hush/procps/mpstat.c

968 lines
24 KiB
C
Raw Normal View History

/* vi: set sw=4 ts=4: */
/*
* Per-processor statistics, based on sysstat version 9.1.2 by Sebastien Godard
*
* Copyright (C) 2010 Marek Polacek <mmpolacek@gmail.com>
*
* Licensed under GPLv2, see file LICENSE in this source tree.
*/
//applet:IF_MPSTAT(APPLET(mpstat, BB_DIR_BIN, BB_SUID_DROP))
//kbuild:lib-$(CONFIG_MPSTAT) += mpstat.o
//config:config MPSTAT
//config: bool "mpstat"
//config: default y
//config: help
//config: Per-processor statistics
#include "libbb.h"
#include <sys/utsname.h> /* struct utsname */
//#define debug(fmt, ...) fprintf(stderr, fmt, ## __VA_ARGS__)
#define debug(fmt, ...) ((void)0)
/* Size of /proc/interrupts line, CPU data excluded */
#define INTERRUPTS_LINE 64
/* Maximum number of interrupts */
#define NR_IRQS 256
#define NR_IRQCPU_PREALLOC 3
#define MAX_IRQNAME_LEN 16
#define MAX_PF_NAME 512
/* sysstat 9.0.6 uses width 8, but newer code which also prints /proc/softirqs
* data needs more: "interrupts" in /proc/softirqs have longer names,
* most are up to 8 chars, one (BLOCK_IOPOLL) is even longer.
* We are printing headers in the " IRQNAME/s" form, experimentally
* anything smaller than 10 chars looks ugly for /proc/softirqs stats.
*/
#define INTRATE_SCRWIDTH 10
#define INTRATE_SCRWIDTH_STR "10"
/* System files */
#define PROCFS_STAT "/proc/stat"
#define PROCFS_INTERRUPTS "/proc/interrupts"
#define PROCFS_SOFTIRQS "/proc/softirqs"
#define PROCFS_UPTIME "/proc/uptime"
#if 1
typedef unsigned long long data_t;
typedef long long idata_t;
#define FMT_DATA "ll"
#define DATA_MAX ULLONG_MAX
#else
typedef unsigned long data_t;
typedef long idata_t;
#define FMT_DATA "l"
#define DATA_MAX ULONG_MAX
#endif
struct stats_irqcpu {
unsigned interrupts;
char irq_name[MAX_IRQNAME_LEN];
};
struct stats_cpu {
data_t cpu_user;
data_t cpu_nice;
data_t cpu_system;
data_t cpu_idle;
data_t cpu_iowait;
data_t cpu_steal;
data_t cpu_irq;
data_t cpu_softirq;
data_t cpu_guest;
};
struct stats_irq {
data_t irq_nr;
};
/* Globals. Sort by size and access frequency. */
struct globals {
int interval;
int count;
unsigned cpu_nr; /* Number of CPUs */
unsigned irqcpu_nr; /* Number of interrupts per CPU */
unsigned softirqcpu_nr; /* Number of soft interrupts per CPU */
unsigned options;
unsigned hz;
unsigned cpu_bitmap_len;
smallint p_option;
// 9.0.6 does not do it. Try "mpstat -A 1 2" - headers are repeated!
//smallint header_done;
//smallint avg_header_done;
unsigned char *cpu_bitmap; /* Bit 0: global, bit 1: 1st proc... */
data_t global_uptime[3];
data_t per_cpu_uptime[3];
struct stats_cpu *st_cpu[3];
struct stats_irq *st_irq[3];
struct stats_irqcpu *st_irqcpu[3];
struct stats_irqcpu *st_softirqcpu[3];
struct tm timestamp[3];
};
#define G (*ptr_to_globals)
#define INIT_G() do { \
SET_PTR_TO_GLOBALS(xzalloc(sizeof(G))); \
} while (0)
/* The selected interrupts statistics (bits in G.options) */
enum {
D_CPU = 1 << 0,
D_IRQ_SUM = 1 << 1,
D_IRQ_CPU = 1 << 2,
D_SOFTIRQS = 1 << 3,
};
/* Is option on? */
static ALWAYS_INLINE int display_opt(int opt)
{
return (opt & G.options);
}
#if DATA_MAX > 0xffffffff
/*
* Handle overflow conditions properly for counters which can have
* less bits than data_t, depending on the kernel version.
