/*************************************************************************** ay8910.cpp Emulation of the AY-3-8910 / YM2149 sound chip. Based on various code snippets by Ville Hallik, Michael Cuddy, Tatsuyuki Satoh, Fabrice Frances, Nicola Salmoria. ***************************************************************************/ // // From mame.txt (http://www.mame.net/readme.html) // // VI. Reuse of Source Code // -------------------------- // This chapter might not apply to specific portions of MAME (e.g. CPU // emulators) which bear different copyright notices. // The source code cannot be used in a commercial product without the written // authorization of the authors. Use in non-commercial products is allowed, and // indeed encouraged. If you use portions of the MAME source code in your // program, however, you must make the full source code freely available as // well. // Usage of the _information_ contained in the source code is free for any use. // However, given the amount of time and energy it took to collect this // information, if you find new information we would appreciate if you made it // freely available as well. // // JLH: Commented out MAME specific crap #include "ay8910.h" #include // for memset() #define MAX_OUTPUT 0x7FFF // See AY8910_set_clock() for definition of STEP #define STEP 0x8000 struct AY8910 { int Channel; int SampleRate; // mem_read_handler PortAread; // mem_read_handler PortBread; // mem_write_handler PortAwrite; // mem_write_handler PortBwrite; int register_latch; unsigned char Regs[16]; int lastEnable; unsigned int UpdateStep; int PeriodA, PeriodB, PeriodC, PeriodN, PeriodE; int CountA, CountB, CountC, CountN, CountE; unsigned int VolA, VolB, VolC, VolE; unsigned char EnvelopeA, EnvelopeB, EnvelopeC; unsigned char OutputA, OutputB, OutputC, OutputN; signed char CountEnv; unsigned char Hold, Alternate, Attack, Holding; int RNG; unsigned int VolTable[32]; }; /* register id's */ #define AY_AFINE (0) #define AY_ACOARSE (1) #define AY_BFINE (2) #define AY_BCOARSE (3) #define AY_CFINE (4) #define AY_CCOARSE (5) #define AY_NOISEPER (6) #define AY_ENABLE (7) #define AY_AVOL (8) #define AY_BVOL (9) #define AY_CVOL (10) #define AY_EFINE (11) #define AY_ECOARSE (12) #define AY_ESHAPE (13) #define AY_PORTA (14) #define AY_PORTB (15) static struct AY8910 AYPSG[MAX_8910]; /* array of PSG's */ void _AYWriteReg(int n, int r, int v) { struct AY8910 *PSG = &AYPSG[n]; int old; PSG->Regs[r] = v; /* A note about the period of tones, noise and envelope: for speed reasons, * * we count down from the period to 0, but careful studies of the chip * * output prove that it instead counts up from 0 until the counter becomes * * greater or equal to the period. This is an important difference when the * * program is rapidly changing the period to modulate the sound. * * To compensate for the difference, when the period is changed we adjust * * our internal counter. * * Also, note that period = 0 is the same as period = 1. This is mentioned * * in the YM2203 data sheets. However, this does NOT apply to the Envelope * * period. In that case, period = 0 is half as period = 1. */ switch (r) { case AY_AFINE: case AY_ACOARSE: PSG->Regs[AY_ACOARSE] &= 