ORCA-C/CGI.pas

1487 lines
54 KiB
ObjectPascal
Raw Normal View History

{$optimize 7}
{---------------------------------------------------------------}
{ }
{ ORCA Code Generator Interface }
{ }
{ This unit serves as the glue code attaching a compiler }
{ to the code generator. It provides subroutines in a }
{ format that is convenient for the compiler during }
{ semantic analysis, and produces intermediate code records }
{ as output. These intermediate code records are then }
{ passed on to the code generator for optimization and }
{ native code generation. }
{ }
{ copy 'cgi.comments'}
{---------------------------------------------------------------}
unit CodeGeneratorInterface;
interface
{$segment 'CG'}
{$LibPrefix '0/obj/'}
uses CCommon;
const
{Error interface: these constants map }
{code generator error numbers into the }
{numbers used by the compiler's Error }
{subroutine. }
{--------------------------------------}
cge1 = 57; {compiler error}
cge2 = 58; {implementation restriction: too many local labels}
cge3 = 60; {implementation restriction: string space exhausted}
{65816 native code generation}
{----------------------------}
{instruction modifier flags}
shift8 = 1; {shift operand right 8 bits}
shift16 = 2; {shift operand right 16 bits}
toolCall = 4; {generate a tool call}
stringReference = 8; {generate a string reference}
isPrivate = 32; {is the label private?}
constantOpnd = 64; {the absolute operand is a constant}
localLab = 128; {the operand is a local lab}
forFlags = 256; {instruction used for effect on flags only}
subtract1 = 512; {subtract 1 from address operand}
shiftLeft8 = 1024; {shift operand left 8 bits}
m_adc_abs = $6D; {op code #s for 65816 instructions}
m_adc_dir = $65;
m_adc_imm = $69;
m_adc_s = $63;
m_adc_indl = $67;
m_adc_indly = $77;
m_and_abs = $2D;
m_and_dir = $25;
m_and_imm = $29;
m_and_s = $23;
m_and_indl = $27;
m_and_indly = $37;
m_asl_a = $0A;
m_bcc = $90;
m_bcs = $B0;
m_beq = $F0;
m_bit_imm = $89;
m_bmi = $30;
m_bne = $D0;
m_bpl = $10;
m_bra = $80;
m_brl = $82;
m_bvs = $70;
m_clc = $18;
m_cmp_abs = $CD;
m_cmp_dir = $C5;
m_cmp_dirX = $D5;
m_cmp_imm = $C9;
m_cmp_long = $CF;
m_cmp_s = $C3;
m_cmp_indl = $C7;
m_cmp_indly = $D7;
m_cop = $02;
m_cpx_abs = 236;
m_cpx_dir = 228;
m_cpx_imm = 224;
m_dea = 58;
m_dec_abs = 206;
m_dec_absX = $DE;
m_dec_dir = 198;
m_dec_dirX = 214;
m_dex = 202;
m_dey = 136;
m_eor_abs = 77;
m_eor_dir = 69;
m_eor_imm = 73;
m_eor_s = 67;
m_eor_indl = $47;
m_eor_indly = $57;
m_ina = 26;
m_inc_abs = 238;
m_inc_absX = $FE;
m_inc_dir = 230;
m_inc_dirX = 246;
m_inx = 232;
m_iny = 200;
m_jml = 92;
m_jmp_indX = $7C;
m_jsl = 34;
m_lda_abs = 173;
m_lda_absx = 189;
m_lda_dir = 165;
m_lda_dirx = 181;
m_lda_imm = 169;
m_lda_indl = 167;
m_lda_indly = 183;
m_lda_long = 175;
m_lda_longx = 191;
m_lda_s = 163;
m_ldx_abs = 174;
m_ldx_dir = 166;
m_ldx_imm = 162;
m_ldy_abs = 172;
m_ldy_absX = 188;
m_ldy_dir = 164;
m_ldy_dirX = 180;
m_ldy_imm = 160;
m_lsr_a = 74;
m_mvn = 84;
m_ora_abs = 13;
m_ora_dir = 5;
m_ora_dirX = 21;
m_ora_imm = 9;
m_ora_long = 15;
m_ora_longX = 31;
m_ora_s = 3;
m_ora_indl = $07;
m_ora_indly = $17;
m_pea = 244;
m_pei_dir = 212;
m_pha = 72;
m_phb = 139;
m_phd = 11;
m_phx = 218;
m_phy = 90;
m_php = 8;
m_pla = 104;
m_plb = 171;
m_pld = 43;
m_plx = 250;
m_ply = 122;
m_plp = 40;
m_rep = 194;
m_rol_a = $2A;
m_ror_a = $6A;
m_rtl = 107;
m_rts = 96;
m_sbc_abs = 237;
m_sbc_dir = 229;
m_sbc_imm = 233;
m_sbc_s = 227;
m_sbc_indl = $E7;
m_sbc_indly = $F7;
m_sec = 56;
m_sep = 226;
m_sta_abs = 141;
m_sta_absX = 157;
m_sta_dir = 133;
m_sta_dirX = 149;
m_sta_indl = 135;
m_sta_indlY = 151;
m_sta_long = 143;
m_sta_longX = 159;
m_sta_s = 131;
m_stx_dir = 134;
m_stx_abs = 142;
m_sty_abs = 140;
m_sty_dir = 132;
m_sty_dirX = 148;
m_stz_abs = 156;
m_stz_absX = 158;
m_stz_dir = 100;
m_stz_dirX = 116;
m_tax = 170;
m_tay = 168;
m_tcd = 91;
m_tcs = 27;
m_tdc = 123;
