mirror of
https://github.com/sheumann/hush.git
synced 2025-01-15 18:30:43 +00:00
0ef64bdb40
This change retains "or later" state! No licensing _changes_ here, only form is adjusted (article, space between "GPL" and "v2" and so on). Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
13500 lines
354 KiB
C
13500 lines
354 KiB
C
/* vi: set sw=4 ts=4: */
|
|
/*
|
|
* e2fsck
|
|
*
|
|
* Copyright (C) 1993, 1994, 1995, 1996, 1997 Theodore Ts'o.
|
|
* Copyright (C) 2006 Garrett Kajmowicz
|
|
*
|
|
* Dictionary Abstract Data Type
|
|
* Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
|
|
* Free Software License:
|
|
* All rights are reserved by the author, with the following exceptions:
|
|
* Permission is granted to freely reproduce and distribute this software,
|
|
* possibly in exchange for a fee, provided that this copyright notice appears
|
|
* intact. Permission is also granted to adapt this software to produce
|
|
* derivative works, as long as the modified versions carry this copyright
|
|
* notice and additional notices stating that the work has been modified.
|
|
* This source code may be translated into executable form and incorporated
|
|
* into proprietary software; there is no requirement for such software to
|
|
* contain a copyright notice related to this source.
|
|
*
|
|
* linux/fs/recovery and linux/fs/revoke
|
|
* Written by Stephen C. Tweedie <sct@redhat.com>, 1999
|
|
*
|
|
* Copyright 1999-2000 Red Hat Software --- All Rights Reserved
|
|
*
|
|
* Journal recovery routines for the generic filesystem journaling code;
|
|
* part of the ext2fs journaling system.
|
|
*
|
|
* Licensed under GPLv2 or later, see file LICENSE in this source tree.
|
|
*/
|
|
|
|
#include "e2fsck.h" /*Put all of our defines here to clean things up*/
|
|
|
|
#define _(x) x
|
|
#define N_(x) x
|
|
|
|
/*
|
|
* Procedure declarations
|
|
*/
|
|
|
|
static void e2fsck_pass1_dupblocks(e2fsck_t ctx, char *block_buf);
|
|
|
|
/* pass1.c */
|
|
static void e2fsck_use_inode_shortcuts(e2fsck_t ctx, int bool);
|
|
|
|
/* pass2.c */
|
|
static int e2fsck_process_bad_inode(e2fsck_t ctx, ext2_ino_t dir,
|
|
ext2_ino_t ino, char *buf);
|
|
|
|
/* pass3.c */
|
|
static int e2fsck_reconnect_file(e2fsck_t ctx, ext2_ino_t inode);
|
|
static errcode_t e2fsck_expand_directory(e2fsck_t ctx, ext2_ino_t dir,
|
|
int num, int gauranteed_size);
|
|
static ext2_ino_t e2fsck_get_lost_and_found(e2fsck_t ctx, int fix);
|
|
static errcode_t e2fsck_adjust_inode_count(e2fsck_t ctx, ext2_ino_t ino,
|
|
int adj);
|
|
|
|
/* rehash.c */
|
|
static void e2fsck_rehash_directories(e2fsck_t ctx);
|
|
|
|
/* util.c */
|
|
static void *e2fsck_allocate_memory(e2fsck_t ctx, unsigned int size,
|
|
const char *description);
|
|
static int ask(e2fsck_t ctx, const char * string, int def);
|
|
static void e2fsck_read_bitmaps(e2fsck_t ctx);
|
|
static void preenhalt(e2fsck_t ctx);
|
|
static void e2fsck_read_inode(e2fsck_t ctx, unsigned long ino,
|
|
struct ext2_inode * inode, const char * proc);
|
|
static void e2fsck_write_inode(e2fsck_t ctx, unsigned long ino,
|
|
struct ext2_inode * inode, const char * proc);
|
|
static blk_t get_backup_sb(e2fsck_t ctx, ext2_filsys fs,
|
|
const char *name, io_manager manager);
|
|
|
|
/* unix.c */
|
|
