x22)*3;
if (result & 0xFF00) reg.SR |= CARRY;
else reg.SR &= ~CARRY;
reg.A = (result & 0xFF);
}
static void SBC(){ // SuBtract with Carry : forum.6502.org/viewtopic.php?t=475
ope.value ^= 0xFF;
if (reg.SR & DECIMAL) ope.value -= 0x66;
uint16_t result = reg.A + ope.value + (reg.SR & CARRY);
setSZ(result);
if (((result)^(reg.A )) & ((result)^(ope.value)) & 0x80) reg.SR |= OVERFLOW;
else reg.SR &= ~OVERFLOW;
if (reg.SR&DECIMAL) result += ((((result+0x66)^reg.A^ope.value)>>3) & 0x22)*3;
if (result & 0xFF00) reg.SR |= CARRY;
else reg.SR &= ~CARRY;
reg.A = (result & 0xFF);
}
static void UND(){ // UNDefined (not a valid or supported 6502 opcode)
}
// JUMP TABLES
static void (*instruction[])(void) = {
BRK, ORA, UND, UND, UND, ORA, ASL, UND, PHP, ORA, ASL, UND, UND, ORA, ASL, UND,
BPL, ORA, UND, UND, UND, ORA, ASL, UND, CLC, ORA, UND, UND, UND, ORA, ASL, UND,
JSR, AND, UND, UND, BIT, AND, ROL, UND, PLP, AND, ROL, UND, BIT, AND, ROL, UND,
BMI, AND, UND, UND, UND, AND, ROL, UND, SEC, AND, UND, UND, UND, AND, ROL, UND,
RTI, EOR, UND, UND, UND, EOR, LSR, UND, PHA, EOR, LSR, UND, JMP, EOR, LSR, UND,
BVC, EOR, UND, UND, UND, EOR, LSR, UND, CLI, EOR, UND, UND, UND, EOR, LSR, UND,
RTS, ADC, UND, UND, UND, ADC, ROR, UND, PLA, ADC, ROR, UND, JMP, ADC, ROR, UND,
BVS, ADC, UND, UND, UND, ADC, ROR, UND, SEI, ADC, UND, UND, UND, ADC, ROR, UND,
UND, STA, UND, UND, STY, STA, STX, UND, DEY, UND, TXA, UND, STY, STA, STX, UND,
BCC, STA, UND, UND, STY, STA, STX, UND, TYA, STA, TXS, UND, UND, STA, UND, UND,
LDY, LDA, LDX, UND, LDY, LDA, LDX, UND, TAY, LDA, TAX, UND, LDY, LDA, LDX, UND,
BCS, LDA, UND, UND, LDY, LDA, LDX, UND, CLV, LDA, TSX, UND, LDY, LDA, LDX, UND,
CPY, CMP, UND, UND, CPY, CMP, DEC, UND, INY, CMP, DEX, UND, CPY, CMP, DEC, UND,
BNE, CMP, UND, UND, UND, CMP, DEC, UND, CLD, CMP, UND, UND, UND, CMP, DEC, UND,
CPX, SBC, UND, UND, CPX, SBC, INC, UND, INX, SBC, NOP, UND, CPX, SBC, INC, UND,
BEQ, SBC, UND, UND, UND, SBC, INC, UND, SED, SBC, UND, UND, UND, SBC, INC, UND
};
static void (*addressing[])(void) = {
IMP, IDX, IMP, IMP, IMP, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, IMP, ABS, ABS, IMP,
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
ABS, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, ABS, ABS, ABS, IMP,
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
IMP, IDX, IMP, IMP, IMP, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, ABS, ABS, ABS, IMP,
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
IMP, IDX, IMP, IMP, IMP, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, IND, ABS, ABS, IMP,
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
IMP, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMP, IMP, IMP, ABS, ABS, ABS, IMP,
REL, IDY, IMP, IMP, ZPX, ZPX, ZPY, IMP, IMP, ABY, IMP, IMP, IMP, ABX, IMP, IMP,
IMM, IDX, IMM, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, IMP, IMP, ABS, ABS, ABS, IMP,
REL, IDY, IMP, IMP, ZPX, ZPX, ZPY, IMP, IMP, ABY, IMP, IMP, ABX, ABX, ABY, IMP,
IMM, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, IMP, IMP, ABS, ABS, ABS, IMP,
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
IMM, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, IMP, IMP, ABS, ABS, ABS, IMP,
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP
};
// PROGRAM ENTRY POINT
int main(int argc, char *argv[]) {
const uint16_t offsetsForRows[24] = { // helper for video generation
0x400, 0x480, 0x500, 0x580, 0x600, 0x680, 0x700, 0x780,
0x428, 0x4A8, 0x528, 0x5A8, 0x628, 0x6A8, 0x728, 0x7A8,
0x450, 0x4D0, 0x550, 0x5D0, 0x650, 0x6D0, 0x750, 0x7D0
};
uint8_t opcode, glyph;
int ch;
// ncurses initialization
initscr();
raw();
noecho();
curs_set(0);
qiflush();
keypad (stdscr, TRUE);
nodelay (stdscr, TRUE);
scrollok (stdscr, FALSE);
// load the original Apple][ ROM, including the Programmer's Aid at $D000
FILE *f=fopen("appleII.rom","rb");
if (f != NULL) fread(rom, sizeof(uint8_t), ROMSIZE, f);
fclose(f);
// processor reset
reset();
// main loop
while(1){
for (int i=0; i<100; i++){ // execute 100 instructions before a kbd scan
opcode = readMem(reg.PC++); // FETCH and increment the Program Counter
addressing[opcode](); // DECODE operands against the addressing mode
instruction[opcode](); // EXECUTE the instruction
}
// slow down emulation
napms(0.6);
// keyboard controller
if ((key < 0x80) && ((ch = getch()) != ERR)){
if (ch == KEY_F( 7)) reset(); // F7, processor reset
if (ch == KEY_F(12)) { endwin(); return(0); } // F12, exit program
switch(key=(uint8_t)ch){ // key translations
case 0x0A: key = 0x0D; break; // LF to CR
case 0x04: key = 0x08; break; // LEFT to BS
case 0x05: key = 0x15; break; // RIGHT to NAK
case 0x07: key = 0x08; break; // BELL to BS (!?)
}
if ((key>0x60) && (key<0x7B)) key&=0xDF; // to upper case
key |= 0x80; // set bit 7
}
// video controller - page 1 text mode only
if (videoNeedsRefresh){ // if content changed
videoNeedsRefresh = false;
for (int row=0; row<24; row++){ // for each row
move(row,0);
for (int col=0; col<40; col++){ // for each column
glyph = ram[offsetsForRows[row] + col]; // read video memory
if (glyph == '`') glyph = '_'; // change cursor shape
if (glyph < 0x40) attrset(A_REVERSE); // is REVERSE ?
else if (glyph > 0x7F) attrset(A_NORMAL); // is NORMAL ?
else attrset(A_BLINK); // is FLASHING ?
glyph &= 0x7F; // unset bit 7
if (glyph > 0x5F) glyph &= 0x3F; // shifts to match
if (glyph < 0x20) glyph |= 0x40; // the ASCII codes
addch(glyph); // print the glyph
}
}
}
}
}