m_tsx = $BA;
m_txa = 138;
m_txs = $9A;
m_txy = 155;
m_tya = 152;
m_tyx = 187;
m_tsb_dir = $04;
m_tsb_abs = $0C;
m_tsc = 59;
m_xba = $EB;
d_lab = 256;
d_end = 257;
d_bmov = 258;
d_add = 259;
d_pin = 260;
d_wrd = 261;
d_sym = 262;
d_cns = 263;
d_dcb = 264;
d_dcw = 265;
d_dcl = 266;
max_opcode = 266;
asmFlag = $8000; {or'd with opcode to indicate asm code}
{Code Generation}
{---------------}
maxCBuff = 191; {length of constant buffer}
{Note: maxlabel is also defined in CCommon.pas}
{Note: maxlabel is also defined in CGC.asm}
maxLabel = 3275; {max # of internal labels}
maxLocalLabel = 512; {max # local variables}
maxString = 32760; {max # chars in string space}
{size of internal types}
{----------------------}
cgByteSize = 1;
cgWordSize = 2;
cgLongSize = 4;
cgQuadSize = 8;
cgPointerSize = 4;
cgRealSize = 4;
cgDoubleSize = 8;
cgCompSize = 8;
cgExtendedSize = 10;
type
segNameType = packed array[1..10] of char; {segment name}
stringSpaceType = packed array[1..maxstring] of char; {string space}
{p code}
{------}
pcodes = {pcode names}
(pc_adi,pc_adr,pc_and,pc_dvi,pc_dvr,pc_cnn,pc_cnv,pc_ior,pc_mod,pc_mpi,
pc_mpr,pc_ngi,pc_ngr,pc_not,pc_sbi,pc_sbr,pc_sto,pc_dec,dc_loc,pc_ent,
pc_fjp,pc_inc,pc_ind,pc_ixa,pc_lao,pc_lca,pc_ldo,pc_mov,pc_ret,pc_sro,
pc_xjp,pc_cup,pc_equ,pc_geq,pc_grt,pc_lda,pc_ldc,pc_ldl,pc_leq,pc_les,
pc_lil,pc_lld,pc_lli,pc_lod,pc_neq,pc_str,pc_ujp,pc_add,pc_lnm,pc_nam,
pc_cui,pc_lad,pc_tjp,dc_lab,pc_usr,pc_umi,pc_udi,
pc_uim,dc_enp,pc_stk,dc_glb,dc_dst,dc_str,pc_cop,pc_cpo,pc_tl1,
dc_pin,pc_shl,pc_shr,pc_bnd,pc_bor,pc_bxr,pc_bnt,pc_bnl,pc_mpl,pc_dvl,
pc_mdl,pc_sll,pc_slr,pc_bal,pc_ngl,pc_adl,pc_sbl,pc_blr,pc_blx,
dc_sym,pc_lnd,pc_lor,pc_vsr,pc_uml,pc_udl,pc_ulm,pc_pop,pc_gil,
pc_gli,pc_gdl,pc_gld,pc_cpi,pc_tri,pc_lbu,pc_lbf,pc_sbf,pc_cbf,dc_cns,
dc_prm,pc_nat,pc_bno,pc_nop,pc_psh,pc_ili,pc_iil,pc_ild,pc_idl,
pc_bqr,pc_bqx,pc_baq,pc_bnq,pc_ngq,pc_adq,pc_sbq,pc_mpq,pc_umq,pc_dvq,
pc_udq,pc_mdq,pc_uqm,pc_slq,pc_sqr,pc_wsr,pc_rbo,pc_fix,pc_rev);
{intermediate code}
{-----------------}
icptr = ^intermediate_code;
intermediate_code = record {intermediate code record}
opcode: pcodes; {operation code}
q,r,s: integer; {operands}
lab: stringPtr; {named label pointer}
next: icptr; {ptr to next statement}
left, right: icptr; {leaves for trees}
parents: integer; {number of parents}
case optype: baseTypeEnum of
cgByte,
cgUByte,
cgWord,
cgUWord : (opnd: longint; llab,slab: integer);
cgLong,
cgULong : (lval: longint);
cgQuad,
cgUQuad : (qval: longlong);
cgReal,
cgDouble,
cgComp,
cgExtended : (rval: extended);
cgString : (
case isByteSeq: boolean of
false : (str: longStringPtr);
true : (data: ptr; len: longint);
);
cgVoid,
ccPointer : (pval: longint; pstr: longStringPtr);
end;
{basic blocks}
{------------}
iclist = ^iclistRecord; {used to form lists of records}
iclistRecord = record
next: iclist;
op: icptr;
end;
blockPtr = ^block; {basic block edges}
blockListPtr = ^blockListRecord; {lists of blocks}
block = record
last, next: blockPtr; {for doubly linked list of blocks}
dfn: integer; {depth first order index}
visited: boolean; {has this node been visited?}
code: icptr; {code in the block}
c_in: iclist; {list of reaching definitions}
c_out: iclist; {valid definitions on exit}
c_gen: iclist; {generated definitions}
dom: blockListPtr; {dominators of this block}
end;
blockListRecord = record {lists of blocks}
next, last: blockListPtr;
dfn: integer;
end;
{65816 native code generation}
{----------------------------}
addressingMode = (implied,immediate, {65816 addressing modes}
longabs,longrelative,relative,absolute,direct,gnrLabel,gnrSpace,
gnrConstant,genaddress,special,longabsolute);
var
{current instruction info}
{------------------------}
isJSL: boolean; {is the current opcode a jsl?}
{65816 native code generation}
{----------------------------}
longA,longI: boolean; {register sizes}