*/
/* Surprisingly, on 32bit inlining is a size win */
static ALWAYS_INLINE data_t overflow_safe_sub(data_t prev, data_t curr)
{
data_t v = curr - prev;
if ((idata_t)v < 0 /* curr < prev - counter overflow? */
&& prev <= 0xffffffff /* kernel uses 32bit value for the counter? */
) {
/* Add 33th bit set to 1 to curr, compensating for the overflow */
/* double shift defeats "warning: left shift count >= width of type" */
v += ((data_t)1 << 16) << 16;
}
return v;
}
#else
static ALWAYS_INLINE data_t overflow_safe_sub(data_t prev, data_t curr)
{
return curr - prev;
}
#endif
static double percent_value(data_t prev, data_t curr, data_t itv)
{
return ((double)overflow_safe_sub(prev, curr)) / itv * 100;
}
static double hz_value(data_t prev, data_t curr, data_t itv)
{
//bb_error_msg("curr:%lld prev:%lld G.hz:%u", curr, prev, G.hz);
return ((double)overflow_safe_sub(prev, curr)) / itv * G.hz;
}
static ALWAYS_INLINE data_t jiffies_diff(data_t old, data_t new)
{
data_t diff = new - old;
return (diff == 0) ? 1 : diff;
}
static int is_cpu_in_bitmap(unsigned cpu)
{
return G.cpu_bitmap[cpu >> 3] & (1 << (cpu & 7));
}
static void write_irqcpu_stats(struct stats_irqcpu *per_cpu_stats[],
int total_irqs,
data_t itv,
int prev, int current,
const char *prev_str, const char *current_str)
{
int j;
int offset, cpu;
struct stats_irqcpu *p0, *q0;
/* Check if number of IRQs has changed */
if (G.interval != 0) {
for (j = 0; j <= total_irqs; j++) {
p0 = &per_cpu_stats[current][j];
if (p0->irq_name[0] != '\0') {
q0 = &per_cpu_stats[prev][j];
if (strcmp(p0->irq_name, q0->irq_name) != 0) {
/* Strings are different */
break;
}
}
}
}
/* Print header */
printf("\n%-11s CPU", prev_str);
{
/* A bit complex code to "buy back" space if one header is too wide.
* Here's how it looks like. BLOCK_IOPOLL eats too much space,
* and latter headers use smaller width to compensate:
* ...BLOCK/s BLOCK_IOPOLL/s TASKLET/s SCHED/s HRTIMER/s RCU/s
* ... 2.32 0.00 0.01 17.58 0.14 141.96
*/
int expected_len = 0;
int printed_len = 0;
for (j = 0; j < total_irqs; j++) {
p0 = &per_cpu_stats[current][j];
if (p0->irq_name[0] != '\0') {
int n = (INTRATE_SCRWIDTH-3) - (printed_len - expected_len);
printed_len += printf(" %*s/s", n > 0 ? n : 0, skip_whitespace(p0->irq_name));
expected_len += INTRATE_SCRWIDTH;
}
}
}
bb_putchar('\n');
for (cpu = 1; cpu <= G.cpu_nr; cpu++) {
/* Check if we want stats about this CPU */
if (!is_cpu_in_bitmap(cpu) && G.p_option) {
continue;
}
printf("%-11s %4u", current_str, cpu - 1);
for (j = 0; j < total_irqs; j++) {
/* IRQ field set only for proc 0 */
p0 = &per_cpu_stats[current][j];
/*
* An empty string for irq name means that
* interrupt is no longer used.