0x0F; old = PSG->PeriodA; PSG->PeriodA = (PSG->Regs[AY_AFINE] + 256 * PSG->Regs[AY_ACOARSE]) * PSG->UpdateStep; if (PSG->PeriodA == 0) PSG->PeriodA = PSG->UpdateStep; PSG->CountA += PSG->PeriodA - old; if (PSG->CountA <= 0) PSG->CountA = 1; break; case AY_BFINE: case AY_BCOARSE: PSG->Regs[AY_BCOARSE] &= 0x0F; old = PSG->PeriodB; PSG->PeriodB = (PSG->Regs[AY_BFINE] + 256 * PSG->Regs[AY_BCOARSE]) * PSG->UpdateStep; if (PSG->PeriodB == 0) PSG->PeriodB = PSG->UpdateStep; PSG->CountB += PSG->PeriodB - old; if (PSG->CountB <= 0) PSG->CountB = 1; break; case AY_CFINE: case AY_CCOARSE: PSG->Regs[AY_CCOARSE] &= 0x0F; old = PSG->PeriodC; PSG->PeriodC = (PSG->Regs[AY_CFINE] + 256 * PSG->Regs[AY_CCOARSE]) * PSG->UpdateStep; if (PSG->PeriodC == 0) PSG->PeriodC = PSG->UpdateStep; PSG->CountC += PSG->PeriodC - old; if (PSG->CountC <= 0) PSG->CountC = 1; break; case AY_NOISEPER: PSG->Regs[AY_NOISEPER] &= 0x1F; old = PSG->PeriodN; PSG->PeriodN = PSG->Regs[AY_NOISEPER] * PSG->UpdateStep; if (PSG->PeriodN == 0) PSG->PeriodN = PSG->UpdateStep; PSG->CountN += PSG->PeriodN - old; if (PSG->CountN <= 0) PSG->CountN = 1; break; case AY_ENABLE: if ((PSG->lastEnable == -1) || ((PSG->lastEnable & 0x40) != (PSG->Regs[AY_ENABLE] & 0x40))) { /* write out 0xff if port set to input */ // if (PSG->PortAwrite) // (*PSG->PortAwrite)(0, (UINT8) ((PSG->Regs[AY_ENABLE] & 0x40) ? PSG->Regs[AY_PORTA] : 0xff)); // [TC: UINT8 cast] } if ((PSG->lastEnable == -1) || ((PSG->lastEnable & 0x80) != (PSG->Regs[AY_ENABLE] & 0x80))) { /* write out 0xff if port set to input */ // if (PSG->PortBwrite) // (*PSG->PortBwrite)(0, (UINT8) ((PSG->Regs[AY_ENABLE] & 0x80) ? PSG->Regs[AY_PORTB] : 0xff)); // [TC: UINT8 cast] } PSG->lastEnable = PSG->Regs[AY_ENABLE]; break; case AY_AVOL: PSG->Regs[AY_AVOL] &= 0x1F; PSG->EnvelopeA = PSG->Regs[AY_AVOL] & 0x10; PSG->VolA = PSG->EnvelopeA ? PSG->VolE : PSG->VolTable[PSG->Regs[AY_AVOL] ? PSG->Regs[AY_AVOL]*2+1 : 0]; break; case AY_BVOL: PSG->Regs[AY_BVOL] &= 0x1F; PSG->EnvelopeB = PSG->Regs[AY_BVOL] & 0x10; PSG->VolB = PSG->EnvelopeB ? PSG->VolE : PSG->VolTable[PSG->Regs[AY_BVOL] ? PSG->Regs[AY_BVOL]*2+1 : 0]; break; case AY_CVOL: PSG->Regs[AY_CVOL] &= 0x1F; PSG->EnvelopeC = PSG->Regs[AY_CVOL] & 0x10; PSG->VolC = PSG->EnvelopeC ? PSG->VolE : PSG->VolTable[PSG->Regs[AY_CVOL] ? PSG->Regs[AY_CVOL]*2+1 : 0]; break; case AY_EFINE: case AY_ECOARSE: old = PSG->PeriodE; PSG->PeriodE = ((PSG->Regs[AY_EFINE] + 256 * PSG->Regs[AY_ECOARSE])) * PSG->UpdateStep; if (PSG->PeriodE == 0) PSG->PeriodE = PSG->UpdateStep / 2; PSG->CountE += PSG->PeriodE - old; if (PSG->CountE <= 0) PSG->CountE = 1; break; case AY_ESHAPE: /* envelope shapes: C AtAlH 0 0 x x \___ 0 1 x x /___ 1 0 0 0 \\\\ 1 0 0 1 \___ 1 0 1 0 \/\/ ___ 1 0 1 1 \ 1 1 0 0 //// ___ 1 1 0 1 / 1 1 1 0 /\/\ 1 1 1 1 /___ The envelope counter on the AY-3-8910 has 16 steps. On the YM2149 it has twice the steps, happening twice as fast. Since the end result is just a smoother curve, we always use the YM2149 behaviour. */ PSG->Regs[AY_ESHAPE] &= 0x0F; PSG->Attack = (PSG->Regs[AY_ESHAPE] & 0x04) ? 