{variables used to control the }
{quality or characteristics of }
{code }
{------------------------------}
checkStack: boolean; {check stack for stack errors?}
cLineOptimize: boolean; {+o flag set?}
code: icptr; {current intermediate code record}
codeGeneration: boolean; {is code generation on?}
commonSubexpression: boolean; {do common subexpression removal?}
currentSegment,defaultSegment: segNameType; {current & default seg names}
segmentKind: integer; {kind field of segment (ored with start/data)}
defaultSegmentKind: integer; {default segment kind}
debugFlag: boolean; {generate debugger calls?}
debugStrFlag: boolean; {gsbug/niftylist debug names?}
dataBank: boolean; {save, restore data bank?}
fastMath: boolean; {do FP math opts that break IEEE rules?}
floatCard: integer; {0 -> SANE; 1 -> FPE}
floatSlot: integer; {FPE slot}
loopOptimizations: boolean; {do loop optimizations?}
noroot: boolean; {prevent creation of .root file?}
npeephole: boolean; {do native code peephole optimizations?}
peephole: boolean; {do peephole optimization?}
profileFlag: boolean; {generate profiling code?}
rangeCheck: boolean; {generate range checks?}
registers: boolean; {do register optimizations?}
rtl: boolean; {return with an rtl?}
saveStack: boolean; {save, restore caller's stack reg?}
smallMemoryModel: boolean; {is the small model in use?}
stackSize: integer; {amount of stack space to reserve}
strictVararg: boolean; {repair stack around vararg calls?}
stringsize: 0..maxstring; {amount of string space left}
stringspace: ^stringSpaceType; {string table}
symLength: integer; {length of debug symbol table}
toolParms: boolean; {generate tool format parameters?}
volatile: boolean; {has a volatile qualifier been used?}
hasVarargsCall: boolean; {does current function call any varargs fns?}
{desk accessory variables}
{------------------------}
isNewDeskAcc: boolean; {is this a new desk acc?}
isClassicDeskAcc: boolean; {is this a classic desk acc?}
isCDev: boolean; {is this a control panel device?}
isNBA: boolean; {is this a new button action?}
isXCMD: boolean; {is this an XCMD?}
openName,closeName,actionName, {names of the required procedures}
initName: stringPtr;
refreshPeriod: integer; {refresh period}
eventMask: integer; {event mask}
menuLine: pString; {name in menu bar}
{DAG construction}
{----------------}
DAGhead: icPtr; {1st ic in DAG list}
DAGblocks: blockPtr; {list of basic blocks}
{---------------------------------------------------------------}
procedure CodeGenFini;
{ terminal processing }
procedure CodeGenInit (keepName: gsosOutStringPtr; keepFlag: integer;
partial: boolean);
{ code generator initialization }
{ }
{ parameters: }
{ keepName - name of the output file }
{ keepFlag - keep status: }
{ 0 - don't keep the output }
{ 1 - create a new object module }
{ 2 - a .root already exists }
{ 3 - at least on .letter file exists }
{ partial - is this a partial compile? }
procedure CodeGenScalarInit;
{ initialize codegen scalars }
{procedure InitWriteCode; {debug}
{ initialize the intermediate code opcode table }
procedure Gen0 (fop: pcodes);
{ generate an implied operand instruction }
{ }
{ parameters: }
{ fop - operation code }
procedure Gen1 (fop: pcodes; fp2: integer);
{ generate an instruction with one numeric operand }
{ }
{ parameters: }
{ fop - operation code }
{ fp2 - operand }
procedure Gen2 (fop: pcodes; fp1, fp2: integer);
{ generate an instruction with two numeric operands }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
procedure Gen3 (fop: pcodes; fp1, fp2, fp3: integer);
{ generate an instruction with three numeric operands }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ fp3 - third operand }
procedure Gen0Name (fop: pcodes; name: stringPtr);
{ generate a p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ name - named label }
procedure Gen1Name (fop: pcodes; fp1: integer; name: stringPtr);