static void e2fsck_clear_progbar(e2fsck_t ctx);
|
|
static int e2fsck_simple_progress(e2fsck_t ctx, const char *label,
|
|
float percent, unsigned int dpynum);
|
|
|
|
|
|
/*
|
|
* problem.h --- e2fsck problem error codes
|
|
*/
|
|
|
|
typedef __u32 problem_t;
|
|
|
|
struct problem_context {
|
|
errcode_t errcode;
|
|
ext2_ino_t ino, ino2, dir;
|
|
struct ext2_inode *inode;
|
|
struct ext2_dir_entry *dirent;
|
|
blk_t blk, blk2;
|
|
e2_blkcnt_t blkcount;
|
|
int group;
|
|
__u64 num;
|
|
const char *str;
|
|
};
|
|
|
|
|
|
/*
|
|
* Function declarations
|
|
*/
|
|
static int fix_problem(e2fsck_t ctx, problem_t code, struct problem_context *pctx);
|
|
static int end_problem_latch(e2fsck_t ctx, int mask);
|
|
static int set_latch_flags(int mask, int setflags, int clearflags);
|
|
static void clear_problem_context(struct problem_context *ctx);
|
|
|
|
/*
|
|
* Dictionary Abstract Data Type
|
|
* Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
|
|
*
|
|
* dict.h v 1.22.2.6 2000/11/13 01:36:44 kaz
|
|
* kazlib_1_20
|
|
*/
|
|
|
|
#ifndef DICT_H
|
|
#define DICT_H
|
|
|
|
/*
|
|
* Blurb for inclusion into C++ translation units
|
|
*/
|
|
|
|
typedef unsigned long dictcount_t;
|
|
#define DICTCOUNT_T_MAX ULONG_MAX
|
|
|
|
/*
|
|
* The dictionary is implemented as a red-black tree
|
|
*/
|
|
|
|
typedef enum { dnode_red, dnode_black } dnode_color_t;
|
|
|
|
typedef struct dnode_t {
|
|
struct dnode_t *dict_left;
|
|
struct dnode_t *dict_right;
|
|
struct dnode_t *dict_parent;
|
|
dnode_color_t dict_color;
|
|
const void *dict_key;
|
|
void *dict_data;
|
|
} dnode_t;
|
|
|
|
typedef int (*dict_comp_t)(const void *, const void *);
|
|
typedef void (*dnode_free_t)(dnode_t *);
|
|
|
|
typedef struct dict_t {
|
|
dnode_t dict_nilnode;
|
|
dictcount_t dict_nodecount;
|
|
dictcount_t dict_maxcount;
|
|
dict_comp_t dict_compare;
|
|
dnode_free_t dict_freenode;
|
|
int dict_dupes;
|
|
} dict_t;
|
|
|
|
typedef void (*dnode_process_t)(dict_t *, dnode_t *, void *);
|
|
|
|
typedef struct dict_load_t {
|
|
dict_t *dict_dictptr;
|
|
dnode_t dict_nilnode;
|
|
} dict_load_t;
|
|
|
|
#define dict_count(D) ((D)->dict_nodecount)
|
|
#define dnode_get(N) ((N)->dict_data)
|
|
#define dnode_getkey(N) ((N)->dict_key)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Compatibility header file for e2fsck which should be included
|
|
* instead of linux/jfs.h
|
|
*
|
|
* Copyright (C) 2000 Stephen C. Tweedie
|
|
*/
|
|
|
|
/*
|
|
* Pull in the definition of the e2fsck context structure
|
|
*/
|
|
|
|
struct buffer_head {
|
|
char b_data[8192];
|
|
e2fsck_t b_ctx;
|
|
io_channel b_io;
|
|
int b_size;
|
|
blk_t b_blocknr;
|
|
int b_dirty;
|
|
int b_uptodate;
|
|
int b_err;
|
|
};
|
|
|
|
|
|
#define K_DEV_FS 1
|
|
#define K_DEV_JOURNAL 2
|
|
|
|
#define lock_buffer(bh) do {} while (0)
|
|
#define unlock_buffer(bh) do {} while (0)
|
|
#define buffer_req(bh) 1
|
|
#define do_readahead(journal, start) do {} while (0)
|
|
|
|
static e2fsck_t e2fsck_global_ctx; /* Try your very best not to use this! */
|
|
|
|
typedef struct {
|
|
int object_length;
|
|
} kmem_cache_t;
|
|
|
|
#define kmem_cache_alloc(cache,flags) malloc((cache)->object_length)
|
|
|
|
/*
|
|
* We use the standard libext2fs portability tricks for inline
|
|
* functions.