0x1F : 0x00; if ((PSG->Regs[AY_ESHAPE] & 0x08) == 0) { /* if Continue = 0, map the shape to the equivalent one which has Continue = 1 */ PSG->Hold = 1; PSG->Alternate = PSG->Attack; } else { PSG->Hold = PSG->Regs[AY_ESHAPE] & 0x01; PSG->Alternate = PSG->Regs[AY_ESHAPE] & 0x02; } PSG->CountE = PSG->PeriodE; PSG->CountEnv = 0x1F; PSG->Holding = 0; PSG->VolE = PSG->VolTable[PSG->CountEnv ^ PSG->Attack]; if (PSG->EnvelopeA) PSG->VolA = PSG->VolE; if (PSG->EnvelopeB) PSG->VolB = PSG->VolE; if (PSG->EnvelopeC) PSG->VolC = PSG->VolE; break; case AY_PORTA: if (PSG->Regs[AY_ENABLE] & 0x40) { // if (PSG->PortAwrite) // (*PSG->PortAwrite)(0, PSG->Regs[AY_PORTA]); // else // logerror("PC %04x: warning - write %02x to 8910 #%d Port A\n",activecpu_get_pc(),PSG->Regs[AY_PORTA],n); } else { // logerror("warning: write to 8910 #%d Port A set as input - ignored\n",n); } break; case AY_PORTB: if (PSG->Regs[AY_ENABLE] & 0x80) { // if (PSG->PortBwrite) // (*PSG->PortBwrite)(0, PSG->Regs[AY_PORTB]); // else // logerror("PC %04x: warning - write %02x to 8910 #%d Port B\n",activecpu_get_pc(),PSG->Regs[AY_PORTB],n); } else { // logerror("warning: write to 8910 #%d Port B set as input - ignored\n",n); } break; } } // /length/ is the number of samples we require // NB. This should be called at twice the 6522 IRQ rate or (eg) 60Hz if no IRQ. void AY8910Update(int chip, int16_t ** buffer, int length) // [TC: Removed static] { struct AY8910 * PSG = &AYPSG[chip]; int16_t * buf1, * buf2, * buf3; int outn; buf1 = buffer[0]; buf2 = buffer[1]; buf3 = buffer[2]; /* The 8910 has three outputs, each output is the mix of one of the three * * tone generators and of the (single) noise generator. The two are mixed * * BEFORE going into the DAC. The formula to mix each channel is: * * (ToneOn | ToneDisable) & (NoiseOn | NoiseDisable). * * Note that this means that if both tone and noise are disabled, the output * * is 1, not 0, and can be modulated changing the volume. * * * * If the channels are disabled, set their output to 1, and increase the * * counter, if necessary, so they will not be inverted during this update. * * Setting the output to 1 is necessary because a disabled channel is locked * * into the ON state (see above); and it has no effect if the volume is 0. * * If the volume is 0, increase the counter, but don't touch the output. */ if (PSG->Regs[AY_ENABLE] & 0x01) { if (PSG->CountA <= length * STEP) PSG->CountA += length * STEP; PSG->OutputA = 1; } else if (PSG->Regs[AY_AVOL] == 0) { /* note that I do count += length, NOT count = length + 1. You might think * * it's the same since the volume is 0, but doing the latter could cause * * interferencies when the program is rapidly modulating the volume. */ if (PSG->CountA <= length * STEP) PSG->CountA += length * STEP; } if (PSG->Regs[AY_ENABLE] & 0x02) { if (PSG->CountB <= length * STEP) PSG->CountB += length * STEP; PSG->OutputB = 1; } else if (PSG->Regs[AY_BVOL] == 0) { if (PSG->CountB <= length * STEP) PSG->CountB += length * STEP; } if (PSG->Regs[AY_ENABLE] & 0x04) { if (PSG->CountC <= length * STEP) PSG->CountC += length * STEP; PSG->OutputC = 1; } else if (PSG->Regs[AY_CVOL] == 0) { if (PSG->CountC <= length * STEP) PSG->CountC += length * STEP; } /* for the noise channel we must not touch OutputN - it's also not necessary * * since we use outn. */ if ((PSG->Regs[AY_ENABLE] & 