{ generate a one operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ name - named label }
procedure Gen2Name (fop: pcodes; fp1, fp2: integer; name: stringPtr);
{ generate a two operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ name - named label }
procedure Gen0tName (fop: pcodes; tp: baseTypeEnum; name: stringPtr);
{ generate a typed zero operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ tp - base type }
{ name - named label }
procedure Gen1tName (fop: pcodes; fp1: integer; tp: baseTypeEnum;
name: stringPtr);
{ generate a typed one operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ tp - base type }
{ name - named label }
procedure Gen2tName (fop: pcodes; fp1, fp2: integer; tp: baseTypeEnum;
name: stringPtr);
{ generate a typed two operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ tp - base type }
{ name - named label }
procedure Gen0t (fop: pcodes; tp: baseTypeEnum);
{ generate a typed implied operand instruction }
{ }
{ parameters: }
{ fop - operation code }
{ tp - base type }
procedure Gen1t (fop: pcodes; fp1: integer; tp: baseTypeEnum);
{ generate a typed instruction with two numeric operands }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - operand }
{ tp - base type }
procedure Gen2t (fop: pcodes; fp1, fp2: integer; tp: baseTypeEnum);
{ generate a typed instruction with two numeric operands }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ tp - base type }
procedure Gen3t (fop: pcodes; fp1, fp2, fp3: integer; tp: baseTypeEnum);
{ generate a typed instruction with three numeric operands }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ fp3 - second operand }
{ tp - base type }
procedure GenPS (fop: pcodes; str: stringPtr);
{ generate an instruction that uses a p-string operand }
{ }
{ parameters: }
{ fop - operation code }
{ str - pointer to string }
procedure GenS (fop: pcodes; str: longstringPtr);
{ generate an instruction that uses a string operand }
{ }
{ parameters: }
{ fop - operation code }
{ str - pointer to string }
procedure GenBS (fop: pcodes; data: ptr; len: longint);
{ generate an instruction that uses a byte sequence operand }
{ }
{ parameters: }
{ fop - operation code }
{ data - pointer to data }
{ data - length of data }
procedure GenL1 (fop: pcodes; lval: longint; fp1: integer);
{ generate an instruction that uses a longint and an int }
{ }
{ parameters: }
{ lval - longint parameter }
{ fp1 - integer parameter }
procedure GenQ1 (fop: pcodes; qval: longlong; fp1: integer);
{ generate an instruction that uses a longlong and an int }
{ }
{ parameters: }
{ qval - longlong parameter }
{ fp1 - integer parameter }
procedure GenR1t (fop: pcodes; rval: extended; fp1: integer; tp: baseTypeEnum);
{ generate an instruction that uses a real and an int }
{ }
{ parameters: }
{ rval - real parameter }
{ fp1 - integer parameter }
{ tp - base type }
procedure GenLdcLong (lval: longint);
{ load a long constant }
{ }
{ parameters: }
{ lval - value to load }
procedure GenLdcQuad (qval: longlong);
{ load a long long constant }
{ }
{ parameters: }
{ qval - value to load }
procedure GenLdcReal (rval: extended);
{ load a real constant }
{ }
{ parameters: }
{ rval - value to load }
procedure GenTool (fop: pcodes; fp1, fp2: integer; dispatcher: longint);
{ generate a tool call }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - tool number }
{ fp2 - return size }
{ dispatcher - tool entry point }
{procedure PrintBlocks (tag: stringPtr; bp: blockPtr); {debug}
{ print a series of basic blocks }
{ }
{ parameters: }
{ tag - label for lines }
{ bp - first block to print }
function TypeSize (tp: baseTypeEnum): integer;
{ Find the size, in bytes, of a variable }
{ }
{ parameters: }
{ tp - base type of the variable }
{procedure WriteCode (code: icptr); {debug}
{ print an intermediate code instruction }
{ }
{ Parameters: }