*/
if (p0->irq_name[0] != '\0') {
offset = j;
q0 = &per_cpu_stats[prev][offset];
/*
* If we want stats for the time since boot
* we have p0->irq != q0->irq.
*/
if (strcmp(p0->irq_name, q0->irq_name) != 0
&& G.interval != 0
) {
if (j) {
offset = j - 1;
q0 = &per_cpu_stats[prev][offset];
}
if (strcmp(p0->irq_name, q0->irq_name) != 0
&& (j + 1 < total_irqs)
) {
offset = j + 1;
q0 = &per_cpu_stats[prev][offset];
}
}
if (strcmp(p0->irq_name, q0->irq_name) == 0
|| G.interval == 0
) {
struct stats_irqcpu *p, *q;
p = &per_cpu_stats[current][(cpu - 1) * total_irqs + j];
q = &per_cpu_stats[prev][(cpu - 1) * total_irqs + offset];
printf("%"INTRATE_SCRWIDTH_STR".2f",
(double)(p->interrupts - q->interrupts) / itv * G.hz);
} else {
printf(" N/A");
}
}
}
bb_putchar('\n');
}
}
static data_t get_per_cpu_interval(const struct stats_cpu *scc,
const struct stats_cpu *scp)
{
return ((scc->cpu_user + scc->cpu_nice +
scc->cpu_system + scc->cpu_iowait +
scc->cpu_idle + scc->cpu_steal +
scc->cpu_irq + scc->cpu_softirq) -
(scp->cpu_user + scp->cpu_nice +
scp->cpu_system + scp->cpu_iowait +
scp->cpu_idle + scp->cpu_steal +
scp->cpu_irq + scp->cpu_softirq));
}
static void print_stats_cpu_struct(const struct stats_cpu *p,
const struct stats_cpu *c,
data_t itv)
{
printf(" %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n",
percent_value(p->cpu_user - p->cpu_guest,
/**/ c->cpu_user - c->cpu_guest, itv),
percent_value(p->cpu_nice , c->cpu_nice , itv),
percent_value(p->cpu_system , c->cpu_system , itv),
percent_value(p->cpu_iowait , c->cpu_iowait , itv),
percent_value(p->cpu_irq , c->cpu_irq , itv),
percent_value(p->cpu_softirq, c->cpu_softirq, itv),
percent_value(p->cpu_steal , c->cpu_steal , itv),
percent_value(p->cpu_guest , c->cpu_guest , itv),
percent_value(p->cpu_idle , c->cpu_idle , itv)
);
}
static void write_stats_core(int prev, int current,
const char *prev_str, const char *current_str)
{
struct stats_cpu *scc, *scp;
data_t itv, global_itv;
int cpu;
/* Compute time interval */
itv = global_itv = jiffies_diff(G.global_uptime[prev], G.global_uptime[current]);
/* Reduce interval to one CPU */
if (G.cpu_nr > 1)
itv = jiffies_diff(G.per_cpu_uptime[prev], G.per_cpu_uptime[current]);
/* Print CPU stats */
if (display_opt(D_CPU)) {
///* This is done exactly once */
//if (!G.header_done) {
printf("\n%-11s CPU %%usr %%nice %%sys %%iowait %%irq %%soft %%steal %%guest %%idle\n",
prev_str
);
// G.header_done = 1;
//}
for (cpu = 0; cpu <= G.cpu_nr; cpu++) {
data_t per_cpu_itv;
/* Print stats about this particular CPU? */
if (!is_cpu_in_bitmap(cpu))
continue;
scc = &G.st_cpu[current][cpu];
scp = &G.st_cpu[prev][cpu];
per_cpu_itv = global_itv;
printf((cpu ? "%-11s %4u" : "%-11s all"), current_str, cpu - 1);
if (cpu) {
double idle;
/*
* If the CPU is offline, then it isn't in /proc/stat,
* so all values are 0.
* NB: Guest time is already included in user time.