0x38) == 0x38) /* all off */ if (PSG->CountN <= length * STEP) PSG->CountN += length * STEP; outn = (PSG->OutputN | PSG->Regs[AY_ENABLE]); /* buffering loop */ while (length) { int vola, volb, volc; int left; /* vola, volb and volc keep track of how long each square wave stays * * in the 1 position during the sample period. */ vola = volb = volc = 0; left = STEP; do { int nextevent; if (PSG->CountN < left) nextevent = PSG->CountN; else nextevent = left; if (outn & 0x08) { if (PSG->OutputA) vola += PSG->CountA; PSG->CountA -= nextevent; /* PeriodA is the half period of the square wave. Here, in each * * loop I add PeriodA twice, so that at the end of the loop the * * square wave is in the same status (0 or 1) it was at the start. * * vola is also incremented by PeriodA, since the wave has been 1 * * exactly half of the time, regardless of the initial position. * * If we exit the loop in the middle, OutputA has to be inverted * * and vola incremented only if the exit status of the square * * wave is 1. */ while (PSG->CountA <= 0) { PSG->CountA += PSG->PeriodA; if (PSG->CountA > 0) { PSG->OutputA ^= 1; if (PSG->OutputA) vola += PSG->PeriodA; break; } PSG->CountA += PSG->PeriodA; vola += PSG->PeriodA; } if (PSG->OutputA) vola -= PSG->CountA; } else { PSG->CountA -= nextevent; while (PSG->CountA <= 0) { PSG->CountA += PSG->PeriodA; if (PSG->CountA > 0) { PSG->OutputA ^= 1; break; } PSG->CountA += PSG->PeriodA; } } if (outn & 0x10) { if (PSG->OutputB) volb += PSG->CountB; PSG->CountB -= nextevent; while (PSG->CountB <= 0) { PSG->CountB += PSG->PeriodB; if (PSG->CountB > 0) { PSG->OutputB ^= 1; if (PSG->OutputB) volb += PSG->PeriodB; break; } PSG->CountB += PSG->PeriodB; volb += PSG->PeriodB; } if (PSG->OutputB) volb -= PSG->CountB; } else { PSG->CountB -= nextevent; while (PSG->CountB <= 0) { PSG->CountB += PSG->PeriodB; if (PSG->CountB > 0) { PSG->OutputB ^= 1; break; } PSG->CountB += PSG->PeriodB; } } if (outn & 0x20) { if (PSG->OutputC) volc += PSG->CountC; PSG->CountC -= nextevent; while (PSG->CountC <= 0) { PSG->CountC += PSG->PeriodC; if (PSG->CountC > 0) { PSG->OutputC ^= 1; if (PSG->OutputC) volc += PSG->PeriodC; break; } PSG->CountC += PSG->PeriodC; volc += PSG->PeriodC; } if (PSG->OutputC) volc -= PSG->CountC; } else { PSG->CountC -= nextevent; while (PSG->CountC <= 0) { PSG->CountC += PSG->PeriodC; if (PSG->CountC > 0) { PSG->OutputC ^= 1; break; } PSG->CountC += PSG->PeriodC; } } PSG->CountN -= nextevent; if (PSG->CountN <= 0) { /* Is noise output going to change? */ if ((PSG->RNG + 1) & 0x00002) /* (bit0^bit1)? */ { PSG->OutputN = ~PSG->OutputN; outn = (PSG->OutputN | PSG->Regs[AY_ENABLE]); } /* The Random Number Generator of the 8910 is a 17-bit shift * * register. The input to the shift register is bit0 XOR bit3 * * (bit0 is the output). This was verified on AY-3-8910 and * * YM2149 chips. * * * * The following is a fast way to compute bit17 = bit0^bit3. * * Instead of doing all the logic operations, we only check * * bit0, relying on the fact that after three shifts of the * * register, what now is bit3 will become bit0, and will * * invert, if necessary, bit14, which previously was bit17. */ if (PSG->RNG & 0x00001) PSG->RNG ^= 