{ code - intermediate code instruction to write }
procedure LimitPrecision (var rval: extended; tp: baseTypeEnum);
{ limit the precision and range of a real value to the type. }
{ }
{ parameters: }
{ rval - real value }
{ tp - type to limit precision to }
{------------------------------------------------------------------------------}
implementation
{var
opt: array[pcodes] of packed array[1..3] of char; {debug}
{Imported from CGC.pas:}
function Calloc (bytes: integer): ptr; extern;
{ Allocate memory from a pool and clear it. }
{ }
{ Parameters: }
{ bytes - number of bytes to allocate }
{ ptr - points to the first byte of the allocated memory }
{ }
{ Globals: }
{ useGlobalPool - should the memory come from the global }
{ (or local) pool }
procedure Error (err: integer); extern; {in scanner.pas}
{ flag an error }
{ }
{ err - error number }
function Malloc (bytes: integer): ptr; extern;
{ Allocate memory from a pool. }
{ }
{ Parameters: }
{ bytes - number of bytes to allocate }
{ ptr - points to the first byte of the allocated memory }
{ }
{ Globals: }
{ useGlobalPool - should the memory come from the global }
{ (or local) pool }
procedure InitLabels; extern;
{ initialize the labels array for a procedure }
{Imported from ObjOut.pas:}
procedure CloseObj; extern;
{ close the current obj file }
{Imported from Native.pas:}
procedure InitFile (keepName: gsosOutStringPtr; keepFlag: integer; partial: boolean);
extern;
{ Set up the object file }
{ }
{ parameters: }
{ keepName - name of the output file }
{ keepFlag - keep status: }
{ 0 - don't keep the output }
{ 1 - create a new object module }
{ 2 - a .root already exists }
{ 3 - at least on .letter file exists }
{ partial - is this a partial compile? }
{Imported from DAG.pas:}
procedure DAG (code: icptr); extern;
{ place an op code in a DAG or tree }
{ }
{ parameters: }
{ code - opcode }
{------------------------------------------------------------------------------}
{ copy 'cgi.debug'} {debug}
procedure CodeGenInit {keepName: gsosOutStringPtr; keepFlag: integer;
partial: boolean};
{ code generator initialization }
{ }
{ parameters: }
{ keepName - name of the output file }
{ keepFlag - keep status: }
{ 0 - don't keep the output }
{ 1 - create a new object module }
{ 2 - a .root already exists }
{ 3 - at least on .letter file exists }
{ partial - is this a partial compile? }
begin {CodeGenInit}
{initialize the debug tables {debug}
{InitWriteCode; {debug}
{initialize the label table}
InitLabels;
codeGeneration := true; {turn on code generation}
{set up the DAG variables}
DAGhead := nil; {no ics in DAG list}
InitFile(keepName, keepFlag, partial); {open the interface file}
end; {CodeGenInit}
procedure CodeGenFini;
{ terminal processing }
begin {CodeGenFini}
CloseObj; {close the open object file}
end; {CodeGenFini}
procedure CodeGenScalarInit;
{ initialize codegen scalars }
begin {CodeGenScalarInit}
isJSL := false; {the current opcode is not a jsl}
isNewDeskAcc := false; {assume a normal program}
isCDev := false;
isClassicDeskAcc := false;
isNBA := false;
isXCMD := false;
codeGeneration := false; {code generation is not turned on yet}
currentSegment := ' '; {start with the blank segment}
defaultSegment := ' ';
segmentKind := 0; {default to static code segments}
defaultSegmentKind := 0;
smallMemoryModel := true; {small memory model}
dataBank := false; {don't save/restore data bank}
strictVararg := {save/restore caller's stack around vararg}
(not cLineOptimize) or strictMode;
saveStack := not cLineOptimize; {save/restore caller's stack reg}
checkStack := false; {don't check stack for stack errors}
stackSize := 0; {default to the launcher's stack size}
toolParms := false; {generate tool format parameters?}
noroot := false; {create a .root segment}
rtl := false; {return with a ~QUIT}
floatCard := 0; {use SANE}
floatSlot := 0; {default to slot 0}