*/
if ((scc->cpu_user | scc->cpu_nice | scc->cpu_system |
scc->cpu_iowait | scc->cpu_idle | scc->cpu_steal |
scc->cpu_irq | scc->cpu_softirq) == 0
) {
/*
* Set current struct fields to values from prev.
* iteration. Then their values won't jump from
* zero, when the CPU comes back online.
*/
*scc = *scp;
idle = 0.0;
goto print_zeros;
}
/* Compute interval again for current proc */
per_cpu_itv = get_per_cpu_interval(scc, scp);
if (per_cpu_itv == 0) {
/*
* If the CPU is tickless then there is no change in CPU values
* but the sum of values is not zero.
*/
idle = 100.0;
print_zeros:
printf(" %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n",
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, idle);
continue;
}
}
print_stats_cpu_struct(scp, scc, per_cpu_itv);
}
}
/* Print total number of IRQs per CPU */
if (display_opt(D_IRQ_SUM)) {
///* Print average header, this is done exactly once */
//if (!G.avg_header_done) {
printf("\n%-11s CPU intr/s\n", prev_str);
// G.avg_header_done = 1;
//}
for (cpu = 0; cpu <= G.cpu_nr; cpu++) {
data_t per_cpu_itv;
/* Print stats about this CPU? */
if (!is_cpu_in_bitmap(cpu))
continue;
per_cpu_itv = itv;
printf((cpu ? "%-11s %4u" : "%-11s all"), current_str, cpu - 1);
if (cpu) {
scc = &G.st_cpu[current][cpu];
scp = &G.st_cpu[prev][cpu];
/* Compute interval again for current proc */
per_cpu_itv = get_per_cpu_interval(scc, scp);
if (per_cpu_itv == 0) {
printf(" %9.2f\n", 0.0);
continue;
}
}
//bb_error_msg("G.st_irq[%u][%u].irq_nr:%lld - G.st_irq[%u][%u].irq_nr:%lld",
// current, cpu, G.st_irq[prev][cpu].irq_nr, prev, cpu, G.st_irq[current][cpu].irq_nr);
printf(" %9.2f\n", hz_value(G.st_irq[prev][cpu].irq_nr, G.st_irq[current][cpu].irq_nr, per_cpu_itv));
}
}
if (display_opt(D_IRQ_CPU)) {
write_irqcpu_stats(G.st_irqcpu, G.irqcpu_nr,
itv,
prev, current,
prev_str, current_str
);
}
if (display_opt(D_SOFTIRQS)) {
write_irqcpu_stats(G.st_softirqcpu, G.softirqcpu_nr,
itv,
prev, current,
prev_str, current_str
);
}
}
/*
* Print the statistics
*/
static void write_stats(int current)
{
char prev_time[16];
char curr_time[16];
strftime(prev_time, sizeof(prev_time), "%X", &G.timestamp[!current]);
strftime(curr_time, sizeof(curr_time), "%X", &G.timestamp[current]);
write_stats_core(!current, current, prev_time, curr_time);
}
static void write_stats_avg(int current)
{
write_stats_core(2, current, "Average:", "Average:");
}
/*
* Read CPU statistics
*/
static void get_cpu_statistics(struct stats_cpu *cpu, data_t *up, data_t *up0)
{
FILE *fp;
char buf[1024];
fp = xfopen_for_read(PROCFS_STAT);
while (fgets(buf, sizeof(buf), fp)) {
data_t sum;
unsigned cpu_number;
struct stats_cpu *cp;
if (!starts_with_cpu(buf))
continue; /* not "cpu" */
cp = cpu; /* for "cpu " case */
if (buf[3] != ' ') {
/* "cpuN " */
if (G.cpu_nr == 0
|| sscanf(buf + 3, "%u ", &cpu_number) != 1
|| cpu_number >= G.cpu_nr
) {
continue;
}
cp = &cpu[cpu_number + 1];
}
/* Read the counters, save them */
/* Not all fields have to be present */
memset(cp, 0, sizeof(*cp));
sscanf(buf, "%*s"
" %"FMT_DATA"u %"FMT_DATA"u %"FMT_DATA"u"
" %"FMT_DATA"u %"FMT_DATA"u %"FMT_DATA"u"
" %"FMT_DATA"u %"FMT_DATA"u %"FMT_DATA"u",
&cp->cpu_user, &cp->cpu_nice, &cp->cpu_system,
&cp->cpu_idle, &cp->cpu_iowait, &cp->cpu_irq,
&cp->cpu_softirq, &cp->cpu_steal, &cp->cpu_guest
);
/*
* Compute uptime in jiffies (1/HZ), it'll be the sum of
* individual CPU's uptimes.