|
|
*/
|
|
|
|
static kmem_cache_t * do_cache_create(int len)
|
|
{
|
|
kmem_cache_t *new_cache;
|
|
|
|
new_cache = xmalloc(sizeof(*new_cache));
|
|
new_cache->object_length = len;
|
|
return new_cache;
|
|
}
|
|
|
|
static void do_cache_destroy(kmem_cache_t *cache)
|
|
{
|
|
free(cache);
|
|
}
|
|
|
|
|
|
/*
|
|
* Dictionary Abstract Data Type
|
|
*/
|
|
|
|
|
|
/*
|
|
* These macros provide short convenient names for structure members,
|
|
* which are embellished with dict_ prefixes so that they are
|
|
* properly confined to the documented namespace. It's legal for a
|
|
* program which uses dict to define, for instance, a macro called ``parent''.
|
|
* Such a macro would interfere with the dnode_t struct definition.
|
|
* In general, highly portable and reusable C modules which expose their
|
|
* structures need to confine structure member names to well-defined spaces.
|
|
* The resulting identifiers aren't necessarily convenient to use, nor
|
|
* readable, in the implementation, however!
|
|
*/
|
|
|
|
#define left dict_left
|
|
#define right dict_right
|
|
#define parent dict_parent
|
|
#define color dict_color
|
|
#define key dict_key
|
|
#define data dict_data
|
|
|
|
#define nilnode dict_nilnode
|
|
#define maxcount dict_maxcount
|
|
#define compare dict_compare
|
|
#define dupes dict_dupes
|
|
|
|
#define dict_root(D) ((D)->nilnode.left)
|
|
#define dict_nil(D) (&(D)->nilnode)
|
|
|
|
static void dnode_free(dnode_t *node);
|
|
|
|
/*
|
|
* Perform a ``left rotation'' adjustment on the tree. The given node P and
|
|
* its right child C are rearranged so that the P instead becomes the left
|
|
* child of C. The left subtree of C is inherited as the new right subtree
|
|
* for P. The ordering of the keys within the tree is thus preserved.
|
|
*/
|
|
|
|
static void rotate_left(dnode_t *upper)
|
|
{
|
|
dnode_t *lower, *lowleft, *upparent;
|
|
|
|
lower = upper->right;
|
|
upper->right = lowleft = lower->left;
|
|
lowleft->parent = upper;
|
|
|
|
lower->parent = upparent = upper->parent;
|
|
|
|
/* don't need to check for root node here because root->parent is
|
|
the sentinel nil node, and root->parent->left points back to root */
|
|
|
|
if (upper == upparent->left) {
|
|
upparent->left = lower;
|
|
} else {
|
|
assert (upper == upparent->right);
|
|
upparent->right = lower;
|
|
}
|
|
|
|
lower->left = upper;
|
|
upper->parent = lower;
|
|
}
|
|
|
|
/*
|
|
* This operation is the ``mirror'' image of rotate_left. It is
|
|
* the same procedure, but with left and right interchanged.
|
|
*/
|
|
|
|
static void rotate_right(dnode_t *upper)
|
|
{
|
|
dnode_t *lower, *lowright, *upparent;
|
|
|
|
lower = upper->left;
|
|
upper->left = lowright = lower->right;
|
|
lowright->parent = upper;
|
|
|
|
lower->parent = upparent = upper->parent;
|
|
|
|
if (upper == upparent->right) {
|
|
upparent->right = lower;
|
|
} else {
|
|
assert (upper == upparent->left);
|
|
upparent->left = lower;
|
|
}
|
|
|
|
lower->right = upper;
|
|
upper->parent = lower;
|
|
}
|
|
|
|
/*
|
|
* Do a postorder traversal of the tree rooted at the specified
|
|
* node and free everything under it. Used by dict_free().