stringSize := 0; {no strings, yet}
rangeCheck := false; {don't generate range checks}
profileFlag := false; {don't generate profiling code}
debugFlag := false; {don't generate debug code}
debugStrFlag := false; {don't generate gsbug debug strings}
traceBack := false; {don't generate traceback code}
volatile := false; {no volatile qualifiers found}
registers := cLineOptimize; {don't do register optimizations}
peepHole := cLineOptimize; {not doing peephole optimization (yet)}
npeepHole := cLineOptimize;
fastMath := cLineOptimize;
commonSubexpression := cLineOptimize; {not doing common subexpression elimination}
loopOptimizations := cLineOptimize; {not doing loop optimizations, yet}
{allocate string space}
new(stringspace);
{allocate the initial p-code}
code := pointer(Calloc(sizeof(intermediate_code)));
code^.optype := cgWord;
end; {CodeGenScalarInit}
procedure Gen0 {fop: pcodes};
{ generate an implied operand instruction }
{ }
{ parameters: }
{ fop - operation code }
begin {Gen0}
if codeGeneration then begin
{generate the intermediate code instruction}
code^.opcode := fop;
{ if printSymbols then {debug}
{ WriteCode(code); {debug}
DAG(code); {generate the code}
{initialize volatile variables for next intermediate code}
code := pointer(Calloc(sizeof(intermediate_code)));
{code^.lab := nil;}
code^.optype := cgWord;
end; {if}
end; {Gen0}
procedure Gen1 {fop: pcodes; fp2: integer};
{ generate an instruction with one numeric operand }
{ }
{ parameters: }
{ fop - operation code }
{ fp2 - operand }
begin {Gen1}
if codeGeneration then begin
if fop = pc_ret then
code^.optype := cgVoid;
code^.q := fp2;
Gen0(fop);
end; {if}
end; {Gen1}
procedure Gen2 {fop: pcodes; fp1, fp2: integer};
{ generate an instruction with two numeric operands }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
label 1;
var
lcode: icptr; {local copy of code}
begin {Gen2}
if codeGeneration then begin
lcode := code;
case fop of
pc_lnm,pc_tl1,pc_lda,dc_loc,pc_mov: begin
lcode^.r := fp1;
lcode^.q := fp2;
end;
pc_cnn,pc_cnv:
if (fp1 = fp2)
and not (baseTypeEnum(fp2) in [cgReal,cgDouble,cgComp]) then
goto 1
else if (baseTypeEnum(fp1) in [cgReal,cgDouble,cgComp,cgExtended])
and (baseTypeEnum(fp2) = cgExtended) then
goto 1
else if (baseTypeEnum(fp1) in [cgUByte,cgWord,cgUWord])
and (baseTypeEnum(fp2) in [cgWord,cgUWord]) then
goto 1
else if (baseTypeEnum(fp1) in [cgUByte])
and (baseTypeEnum(fp2) in [cgByte,cgUByte]) then
goto 1
else if (baseTypeEnum(fp1) = cgByte)
and (baseTypeEnum(fp2) = cgUByte) then
lcode^.q := (ord(cgWord) << 4) | ord(cgUByte)
else
lcode^.q := (fp1 << 4) | fp2;
otherwise:
Error(cge1);
end; {case}
Gen0(fop);
end; {if}
1:
end; {Gen2}
procedure Gen3 {fop: pcodes; fp1, fp2, fp3: integer};
{ generate an instruction with three numeric operands }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ fp3 - third operand }
var
lcode: icptr; {local copy of code}
begin {Gen3}
if codeGeneration then begin
lcode := code;
lcode^.s := fp1;
lcode^.q := fp2;
lcode^.r := fp3;
Gen0(fop);
end; {if}
end; {Gen3}
procedure Gen0Name {fop: pcodes; name: stringPtr};
{ generate a p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ name - named label }
begin {Gen0Name}
if codeGeneration then begin
code^.lab := name;
Gen0(fop);
end; {if}
end; {Gen0Name}
procedure Gen1Name {fop: pcodes; fp1: integer; name: stringPtr};
{ generate a one operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ name - named label }
var
lcode: icptr; {local copy of code}
begin {Gen1Name}
if codeGeneration then begin
lcode := code;
lcode^.q := fp1;
lcode^.lab := name;
Gen0(fop);
end; {if}
end; {Gen1Name}
procedure Gen2Name {fop: pcodes; fp1, fp2: integer; name: stringPtr};
{ generate a two operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ name - named label }
var
lcode: icptr; {local copy of code}
begin {Gen2Name}
if codeGeneration then begin
lcode := code;