* NB: We have to omit cpu_guest, because cpu_user includes it.
*/
sum = cp->cpu_user + cp->cpu_nice + cp->cpu_system +
cp->cpu_idle + cp->cpu_iowait + cp->cpu_irq +
cp->cpu_softirq + cp->cpu_steal;
if (buf[3] == ' ') {
/* "cpu " */
*up = sum;
} else {
/* "cpuN " */
if (cpu_number == 0 && *up0 != 0) {
/* Compute uptime of single CPU */
*up0 = sum;
}
}
}
fclose(fp);
}
/*
* Read IRQs from /proc/stat
*/
static void get_irqs_from_stat(struct stats_irq *irq)
{
FILE *fp;
char buf[1024];
fp = xfopen_for_read(PROCFS_STAT);
while (fgets(buf, sizeof(buf), fp)) {
//bb_error_msg("/proc/stat:'%s'", buf);
if (strncmp(buf, "intr ", 5) == 0) {
/* Read total number of IRQs since system boot */
sscanf(buf + 5, "%"FMT_DATA"u", &irq->irq_nr);
}
}
fclose(fp);
}
/*
* Read stats from /proc/interrupts or /proc/softirqs
*/
static void get_irqs_from_interrupts(const char *fname,
struct stats_irqcpu *per_cpu_stats[],
int irqs_per_cpu, int current)
{
FILE *fp;
struct stats_irq *irq_i;
struct stats_irqcpu *ic;
char *buf;
unsigned buflen;
unsigned cpu;
unsigned irq;
int cpu_index[G.cpu_nr];
int iindex;
// Moved to caller.
// Otherwise reading of /proc/softirqs
// was resetting counts to 0 after we painstakingly collected them from
// /proc/interrupts. Which resulted in:
// 01:32:47 PM CPU intr/s
// 01:32:47 PM all 591.47
// 01:32:47 PM 0 0.00 <= ???
// 01:32:47 PM 1 0.00 <= ???
// for (cpu = 1; cpu <= G.cpu_nr; cpu++) {
// G.st_irq[current][cpu].irq_nr = 0;
// //bb_error_msg("G.st_irq[%u][%u].irq_nr=0", current, cpu);
// }
fp = fopen_for_read(fname);
if (!fp)
return;
buflen = INTERRUPTS_LINE + 16 * G.cpu_nr;
buf = xmalloc(buflen);
/* Parse header and determine, which CPUs are online */
iindex = 0;
while (fgets(buf, buflen, fp)) {
char *cp, *next;
next = buf;
while ((cp = strstr(next, "CPU")) != NULL
&& iindex < G.cpu_nr
) {
cpu = strtoul(cp + 3, &next, 10);
cpu_index[iindex++] = cpu;
}
if (iindex) /* We found header */
break;
}
irq = 0;
while (fgets(buf, buflen, fp)
&& irq < irqs_per_cpu
) {
int len;
char last_char;
char *cp;
/* Skip over "IRQNAME:" */
cp = strchr(buf, ':');
if (!cp)
continue;
last_char = cp[-1];
ic = &per_cpu_stats[current][irq];
len = cp - buf;
if (len >= sizeof(ic->irq_name)) {
len = sizeof(ic->irq_name) - 1;
}
safe_strncpy(ic->irq_name, buf, len + 1);
//bb_error_msg("%s: irq%d:'%s' buf:'%s'", fname, irq, ic->irq_name, buf);
cp++;
for (cpu = 0; cpu < iindex; cpu++) {
char *next;
ic = &per_cpu_stats[current][cpu_index[cpu] * irqs_per_cpu + irq];
irq_i = &G.st_irq[current][cpu_index[cpu] + 1];
ic->interrupts = strtoul(cp, &next, 10);