|
|
*/
|
|
|
|
static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil)
|
|
{
|
|
if (node == nil)
|
|
return;
|
|
free_nodes(dict, node->left, nil);
|
|
free_nodes(dict, node->right, nil);
|
|
dict->dict_freenode(node);
|
|
}
|
|
|
|
/*
|
|
* Verify that the tree contains the given node. This is done by
|
|
* traversing all of the nodes and comparing their pointers to the
|
|
* given pointer. Returns 1 if the node is found, otherwise
|
|
* returns zero. It is intended for debugging purposes.
|
|
*/
|
|
|
|
static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node)
|
|
{
|
|
if (root != nil) {
|
|
return root == node
|
|
|| verify_dict_has_node(nil, root->left, node)
|
|
|| verify_dict_has_node(nil, root->right, node);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Select a different set of node allocator routines.
|
|
*/
|
|
|
|
static void dict_set_allocator(dict_t *dict, dnode_free_t fr)
|
|
{
|
|
assert(dict_count(dict) == 0);
|
|
dict->dict_freenode = fr;
|
|
}
|
|
|
|
/*
|
|
* Free all the nodes in the dictionary by using the dictionary's
|
|
* installed free routine. The dictionary is emptied.
|
|
*/
|
|
|
|
static void dict_free_nodes(dict_t *dict)
|
|
{
|
|
dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
|
|
free_nodes(dict, root, nil);
|
|
dict->dict_nodecount = 0;
|
|
dict->nilnode.left = &dict->nilnode;
|
|
dict->nilnode.right = &dict->nilnode;
|
|
}
|
|
|
|
/*
|
|
* Initialize a user-supplied dictionary object.
|
|
*/
|
|
|
|
static dict_t *dict_init(dict_t *dict, dictcount_t maxcount, dict_comp_t comp)
|
|
{
|
|
dict->compare = comp;
|
|
dict->dict_freenode = dnode_free;
|
|
dict->dict_nodecount = 0;
|
|
dict->maxcount = maxcount;
|
|
dict->nilnode.left = &dict->nilnode;
|
|
dict->nilnode.right = &dict->nilnode;
|
|
dict->nilnode.parent = &dict->nilnode;
|
|
dict->nilnode.color = dnode_black;
|
|
dict->dupes = 0;
|
|
return dict;
|
|
}
|
|
|
|
/*
|
|
* Locate a node in the dictionary having the given key.
|
|
* If the node is not found, a null a pointer is returned (rather than
|
|
* a pointer that dictionary's nil sentinel node), otherwise a pointer to the
|
|
* located node is returned.
|
|
*/
|
|
|
|
static dnode_t *dict_lookup(dict_t *dict, const void *key)
|
|
{
|
|
dnode_t *root = dict_root(dict);
|
|
dnode_t *nil = dict_nil(dict);
|
|
dnode_t *saved;
|
|
int result;
|
|
|
|
/* simple binary search adapted for trees that contain duplicate keys */
|
|
|
|
while (root != nil) {
|
|
result = dict->compare(key, root->key);
|
|
if (result < 0)
|
|
root = root->left;
|
|
else if (result > 0)
|
|
root = root->right;
|
|
else {
|
|
if (!dict->dupes) { /* no duplicates, return match */
|
|
return root;
|
|
} else { /* could be dupes, find leftmost one */
|
|
do {
|
|
saved = root;
|
|
root = root->left;
|
|
while (root != nil && dict->compare(key, root->key))
|
|
root = root->right;
|
|
} while (root != nil);
|
|
return saved;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Insert a node into the dictionary. The node should have been
|
|
* initialized with a data field. All other fields are ignored.
|
|
* The behavior is undefined if the user attempts to insert into
|
|
* a dictionary that is already full (for which the dict_isfull()
|
|
* function returns true).