lcode^.q := fp2;
lcode^.r := fp1;
lcode^.lab := name;
Gen0(fop);
end; {if}
end; {Gen2Name}
procedure Gen0tName {fop: pcodes; tp: baseTypeEnum; name: stringPtr};
{ generate a typed zero operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ tp - base type }
{ name - named label }
var
lcode: icptr; {local copy of code}
begin {Gen0tName}
if codeGeneration then begin
lcode := code;
lcode^.lab := name;
lcode^.optype := tp;
Gen0(fop);
end; {if}
end; {Gen0tName}
procedure Gen1tName {fop: pcodes; fp1: integer; tp: baseTypeEnum;
name: stringPtr};
{ generate a typed one operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ tp - base type }
{ name - named label }
var
lcode: icptr; {local copy of code}
begin {Gen1tName}
if codeGeneration then begin
lcode := code;
lcode^.q := fp1;
lcode^.lab := name;
lcode^.optype := tp;
Gen0(fop);
end; {if}
end; {Gen1tName}
procedure Gen2tName {fop: pcodes; fp1, fp2: integer; tp: baseTypeEnum;
name: stringPtr};
{ generate a typed two operand p-code with a name }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ tp - base type }
{ name - named label }
var
lcode: icptr; {local copy of code}
begin {Gen2tName}
if codeGeneration then begin
lcode := code;
lcode^.r := fp1;
lcode^.q := fp2;
lcode^.lab := name;
lcode^.optype := tp;
Gen0(fop);
end; {if}
end; {Gen2tName}
procedure Gen0t {fop: pcodes; tp: baseTypeEnum};
{ generate a typed implied operand instruction }
{ }
{ parameters: }
{ fop - operation code }
{ tp - base type }
begin {Gen0t}
if codeGeneration then begin
code^.optype := tp;
Gen0(fop);
end; {if}
end; {Gen0t}
procedure Gen1t {fop: pcodes; fp1: integer; tp: baseTypeEnum};
{ generate a typed instruction with one numeric operand }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - operand }
{ tp - base type }
var
lcode: icptr; {local copy of code}
begin {Gen1t}
if codeGeneration then begin
lcode := code;
lcode^.optype := tp;
lcode^.q := fp1;
Gen0(fop);
end; {if}
end; {Gen1t}
procedure Gen2t {fop: pcodes; fp1, fp2: integer; tp: baseTypeEnum};
{ generate a typed instruction with two numeric operands }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ tp - base type }
var
lcode: icptr; {local copy of code}
begin {Gen2t}
if codeGeneration then begin
lcode := code;
lcode^.optype := tp;
lcode^.r := fp1;
lcode^.q := fp2;
Gen0(fop);
end; {if}
end; {Gen2t}
procedure Gen3t {fop: pcodes; fp1, fp2, fp3: integer; tp: baseTypeEnum};
{ generate a typed instruction with three numeric operands }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - first operand }
{ fp2 - second operand }
{ fp3 - second operand }
{ tp - base type }
var
lcode: icptr; {local copy of code}
begin {Gen3t}
if codeGeneration then begin
lcode := code;
lcode^.optype := tp;
lcode^.s := fp1;
lcode^.q := fp2;
lcode^.r := fp3;
Gen0(fop);
end; {if}
end; {Gen3t}
procedure GenPS {fop: pcodes; str: stringPtr};
{ generate an instruction that uses a p-string operand }
{ }
{ parameters: }
{ fop - operation code }
{ str - pointer to string }
var
lcode: icptr; {local copy of code}
begin {GenPS}
if codeGeneration then begin
lcode := code;
lcode^.optype := cgString;
lcode^.q := length(str^);
lcode^.str := pointer(ord4(str)-1);
Gen0(fop);
end; {if}
end; {GenPS}
procedure GenS {fop: pcodes; str: longstringPtr};
{ generate an instruction that uses a string operand }
{ }
{ parameters: }
{ fop - operation code }
{ str - pointer to string }
var
lcode: icptr; {local copy of code}
begin {GenS}
if codeGeneration then begin
lcode := code;
lcode^.optype := cgString;
lcode^.q := str^.length;
lcode^.str := str;
Gen0(fop);
end; {if}
end; {GenS}
procedure GenBS {fop: pcodes; data: ptr; len: longint};
{ generate an instruction that uses a byte sequence operand }
{ }
{ parameters: }
{ fop - operation code }
{ data - pointer to data }
{ len - length of data }
var
lcode: icptr; {local copy of code}
begin {GenBS}