/* Count only numerical IRQs */
if (isdigit(last_char)) {
irq_i->irq_nr += ic->interrupts;
//bb_error_msg("G.st_irq[%u][%u].irq_nr + %u = %lld",
// current, cpu_index[cpu] + 1, ic->interrupts, irq_i->irq_nr);
}
cp = next;
}
irq++;
}
fclose(fp);
free(buf);
while (irq < irqs_per_cpu) {
/* Number of interrupts per CPU has changed */
ic = &per_cpu_stats[current][irq];
ic->irq_name[0] = '\0'; /* False interrupt */
irq++;
}
}
static void get_uptime(data_t *uptime)
{
FILE *fp;
char buf[sizeof(long)*3 * 2 + 4]; /* enough for long.long */
unsigned long uptime_sec, decimal;
fp = xfopen_for_read(PROCFS_UPTIME);
if (fgets(buf, sizeof(buf), fp)) {
if (sscanf(buf, "%lu.%lu", &uptime_sec, &decimal) == 2) {
*uptime = (data_t)uptime_sec * G.hz + decimal * G.hz / 100;
}
}
fclose(fp);
}
static void get_localtime(struct tm *tm)
{
time_t timer;
time(&timer);
localtime_r(&timer, tm);
}
static void alarm_handler(int sig UNUSED_PARAM)
{
signal(SIGALRM, alarm_handler);
alarm(G.interval);
}
static void main_loop(void)
{
unsigned current;
unsigned cpus;
/* Read the stats */
if (G.cpu_nr > 1) {
G.per_cpu_uptime[0] = 0;
get_uptime(&G.per_cpu_uptime[0]);
}
get_cpu_statistics(G.st_cpu[0], &G.global_uptime[0], &G.per_cpu_uptime[0]);
if (display_opt(D_IRQ_SUM))
get_irqs_from_stat(G.st_irq[0]);
if (display_opt(D_IRQ_SUM | D_IRQ_CPU))
get_irqs_from_interrupts(PROCFS_INTERRUPTS, G.st_irqcpu,
G.irqcpu_nr, 0);
if (display_opt(D_SOFTIRQS))
get_irqs_from_interrupts(PROCFS_SOFTIRQS, G.st_softirqcpu,
G.softirqcpu_nr, 0);
if (G.interval == 0) {
/* Display since boot time */
cpus = G.cpu_nr + 1;
G.timestamp[1] = G.timestamp[0];
memset(G.st_cpu[1], 0, sizeof(G.st_cpu[1][0]) * cpus);
memset(G.st_irq[1], 0, sizeof(G.st_irq[1][0]) * cpus);
memset(G.st_irqcpu[1], 0, sizeof(G.st_irqcpu[1][0]) * cpus * G.irqcpu_nr);
memset(G.st_softirqcpu[1], 0, sizeof(G.st_softirqcpu[1][0]) * cpus * G.softirqcpu_nr);
write_stats(0);
/* And we're done */
return;
}
/* Set a handler for SIGALRM */
alarm_handler(0);
/* Save the stats we already have. We need them to compute the average */
G.timestamp[2] = G.timestamp[0];
G.global_uptime[2] = G.global_uptime[0];
G.per_cpu_uptime[2] = G.per_cpu_uptime[0];
cpus = G.cpu_nr + 1;
memcpy(G.st_cpu[2], G.st_cpu[0], sizeof(G.st_cpu[0][0]) * cpus);
memcpy(G.st_irq[2], G.st_irq[0], sizeof(G.st_irq[0][0]) * cpus);
memcpy(G.st_irqcpu[2], G.st_irqcpu[0], sizeof(G.st_irqcpu[0][0]) * cpus * G.irqcpu_nr);
if (display_opt(D_SOFTIRQS)) {
memcpy(G.st_softirqcpu[2], G.st_softirqcpu[0],
sizeof(G.st_softirqcpu[0][0]) * cpus * G.softirqcpu_nr);
}
current = 1;
while (1) {