|
|
*/
|
|
|
|
static void dict_insert(dict_t *dict, dnode_t *node, const void *key)
|
|
{
|
|
dnode_t *where = dict_root(dict), *nil = dict_nil(dict);
|
|
dnode_t *parent = nil, *uncle, *grandpa;
|
|
int result = -1;
|
|
|
|
node->key = key;
|
|
|
|
/* basic binary tree insert */
|
|
|
|
while (where != nil) {
|
|
parent = where;
|
|
result = dict->compare(key, where->key);
|
|
/* trap attempts at duplicate key insertion unless it's explicitly allowed */
|
|
assert(dict->dupes || result != 0);
|
|
if (result < 0)
|
|
where = where->left;
|
|
else
|
|
where = where->right;
|
|
}
|
|
|
|
assert(where == nil);
|
|
|
|
if (result < 0)
|
|
parent->left = node;
|
|
else
|
|
parent->right = node;
|
|
|
|
node->parent = parent;
|
|
node->left = nil;
|
|
node->right = nil;
|
|
|
|
dict->dict_nodecount++;
|
|
|
|
/* red black adjustments */
|
|
|
|
node->color = dnode_red;
|
|
|
|
while (parent->color == dnode_red) {
|
|
grandpa = parent->parent;
|
|
if (parent == grandpa->left) {
|
|
uncle = grandpa->right;
|
|
if (uncle->color == dnode_red) { /* red parent, red uncle */
|
|
parent->color = dnode_black;
|
|
uncle->color = dnode_black;
|
|
grandpa->color = dnode_red;
|
|
node = grandpa;
|
|
parent = grandpa->parent;
|
|
} else { /* red parent, black uncle */
|
|
if (node == parent->right) {
|
|
rotate_left(parent);
|
|
parent = node;
|
|
assert (grandpa == parent->parent);
|
|
/* rotation between parent and child preserves grandpa */
|
|
}
|
|
parent->color = dnode_black;
|
|
grandpa->color = dnode_red;
|
|
rotate_right(grandpa);
|
|
break;
|
|
}
|
|
} else { /* symmetric cases: parent == parent->parent->right */
|
|
uncle = grandpa->left;
|
|
if (uncle->color == dnode_red) {
|
|
parent->color = dnode_black;
|
|
uncle->color = dnode_black;
|
|
grandpa->color = dnode_red;
|
|
node = grandpa;
|
|
parent = grandpa->parent;
|
|
} else {
|
|
if (node == parent->left) {
|
|
rotate_right(parent);
|
|
parent = node;
|
|
assert (grandpa == parent->parent);
|
|
}
|
|
parent->color = dnode_black;
|
|
grandpa->color = dnode_red;
|
|
rotate_left(grandpa);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
dict_root(dict)->color = dnode_black;
|
|
}
|
|
|
|
/*
|
|
* Allocate a node using the dictionary's allocator routine, give it
|
|
* the data item.
|
|
*/
|
|
|
|
static dnode_t *dnode_init(dnode_t *dnode, void *data)
|
|
{
|
|
dnode->data = data;
|
|
dnode->parent = NULL;
|
|
dnode->left = NULL;
|
|
dnode->right = NULL;
|
|
return dnode;
|
|
}
|
|
|
|
static int dict_alloc_insert(dict_t *dict, const void *key, void *data)
|
|
{
|
|
dnode_t *node = xmalloc(sizeof(dnode_t));
|
|
|
|
dnode_init(node, data);
|
|
dict_insert(dict, node, key);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Return the node with the lowest (leftmost) key. If the dictionary is empty
|
|
* (that is, dict_isempty(dict) returns 1) a null pointer is returned.
|
|
*/
|
|
|
|
static dnode_t *dict_first(dict_t *dict)
|
|
{
|
|
dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left;
|
|
|
|
if (root != nil)
|
|
while ((left = root->left) != nil)
|
|
root = left;
|
|
|
|
return (root == nil) ? NULL : root;
|
|
}
|
|
|
|
/*
|
|
* Return the given node's successor node---the node which has the
|
|
* next key in the the left to right ordering. If the node has
|
|
* no successor, a null pointer is returned rather than a pointer to
|
|
* the nil node.
