mirror of
https://github.com/sheumann/hush.git
synced 2025-01-13 06:30:09 +00:00
As implemented, sha1sum would sometimes give the wrong answer.
This fixes it and uses faster sha1 code from Dr. Gladman. -Erik
This commit is contained in:
parent
a63d09a517
commit
61f6db130e
@ -1,13 +1,10 @@
|
||||
/*
|
||||
* Based on shasum from http://www.netsw.org/crypto/hash/
|
||||
*
|
||||
* shasum fixed with reference to coreutils and the nist fip180-1 document
|
||||
* which is incorrect, in section 5
|
||||
* - ft(B,C,D) = (B AND C) OR ((NOT B) AND D) ( 0 <= t <= 19)
|
||||
* + ft(B,C,D) = (D XOR (B AND (C XOR D))) ( 0 <= t <= 19)
|
||||
* Majorly hacked up to use Dr Brian Gladman's sha1 code
|
||||
*
|
||||
* Copyright (C) 1999 Scott G. Miller
|
||||
* Copyright (C) 2003 Glenn L. McGrath
|
||||
* Copyright (C) 2003 Erik Andersen
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
@ -29,137 +26,325 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
#include <stdint.h>
|
||||
#include <endian.h>
|
||||
#include <byteswap.h>
|
||||
#include "busybox.h"
|
||||
|
||||
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Begin Dr. Gladman's sha1 code
|
||||
---------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
|
||||
All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 10/11/2002
|
||||
|
||||
This is a byte oriented version of SHA1 that operates on arrays of bytes
|
||||
stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
|
||||
*/
|
||||
|
||||
#define SHA1_BLOCK_SIZE 64
|
||||
#define SHA1_DIGEST_SIZE 20
|
||||
#define SHA1_HASH_SIZE SHA1_DIGEST_SIZE
|
||||
#define SHA2_GOOD 0
|
||||
#define SHA2_BAD 1
|
||||
|
||||
/* type to hold the SHA1 context */
|
||||
typedef struct
|
||||
{ uint32_t count[2];
|
||||
uint32_t hash[5];
|
||||
uint32_t wbuf[16];
|
||||
} sha1_ctx;
|
||||
|
||||
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
||||
|
||||
#if __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define SWAP(n) (n)
|
||||
# define swap_b32(x) (x)
|
||||
#elif defined(bswap_32)
|
||||
# define swap_b32(x) bswap_32(x)
|
||||
#else
|
||||
# define SWAP(n) \
|
||||
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
||||
# define swap_b32(x) ((rotl32((x), 8) & 0x00ff00ff) | (rotl32((x), 24) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
#define f1(X,Y,Z) (Z ^ (X & (Y ^ Z)))
|
||||
#define f2(X,Y,Z) (X ^ Y ^ Z)
|
||||
#define f3(X,Y,Z) ((X & Y) | (Z & (X | Y)))
|
||||
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
|
||||
|
||||
#define rol1(x) (x<<1) | ((x>>31) & 1)
|
||||
#define rol5(x) ((x<<5) | ((x>>27) & 0x1f))
|
||||
#define rol30(x) (x<<30) | ((x>>2) & 0x3fffffff)
|
||||
/* reverse byte order in 32-bit words */
|
||||
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
||||
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
static void sha_hash(unsigned int *data, int *hash)
|
||||
/* A normal version as set out in the FIPS. This version uses */
|
||||
/* partial loop unrolling and is optimised for the Pentium 4 */
|
||||
#define rnd(f,k) \
|
||||
t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
|
||||
e = d; d = c; c = rotl32(b, 30); b = t
|
||||
|
||||
void sha1_compile(sha1_ctx ctx[1])
|
||||
{
|
||||
RESERVE_CONFIG_BUFFER(word, 80 * sizeof(unsigned int));
|
||||
int *W = (unsigned int *) &word;
|
||||
int a = hash[0];
|
||||
int b = hash[1];
|
||||
int c = hash[2];
|
||||
int d = hash[3];
|
||||
int e = hash[4];
|
||||
int t;
|
||||
int TEMP;
|
||||
uint32_t w[80], i, a, b, c, d, e, t;
|
||||
|
||||
for (t = 0; t < 16; t++) {
|
||||
W[t] = SWAP(data[t]);
|
||||
}
|
||||
/* note that words are compiled from the buffer into 32-bit */
|
||||
/* words in big-endian order so an order reversal is needed */
|
||||
/* here on little endian machines */
|
||||
for(i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