/* Suspend until a signal is received */
pause();
/* Set structures to 0 to distinguish off/online CPUs */
memset(&G.st_cpu[current][/*cpu:*/ 1], 0, sizeof(G.st_cpu[0][0]) * G.cpu_nr);
get_localtime(&G.timestamp[current]);
/* Read stats */
if (G.cpu_nr > 1) {
G.per_cpu_uptime[current] = 0;
get_uptime(&G.per_cpu_uptime[current]);
}
get_cpu_statistics(G.st_cpu[current], &G.global_uptime[current], &G.per_cpu_uptime[current]);
if (display_opt(D_IRQ_SUM))
get_irqs_from_stat(G.st_irq[current]);
if (display_opt(D_IRQ_SUM | D_IRQ_CPU)) {
int cpu;
for (cpu = 1; cpu <= G.cpu_nr; cpu++) {
G.st_irq[current][cpu].irq_nr = 0;
}
/* accumulates .irq_nr */
get_irqs_from_interrupts(PROCFS_INTERRUPTS, G.st_irqcpu,
G.irqcpu_nr, current);
}
if (display_opt(D_SOFTIRQS))
get_irqs_from_interrupts(PROCFS_SOFTIRQS,
G.st_softirqcpu,
G.softirqcpu_nr, current);
write_stats(current);
if (G.count > 0) {
if (--G.count == 0)
break;
}
current ^= 1;
}
/* Print average statistics */
write_stats_avg(current);
}
/* Initialization */
static void alloc_struct(int cpus)
{
int i;
for (i = 0; i < 3; i++) {
G.st_cpu[i] = xzalloc(sizeof(G.st_cpu[i][0]) * cpus);
G.st_irq[i] = xzalloc(sizeof(G.st_irq[i][0]) * cpus);
G.st_irqcpu[i] = xzalloc(sizeof(G.st_irqcpu[i][0]) * cpus * G.irqcpu_nr);
G.st_softirqcpu[i] = xzalloc(sizeof(G.st_softirqcpu[i][0]) * cpus * G.softirqcpu_nr);
}
G.cpu_bitmap_len = (cpus >> 3) + 1;
G.cpu_bitmap = xzalloc(G.cpu_bitmap_len);
}
static void print_header(struct tm *t)
{
char cur_date[16];
struct utsname uts;
/* Get system name, release number and hostname */
uname(&uts);
strftime(cur_date, sizeof(cur_date), "%x", t);
printf("%s %s (%s)\t%s\t_%s_\t(%u CPU)\n",
uts.sysname, uts.release, uts.nodename, cur_date, uts.machine, G.cpu_nr);
}
/*
* Get number of interrupts available per processor
*/
static int get_irqcpu_nr(const char *f, int max_irqs)
{
FILE *fp;
char *line;
unsigned linelen;
unsigned irq;
fp = fopen_for_read(f);
if (!fp) /* No interrupts file */
return 0;
linelen = INTERRUPTS_LINE + 16 * G.cpu_nr;
line = xmalloc(linelen);
irq = 0;
while (fgets(line, linelen, fp)
&& irq < max_irqs
) {
int p = strcspn(line, ":");
if ((p > 0) && (p < 16))
irq++;
}
fclose(fp);
free(line);
return irq;
}
//usage:#define mpstat_trivial_usage
//usage: "[-A] [-I SUM|CPU|ALL|SCPU] [-u] [-P num|ALL] [INTERVAL [COUNT]]"
//usage:#define mpstat_full_usage "\n\n"
//usage: "Per-processor statistics\n"
//usage: "\n -A Same as -I ALL -u -P ALL"
//usage: "\n -I SUM|CPU|ALL|SCPU Report interrupt statistics"
//usage: "\n -P num|ALL Processor to monitor"
//usage: "\n -u Report CPU utilization"