|
|
*/
|
|
|
|
static dnode_t *dict_next(dict_t *dict, dnode_t *curr)
|
|
{
|
|
dnode_t *nil = dict_nil(dict), *parent, *left;
|
|
|
|
if (curr->right != nil) {
|
|
curr = curr->right;
|
|
while ((left = curr->left) != nil)
|
|
curr = left;
|
|
return curr;
|
|
}
|
|
|
|
parent = curr->parent;
|
|
|
|
while (parent != nil && curr == parent->right) {
|
|
curr = parent;
|
|
parent = curr->parent;
|
|
}
|
|
|
|
return (parent == nil) ? NULL : parent;
|
|
}
|
|
|
|
|
|
static void dnode_free(dnode_t *node)
|
|
{
|
|
free(node);
|
|
}
|
|
|
|
|
|
#undef left
|
|
#undef right
|
|
#undef parent
|
|
#undef color
|
|
#undef key
|
|
#undef data
|
|
|
|
#undef nilnode
|
|
#undef maxcount
|
|
#undef compare
|
|
#undef dupes
|
|
|
|
|
|
/*
|
|
* dirinfo.c --- maintains the directory information table for e2fsck.
|
|
*/
|
|
|
|
/*
|
|
* This subroutine is called during pass1 to create a directory info
|
|
* entry. During pass1, the passed-in parent is 0; it will get filled
|
|
* in during pass2.
|
|
*/
|
|
static void e2fsck_add_dir_info(e2fsck_t ctx, ext2_ino_t ino, ext2_ino_t parent)
|
|
{
|
|
struct dir_info *dir;
|
|
int i, j;
|
|
ext2_ino_t num_dirs;
|
|
errcode_t retval;
|
|
unsigned long old_size;
|
|
|
|
if (!ctx->dir_info) {
|
|
ctx->dir_info_count = 0;
|
|
retval = ext2fs_get_num_dirs(ctx->fs, &num_dirs);
|
|
if (retval)
|
|
num_dirs = 1024; /* Guess */
|
|
ctx->dir_info_size = num_dirs + 10;
|
|
ctx->dir_info = (struct dir_info *)
|
|
e2fsck_allocate_memory(ctx, ctx->dir_info_size
|
|
* sizeof (struct dir_info),
|
|
"directory map");
|
|
}
|
|
|
|
if (ctx->dir_info_count >= ctx->dir_info_size) {
|
|
old_size = ctx->dir_info_size * sizeof(struct dir_info);
|
|
ctx->dir_info_size += 10;
|
|
retval = ext2fs_resize_mem(old_size, ctx->dir_info_size *
|
|
sizeof(struct dir_info),
|
|
&ctx->dir_info);
|
|
if (retval) {
|
|
ctx->dir_info_size -= 10;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Normally, add_dir_info is called with each inode in
|
|
* sequential order; but once in a while (like when pass 3
|
|
* needs to recreate the root directory or lost+found
|
|
* directory) it is called out of order. In those cases, we
|
|
* need to move the dir_info entries down to make room, since
|
|
* the dir_info array needs to be sorted by inode number for
|
|
* get_dir_info()'s sake.
|
|
*/
|
|
if (ctx->dir_info_count &&
|
|
ctx->dir_info[ctx->dir_info_count-1].ino >= ino) {
|
|
for (i = ctx->dir_info_count-1; i > 0; i--)
|
|
if (ctx->dir_info[i-1].ino < ino)
|
|
break;
|
|
dir = &ctx->dir_info[i];
|
|
if (dir->ino != ino)
|
|
for (j = ctx->dir_info_count++; j > i; j--)
|
|
ctx->dir_info[j] = ctx->dir_info[j-1];
|
|
} else
|
|
dir = &ctx->dir_info[ctx->dir_info_count++];
|
|
|
|
dir->ino = ino;
|
|
dir->dotdot = parent;
|
|
dir->parent = parent;
|
|
}
|
|
|
|
/*
|
|
* get_dir_info() --- given an inode number, try to find the directory
|
|
* information entry for it.