|
||||
w[i] = swap_b32(ctx->wbuf[i]);
|
||||
|
||||
/** Data expansion from 16 to 80 blocks **/
|
||||
for (t = 16; t < 80; t++) {
|
||||
int x = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
|
||||
W[t] = rol1(x);
|
||||
}
|
||||
for(i = SHA1_BLOCK_SIZE / 4; i < 80; ++i)
|
||||
w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);
|
||||
|
||||
/** Main loops **/
|
||||
for (t = 0; t < 20; t++) {
|
||||
TEMP = rol5(a) + f1(b, c, d) + e + W[t] + 0x5a827999;
|
||||
e = d;
|
||||
d = c;
|
||||
c = rol30(b);
|
||||
b = a;
|
||||
a = TEMP;
|
||||
}
|
||||
for (; t < 40; t++) {
|
||||
TEMP = rol5(a) + f2(b, c, d) + e + W[t] + 0x6ed9eba1;
|
||||
e = d;
|
||||
d = c;
|
||||
c = rol30(b);
|
||||
b = a;
|
||||
a = TEMP;
|
||||
}
|
||||
for (; t < 60; t++) {
|
||||
TEMP = rol5(a) + f3(b, c, d) + e + W[t] + 0x8f1bbcdc;
|
||||
e = d;
|
||||
d = c;
|
||||
c = rol30(b);
|
||||
b = a;
|
||||
a = TEMP;
|
||||
}
|
||||
for (; t < 80; t++) {
|
||||
TEMP = rol5(a) + f2(b, c, d) + e + W[t] + 0xca62c1d6;
|
||||
e = d;
|
||||
d = c;
|
||||
c = rol30(b);
|
||||
b = a;
|
||||
a = TEMP;
|
||||
}
|
||||
a = ctx->hash[0];
|
||||
b = ctx->hash[1];
|
||||
c = ctx->hash[2];
|
||||
d = ctx->hash[3];
|
||||
e = ctx->hash[4];
|
||||
|
||||
RELEASE_CONFIG_BUFFER(word);
|
||||
for(i = 0; i < 20; ++i)
|
||||
{
|
||||
rnd(ch, 0x5a827999);
|
||||
}
|
||||
|
||||
hash[0] += a;
|
||||
hash[1] += b;
|
||||
hash[2] += c;
|
||||
hash[3] += d;
|
||||
hash[4] += e;
|
||||
for(i = 20; i < 40; ++i)
|
||||
{
|
||||
rnd(parity, 0x6ed9eba1);
|
||||
}
|
||||
|
||||
for(i = 40; i < 60; ++i)
|
||||
{
|
||||
rnd(maj, 0x8f1bbcdc);
|
||||
}
|
||||
|
||||
for(i = 60; i < 80; ++i)
|
||||
{
|
||||
rnd(parity, 0xca62c1d6);
|
||||
}
|
||||
|
||||
ctx->hash[0] += a;
|
||||
ctx->hash[1] += b;
|
||||
ctx->hash[2] += c;
|
||||
ctx->hash[3] += d;
|
||||
ctx->hash[4] += e;
|
||||
}
|
||||
|
||||
static char sha1sum_stream(FILE *fd, unsigned int *hashval)
|
||||
void sha1_begin(sha1_ctx ctx[1])
|
||||
{
|
||||
RESERVE_CONFIG_BUFFER(buffer, 64);
|
||||
int length = 0;
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
ctx->hash[0] = 0x67452301;
|
||||
ctx->hash[1] = 0xefcdab89;
|
||||
ctx->hash[2] = 0x98badcfe;
|
||||
ctx->hash[3] = 0x10325476;
|
||||
ctx->hash[4] = 0xc3d2e1f0;
|
||||
}
|
||||
|
||||
hashval[0] = 0x67452301;
|
||||
hashval[1] = 0xefcdab89;
|
||||
hashval[2] = 0x98badcfe;
|
||||
hashval[3] = 0x10325476;
|
||||
hashval[4] = 0xc3d2e1f0;
|
||||
/* SHA1 hash data in an array of bytes into hash buffer and call the */
|
||||
/* hash_compile function as required. */
|
||||
void sha1_hash(const unsigned char data[], unsigned int len, sha1_ctx ctx[1])
|
||||
{
|
||||
uint32_t pos = (uint32_t)(ctx->count[0] & SHA1_MASK),
|
||||
freeb = SHA1_BLOCK_SIZE - pos;
|
||||
const unsigned char *sp = data;
|
||||
|
||||
while (!feof(fd) && !ferror(fd)) {
|
||||
int c = fread(&buffer, 1, 64, fd);
|
||||
length += c;
|
||||
if (feof(fd) || ferror(fd)) {
|
||||
int i;
|
||||
for (i = c; i < 61; i++) {
|
||||
if (i == c) {
|
||||
buffer[i] = 0x80;
|
||||
}
|
||||
else if (i == 60) {
|
||||
/* This ends up being swaped twice */
|
||||
((unsigned int *) &buffer)[15] = SWAP(length * 8);
|
||||
} else {
|
||||
buffer[i] = 0;
|
||||
}
|
||||
}
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
while(len >= freeb) /* tranfer whole blocks while possible */
|
||||
{
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, freeb);
|
||||
sp += freeb; len -= freeb; freeb = SHA1_BLOCK_SIZE; pos = 0;
|
||||
sha1_compile(ctx);
|
||||
}
|
||||
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
|
||||
}
|
||||
|
||||
/* SHA1 Final padding and digest calculation */
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
static uint32_t mask[4] =
|
||||
{ 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