if codeGeneration then begin
lcode := code;
lcode^.optype := cgString;
lcode^.isByteSeq := true;
lcode^.data := data;
lcode^.len := len;
Gen0(fop);
end; {if}
end; {GenBS}
procedure GenL1 {fop: pcodes; lval: longint; fp1: integer};
{ generate an instruction that uses a longint and an int }
{ }
{ parameters: }
{ lval - longint parameter }
{ fp1 - integer parameter }
var
lcode: icptr; {local copy of code}
begin {GenL1}
if codeGeneration then begin
lcode := code;
lcode^.optype := cgLong;
lcode^.lval := lval;
lcode^.q := fp1;
Gen0(fop);
end; {if}
end; {GenL1}
procedure GenQ1 {fop: pcodes; qval: longlong; fp1: integer};
{ generate an instruction that uses a longlong and an int }
{ }
{ parameters: }
{ qval - longlong parameter }
{ fp1 - integer parameter }
var
lcode: icptr; {local copy of code}
begin {GenQ1}
if codeGeneration then begin
lcode := code;
lcode^.optype := cgQuad;
lcode^.qval := qval;
lcode^.q := fp1;
Gen0(fop);
end; {if}
end; {GenQ1}
procedure GenR1t {fop: pcodes; rval: extended; fp1: integer; tp: baseTypeEnum};
{ generate an instruction that uses a real and an int }
{ }
{ parameters: }
{ rval - real parameter }
{ fp1 - integer parameter }
{ tp - base type }
var
lcode: icptr; {local copy of code}
begin {GenR1t}
if codeGeneration then begin
lcode := code;
lcode^.optype := tp;
lcode^.rval := rval;
lcode^.q := fp1;
Gen0(fop);
end; {if}
end; {GenR1t}
procedure GenLdcLong {lval: longint};
{ load a long constant }
{ }
{ parameters: }
{ lval - value to load }
var
lcode: icptr; {local copy of code}
begin {GenLdcLong}
if codeGeneration then begin
lcode := code;
lcode^.optype := cgLong;
lcode^.lval := lval;
Gen0(pc_ldc);
end; {if}
end; {GenLdcLong}
procedure GenLdcQuad {qval: longlong};
{ load a long long constant }
{ }
{ parameters: }
{ qval - value to load }
var
lcode: icptr; {local copy of code}
begin {GenLdcQuad}
if codeGeneration then begin
lcode := code;
lcode^.optype := cgQuad;
lcode^.qval := qval;
Gen0(pc_ldc);
end; {if}
end; {GenLdcQuad}
procedure GenTool {fop: pcodes; fp1, fp2: integer; dispatcher: longint};
{ generate a tool call }
{ }
{ parameters: }
{ fop - operation code }
{ fp1 - tool number }
{ fp2 - return size }
{ dispatcher - tool entry point }
var
lcode: icptr; {local copy of code}
begin {GenTool}
if codeGeneration then begin
lcode := code;
lcode^.q := fp1;
lcode^.r := fp2;
lcode^.optype := cgLong;
lcode^.lval := dispatcher;
Gen0(fop);
end; {if}
end; {GenTool}
procedure GenLdcReal {rval: extended};
{ load a real constant }
{ }
{ parameters: }
{ rval - value to load }
var
lcode: icptr; {local copy of code}
begin {GenLdcReal}
if codeGeneration then begin
lcode := code;
lcode^.optype := cgReal;
lcode^.rval := rval;
Gen0(pc_ldc);
end; {if}
end; {GenLdcReal}
function TypeSize {tp: baseTypeEnum): integer};
{ Find the size, in bytes, of a variable }
{ }
{ parameters: }
{ tp - base type of the variable }
begin {TypeSize}
case tp of
cgByte,cgUByte: TypeSize := cgByteSize;
cgWord,cgUWord: TypeSize := cgWordSize;
cgLong,cgULong: TypeSize := cgLongSize;
cgQuad,cgUQuad: TypeSize := cgQuadSize;
cgReal: TypeSize := cgRealSize;
cgDouble: TypeSize := cgDoubleSize;
cgComp: TypeSize := cgCompSize;
cgExtended: TypeSize := cgExtendedSize;
cgString: TypeSize := cgByteSize;
cgVoid,ccPointer: TypeSize := cgLongSize;
end; {case}
end; {TypeSize}
procedure LimitPrecision {rval: var extended; tp: baseTypeEnum};
{ limit the precision and range of a real value to the type. }
{ }
{ parameters: }
{ rval - real value }
{ tp - type to limit precision to }
var
d: double;
s: real;
c: comp;
begin {LimitPrecision}
case tp of
cgReal: begin
s := rval;
rval := s;
end;
cgDouble: begin
d := rval;
rval := d;
end;
cgComp: if rval < 0.0 then begin
{work around SANE comp conversion bug}
c := -rval;
rval := -c;
end {if}
else begin
c := rval;
rval := c;
end; {else}
cgExtended: ;
end; {case}
end; {LimitPrecision}
end.