|
|
*/
|
|
static struct dir_info *e2fsck_get_dir_info(e2fsck_t ctx, ext2_ino_t ino)
|
|
{
|
|
int low, high, mid;
|
|
|
|
low = 0;
|
|
high = ctx->dir_info_count-1;
|
|
if (!ctx->dir_info)
|
|
return 0;
|
|
if (ino == ctx->dir_info[low].ino)
|
|
return &ctx->dir_info[low];
|
|
if (ino == ctx->dir_info[high].ino)
|
|
return &ctx->dir_info[high];
|
|
|
|
while (low < high) {
|
|
mid = (low+high)/2;
|
|
if (mid == low || mid == high)
|
|
break;
|
|
if (ino == ctx->dir_info[mid].ino)
|
|
return &ctx->dir_info[mid];
|
|
if (ino < ctx->dir_info[mid].ino)
|
|
high = mid;
|
|
else
|
|
low = mid;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free the dir_info structure when it isn't needed any more.
|
|
*/
|
|
static void e2fsck_free_dir_info(e2fsck_t ctx)
|
|
{
|
|
ext2fs_free_mem(&ctx->dir_info);
|
|
ctx->dir_info_size = 0;
|
|
ctx->dir_info_count = 0;
|
|
}
|
|
|
|
/*
|
|
* Return the count of number of directories in the dir_info structure
|
|
*/
|
|
static int e2fsck_get_num_dirinfo(e2fsck_t ctx)
|
|
{
|
|
return ctx->dir_info_count;
|
|
}
|
|
|
|
/*
|
|
* A simple interator function
|
|
*/
|
|
static struct dir_info *e2fsck_dir_info_iter(e2fsck_t ctx, int *control)
|
|
{
|
|
if (*control >= ctx->dir_info_count)
|
|
return 0;
|
|
|
|
return ctx->dir_info + (*control)++;
|
|
}
|
|
|
|
/*
|
|
* dirinfo.c --- maintains the directory information table for e2fsck.
|
|
*
|
|
*/
|
|
|
|
#ifdef ENABLE_HTREE
|
|
|
|
/*
|
|
* This subroutine is called during pass1 to create a directory info
|
|
* entry. During pass1, the passed-in parent is 0; it will get filled
|
|
* in during pass2.
|
|
*/
|
|
static void e2fsck_add_dx_dir(e2fsck_t ctx, ext2_ino_t ino, int num_blocks)
|
|
{
|
|
struct dx_dir_info *dir;
|
|
int i, j;
|
|
errcode_t retval;
|
|
unsigned long old_size;
|
|
|
|
if (!ctx->dx_dir_info) {
|
|
ctx->dx_dir_info_count = 0;
|
|
ctx->dx_dir_info_size = 100; /* Guess */
|
|
ctx->dx_dir_info = (struct dx_dir_info *)
|
|
e2fsck_allocate_memory(ctx, ctx->dx_dir_info_size
|
|
* sizeof (struct dx_dir_info),
|
|
"directory map");
|
|
}
|
|
|
|
if (ctx->dx_dir_info_count >= ctx->dx_dir_info_size) {
|
|
old_size = ctx->dx_dir_info_size * sizeof(struct dx_dir_info);
|
|
ctx->dx_dir_info_size += 10;
|
|
retval = ext2fs_resize_mem(old_size, ctx->dx_dir_info_size *
|
|
sizeof(struct dx_dir_info),
|
|
&ctx->dx_dir_info);
|
|
if (retval) {
|
|
ctx->dx_dir_info_size -= 10;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Normally, add_dx_dir_info is called with each inode in
|
|
* sequential order; but once in a while (like when pass 3
|
|
* needs to recreate the root directory or lost+found
|
|
* directory) it is called out of order. In those cases, we
|
|
* need to move the dx_dir_info entries down to make room, since
|
|
* the dx_dir_info array needs to be sorted by inode number for
|
|
* get_dx_dir_info()'s sake.