|
||||
static uint32_t bits[4] =
|
||||
{ 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
|
||||
#else
|
||||
static uint32_t mask[4] =
|
||||
{ 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
|
||||
static uint32_t bits[4] =
|
||||
{ 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
|
||||
#endif
|
||||
|
||||
void sha1_end(unsigned char hval[], sha1_ctx ctx[1])
|
||||
{
|
||||
uint32_t i, cnt = (uint32_t)(ctx->count[0] & SHA1_MASK);
|
||||
|
||||
/* mask out the rest of any partial 32-bit word and then set */
|
||||
/* the next byte to 0x80. On big-endian machines any bytes in */
|
||||
/* the buffer will be at the top end of 32 bit words, on little */
|
||||
/* endian machines they will be at the bottom. Hence the AND */
|
||||
/* and OR masks above are reversed for little endian systems */
|
||||
ctx->wbuf[cnt >> 2] = (ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
|
||||
|
||||
/* we need 9 or more empty positions, one for the padding byte */
|
||||
/* (above) and eight for the length count. If there is not */
|
||||
/* enough space pad and empty the buffer */
|
||||
if(cnt > SHA1_BLOCK_SIZE - 9)
|
||||
{
|
||||
if(cnt < 60) ctx->wbuf[15] = 0;
|
||||
sha1_compile(ctx);
|
||||
cnt = 0;
|
||||
}
|
||||
else /* compute a word index for the empty buffer positions */
|
||||
cnt = (cnt >> 2) + 1;
|
||||
|
||||
while(cnt < 14) /* and zero pad all but last two positions */
|
||||
ctx->wbuf[cnt++] = 0;
|
||||
|
||||
/* assemble the eight byte counter in the buffer in big-endian */
|
||||
/* format */
|
||||
|
||||
ctx->wbuf[14] = swap_b32((ctx->count[1] << 3) | (ctx->count[0] >> 29));
|
||||
ctx->wbuf[15] = swap_b32(ctx->count[0] << 3);
|
||||
|
||||
sha1_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
|
||||
for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> 8 * (~i & 3));
|
||||
}
|
||||
|
||||
#if 0
|
||||
void sha1(unsigned char hval[], const unsigned char data[], unsigned int len)
|
||||
{ sha1_ctx cx[1];
|
||||
|
||||
sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
End of Dr. Gladman's sha1 code
|
||||
---------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/* Using a larger blocksize can make things _much_ faster
|
||||
* by avoiding a zillion tiny little reads */
|
||||
#define BLOCKSIZE 65536
|
||||
/* Ensure that BLOCKSIZE is a multiple of 64. */
|
||||
#if BLOCKSIZE % SHA1_BLOCK_SIZE != 0
|
||||
# error "BLOCKSIZE not a multiple of 64"
|
||||
#endif
|
||||
|
||||
static int sha1sum_stream(FILE *stream, unsigned char *hashval)
|
||||
{
|
||||
int result = 0;
|
||||
sha1_ctx cx[1];
|
||||
size_t sum, n;
|
||||
RESERVE_CONFIG_BUFFER(buffer, BLOCKSIZE + 72);
|
||||
|
||||
/* Initialize the computation context. */
|
||||
sha1_begin(cx);
|
||||
|
||||
/* Iterate over full file contents. */
|
||||
while (1)
|
||||
{
|
||||
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
||||
computation function processes the whole buffer so that with the
|
||||
next round of the loop another block can be read. */
|
||||
sum = 0;
|
||||
|
||||
/* Read block. Take care for partial reads. */
|
||||
while (1)
|
||||
{
|
||||
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
||||
sum += n;
|
||||
|
||||
if (sum == BLOCKSIZE)
|
||||
break;
|
||||
|
||||
if (n == 0) {
|
||||
/* Check for the error flag IFF N == 0, so that we don't
|
||||
exit the loop after a partial read due to e.g., EAGAIN
|
||||
or EWOULDBLOCK. */
|
||||
if (feof (stream)) {
|
||||
sum = 0;
|
||||
goto process_partial_block;
|
||||
}
|
||||
sha_hash((unsigned int *) &buffer, hashval);
|
||||
if (ferror (stream)) {
|
||||
result++;
|
||||
goto all_done;
|
||||
}
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
/* We've read at least one byte, so ignore errors. But always
|
||||
check for EOF, since feof may be true even though N > 0.