0x24000; /* This version is called the "Galois configuration". */ PSG->RNG >>= 1; PSG->CountN += PSG->PeriodN; } left -= nextevent; } while (left > 0); /* update envelope */ if (PSG->Holding == 0) { PSG->CountE -= STEP; if (PSG->CountE <= 0) { do { PSG->CountEnv--; PSG->CountE += PSG->PeriodE; } while (PSG->CountE <= 0); /* check envelope current position */ if (PSG->CountEnv < 0) { if (PSG->Hold) { if (PSG->Alternate) PSG->Attack ^= 0x1F; PSG->Holding = 1; PSG->CountEnv = 0; } else { /* if CountEnv has looped an odd number of times (usually 1), * * invert the output. */ if (PSG->Alternate && (PSG->CountEnv & 0x20)) PSG->Attack ^= 0x1F; PSG->CountEnv &= 0x1F; } } PSG->VolE = PSG->VolTable[PSG->CountEnv ^ PSG->Attack]; /* reload volume */ if (PSG->EnvelopeA) PSG->VolA = PSG->VolE; if (PSG->EnvelopeB) PSG->VolB = PSG->VolE; if (PSG->EnvelopeC) PSG->VolC = PSG->VolE; } } #if 0 *(buf1++) = (vola * PSG->VolA) / STEP; *(buf2++) = (volb * PSG->VolB) / STEP; *(buf3++) = (volc * PSG->VolC) / STEP; #else // [Tom's code...] // Output PCM wave [-32768...32767] instead of MAME's voltage level [0...32767] // - This allows for better s/w mixing if (PSG->VolA) { if (vola) *(buf1++) = (vola * PSG->VolA) / STEP; else *(buf1++) = -(int)PSG->VolA; } else *(buf1++) = 0; if (PSG->VolB) { if (volb) *(buf2++) = (volb * PSG->VolB) / STEP; else *(buf2++) = -(int)PSG->VolB; } else *(buf2++) = 0; if (PSG->VolC) { if (volc) *(buf3++) = (volc * PSG->VolC) / STEP; else *(buf3++) = -(int)PSG->VolC; } else *(buf3++) = 0; #endif length--; } } static void AY8910_set_clock(int chip, int clock) { struct AY8910 * PSG = &AYPSG[chip]; /* The step clock for the tone and noise generators is the chip clock * * divided by 8; for the envelope generator of the AY-3-8910, it is half * * that much (clock/16), but the envelope of the YM2149 goes twice as * * fast, therefore again clock/8. * * Here we calculate the number of steps which happen during one sample * * at the given sample rate. No. of events = sample rate / (clock/8). * * STEP is a multiplier used to turn the fraction into a fixed point * * number. */ PSG->UpdateStep = (unsigned int)(((double)STEP * PSG->SampleRate * 8 + clock / 2) / clock); // [TC: unsigned int cast] } static void build_mixer_table(int chip) { struct AY8910 * PSG = &AYPSG[chip]; /* calculate the volume->voltage conversion table */ /* The AY-3-8910 has 16 levels, in a logarithmic scale (3dB per step) */ /* The YM2149 still has 16 levels for the tone generators, but 32 for */ /* the envelope generator (1.5dB per step). */ double out = MAX_OUTPUT; for(int i=31; i>0; i--) { PSG->VolTable[i] = (unsigned int)(out + 0.5); /* round to nearest */ // [TC: unsigned int cast] out /= 1.188502227; /* = 10 ^ (1.5/20) = 1.5dB */ } PSG->VolTable[0] = 0; } void AY8910_reset(int chip) { int i; struct AY8910 * PSG = &AYPSG[chip]; PSG->register_latch = 0; PSG->RNG = 1; PSG->OutputA = 0; PSG->OutputB = 0; PSG->OutputC = 0; PSG->OutputN = 0xFF; PSG->lastEnable = -1; /* force a write */ for(i=0; iSampleRate = sampleRate; AY8910_set_clock(chip, clock); build_mixer_table(chip); } } void AY8910_InitClock(int clock) { for(int chip=0; chip= MAX_8910) return NULL; return &AYPSG[chipNum].Regs[0]; }