int mpstat_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int mpstat_main(int UNUSED_PARAM argc, char **argv)
{
char *opt_irq_fmt;
char *opt_set_cpu;
int i, opt;
enum {
OPT_ALL = 1 << 0, /* -A */
OPT_INTS = 1 << 1, /* -I */
OPT_SETCPU = 1 << 2, /* -P */
OPT_UTIL = 1 << 3, /* -u */
};
/* Dont buffer data if redirected to a pipe */
setbuf(stdout, NULL);
INIT_G();
G.interval = -1;
/* Get number of processors */
G.cpu_nr = get_cpu_count();
/* Get number of clock ticks per sec */
G.hz = bb_clk_tck();
/* Calculate number of interrupts per processor */
G.irqcpu_nr = get_irqcpu_nr(PROCFS_INTERRUPTS, NR_IRQS) + NR_IRQCPU_PREALLOC;
/* Calculate number of soft interrupts per processor */
G.softirqcpu_nr = get_irqcpu_nr(PROCFS_SOFTIRQS, NR_IRQS) + NR_IRQCPU_PREALLOC;
/* Allocate space for structures. + 1 for global structure. */
alloc_struct(G.cpu_nr + 1);
/* Parse and process arguments */
opt = getopt32(argv, "AI:P:u", &opt_irq_fmt, &opt_set_cpu);
argv += optind;
if (*argv) {
/* Get interval */
G.interval = xatoi_positive(*argv);
G.count = -1;
argv++;
if (*argv) {
/* Get count value */
if (G.interval == 0)
bb_show_usage();
G.count = xatoi_positive(*argv);
//if (*++argv)
// bb_show_usage();
}
}
if (G.interval < 0)
G.interval = 0;
if (opt & OPT_ALL) {
G.p_option = 1;
G.options |= D_CPU + D_IRQ_SUM + D_IRQ_CPU + D_SOFTIRQS;
/* Select every CPU */
memset(G.cpu_bitmap, 0xff, G.cpu_bitmap_len);
}
if (opt & OPT_INTS) {
static const char v[] = {
D_IRQ_CPU, D_IRQ_SUM, D_SOFTIRQS,
D_IRQ_SUM + D_IRQ_CPU + D_SOFTIRQS
};
i = index_in_strings("CPU\0SUM\0SCPU\0ALL\0", opt_irq_fmt);
if (i == -1)
bb_show_usage();
G.options |= v[i];
}
if ((opt & OPT_UTIL) /* -u? */
|| G.options == 0 /* nothing? (use default then) */
) {
G.options |= D_CPU;
}
if (opt & OPT_SETCPU) {
char *t;
G.p_option = 1;
for (t = strtok(opt_set_cpu, ","); t; t = strtok(NULL, ",")) {
if (strcmp(t, "ALL") == 0) {
/* Select every CPU */
memset(G.cpu_bitmap, 0xff, G.cpu_bitmap_len);
} else {
/* Get CPU number */
unsigned n = xatoi_positive(t);
if (n >= G.cpu_nr)
bb_error_msg_and_die("not that many processors");
n++;
G.cpu_bitmap[n >> 3] |= 1 << (n & 7);
}
}
}
if (!G.p_option)
/* Display global stats */
G.cpu_bitmap[0] = 1;
/* Get time */
get_localtime(&G.timestamp[0]);
/* Display header */
print_header(&G.timestamp[0]);
/* The main loop */
main_loop();
if (ENABLE_FEATURE_CLEAN_UP) {
/* Clean up */
for (i = 0; i < 3; i++) {
free(G.st_cpu[i]);
free(G.st_irq[i]);
free(G.st_irqcpu[i]);
free(G.st_softirqcpu[i]);
}
free(G.cpu_bitmap);
free(&G);
}
return EXIT_SUCCESS;
}