|
||||
Otherwise, we could end up calling fread after EOF. */
|
||||
if (feof (stream))
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
RELEASE_CONFIG_BUFFER(buffer);
|
||||
/* Process buffer */
|
||||
sha1_hash(buffer, BLOCKSIZE, cx);
|
||||
}
|
||||
|
||||
return(EXIT_SUCCESS);
|
||||
process_partial_block:
|
||||
|
||||
/* Process any remaining bytes. */
|
||||
if (sum > 0)
|
||||
sha1_hash(buffer, sum, cx);
|
||||
|
||||
/* Finalize and write the hash into our buffer. */
|
||||
sha1_end(hashval, cx);
|
||||
|
||||
all_done:
|
||||
|
||||
RELEASE_CONFIG_BUFFER(buffer);
|
||||
return result;
|
||||
}
|
||||
|
||||
#define FLAG_SILENT 1
|
||||
#define FLAG_CHECK 2
|
||||
#define FLAG_WARN 4
|
||||
|
||||
static unsigned char *hash_bin_to_hex(unsigned int *hash_value, unsigned char hash_length)
|
||||
static unsigned char *hash_bin_to_hex(unsigned char *hash_value, unsigned char hash_length)
|
||||
{
|
||||
unsigned char x;
|
||||
int x, len, max;
|
||||
unsigned char *hex_value;
|
||||
|
||||
hex_value = xmalloc(hash_length * 8);
|
||||
for (x = 0; x < hash_length; x++) {
|
||||
sprintf(&hex_value[x * 8], "%08x", hash_value[x]);
|
||||
max = (hash_length * 2) + 2;
|
||||
hex_value = xmalloc(max);
|
||||
for (x = len = 0; x < hash_length; x++) {
|
||||
len += snprintf(hex_value+len, max-len, "%02x", hash_value[x]);
|
||||
}
|
||||
return(hex_value);
|
||||
}
|
||||
@ -178,9 +363,11 @@ FILE *wfopen_file_or_stdin(const char *file_ptr)
|
||||
}
|
||||
|
||||
/* This could become a common function for md5 as well, by using md5_stream */
|
||||
extern int authenticate(int argc, char **argv, char (*hash_ptr)(FILE *stream, unsigned int *hashval), const unsigned char hash_length)
|
||||
extern int authenticate(int argc, char **argv,
|
||||
int (*hash_ptr)(FILE *stream, unsigned char *hashval),
|
||||
const unsigned char hash_length)
|
||||
{
|
||||
unsigned int hash_value[hash_length];
|
||||
unsigned char hash_value[hash_length];
|
||||
unsigned int flags;
|
||||
int return_value = EXIT_SUCCESS;
|
||||
|
||||
@ -245,6 +432,7 @@ extern int authenticate(int argc, char **argv, char (*hash_ptr)(FILE *stream, un
|
||||
line_ptr++;
|
||||
stream = bb_wfopen(line_ptr, "r");
|
||||
if (hash_ptr(stream, hash_value) == EXIT_FAILURE) {
|
||||
bb_perror_msg("%s", file_ptr);
|
||||
return_value = EXIT_FAILURE;
|
||||
}
|
||||
if (fclose(stream) == EOF) {
|
||||
@ -280,6 +468,7 @@ extern int authenticate(int argc, char **argv, char (*hash_ptr)(FILE *stream, un
|
||||
continue;
|
||||
}
|
||||
if (hash_ptr(stream, hash_value) == EXIT_FAILURE) {
|
||||
bb_perror_msg("%s", file_ptr);
|
||||
return_value = EXIT_FAILURE;
|
||||
}
|
||||
else if (!flags & FLAG_SILENT) {
|
||||
@ -299,5 +488,5 @@ extern int authenticate(int argc, char **argv, char (*hash_ptr)(FILE *stream, un
|
||||
|
||||
extern int sha1sum_main(int argc, char **argv)
|
||||
{
|
||||
return (authenticate(argc, argv, sha1sum_stream, 5));
|
||||
return (authenticate(argc, argv, sha1sum_stream, SHA1_HASH_SIZE));
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user