|
|
*/
|
|
if (ctx->dx_dir_info_count &&
|
|
ctx->dx_dir_info[ctx->dx_dir_info_count-1].ino >= ino) {
|
|
for (i = ctx->dx_dir_info_count-1; i > 0; i--)
|
|
if (ctx->dx_dir_info[i-1].ino < ino)
|
|
break;
|
|
dir = &ctx->dx_dir_info[i];
|
|
if (dir->ino != ino)
|
|
for (j = ctx->dx_dir_info_count++; j > i; j--)
|
|
ctx->dx_dir_info[j] = ctx->dx_dir_info[j-1];
|
|
} else
|
|
dir = &ctx->dx_dir_info[ctx->dx_dir_info_count++];
|
|
|
|
dir->ino = ino;
|
|
dir->numblocks = num_blocks;
|
|
dir->hashversion = 0;
|
|
dir->dx_block = e2fsck_allocate_memory(ctx, num_blocks
|
|
* sizeof (struct dx_dirblock_info),
|
|
"dx_block info array");
|
|
}
|
|
|
|
/*
|
|
* get_dx_dir_info() --- given an inode number, try to find the directory
|
|
* information entry for it.
|
|
*/
|
|
static struct dx_dir_info *e2fsck_get_dx_dir_info(e2fsck_t ctx, ext2_ino_t ino)
|
|
{
|
|
int low, high, mid;
|
|
|
|
low = 0;
|
|
high = ctx->dx_dir_info_count-1;
|
|
if (!ctx->dx_dir_info)
|
|
return 0;
|
|
if (ino == ctx->dx_dir_info[low].ino)
|
|
return &ctx->dx_dir_info[low];
|
|
if (ino == ctx->dx_dir_info[high].ino)
|
|
return &ctx->dx_dir_info[high];
|
|
|
|
while (low < high) {
|
|
mid = (low+high)/2;
|
|
if (mid == low || mid == high)
|
|
break;
|
|
if (ino == ctx->dx_dir_info[mid].ino)
|
|
return &ctx->dx_dir_info[mid];
|
|
if (ino < ctx->dx_dir_info[mid].ino)
|
|
high = mid;
|
|
else
|
|
low = mid;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free the dx_dir_info structure when it isn't needed any more.
|
|
*/
|
|
static void e2fsck_free_dx_dir_info(e2fsck_t ctx)
|
|
{
|
|
int i;
|
|
struct dx_dir_info *dir;
|
|
|
|
if (ctx->dx_dir_info) {
|
|
dir = ctx->dx_dir_info;
|
|
for (i=0; i < ctx->dx_dir_info_count; i++) {
|
|
ext2fs_free_mem(&dir->dx_block);
|
|
}
|
|
ext2fs_free_mem(&ctx->dx_dir_info);
|
|
}
|
|
ctx->dx_dir_info_size = 0;
|
|
ctx->dx_dir_info_count = 0;
|
|
}
|
|
|
|
/*
|
|
* A simple interator function
|
|
*/
|
|
static struct dx_dir_info *e2fsck_dx_dir_info_iter(e2fsck_t ctx, int *control)
|
|
{
|
|
if (*control >= ctx->dx_dir_info_count)
|
|
return 0;
|
|
|
|
return ctx->dx_dir_info + (*control)++;
|
|
}
|
|
|
|
#endif /* ENABLE_HTREE */
|
|
/*
|
|
* e2fsck.c - a consistency checker for the new extended file system.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* This function allocates an e2fsck context
|
|
*/
|
|
static errcode_t e2fsck_allocate_context(e2fsck_t *ret)
|
|
{
|
|
e2fsck_t context;
|
|
errcode_t retval;
|
|
|
|
retval = ext2fs_get_mem(sizeof(struct e2fsck_struct), &context);
|
|
if (retval)
|
|
return retval;
|
|
|
|
memset(context, 0, sizeof(struct e2fsck_struct));
|
|
|
|
context->process_inode_size = 256;
|
|
context->ext_attr_ver = 2;
|
|
|
|
*ret = context;
|
|
return 0;
|
|
}
|
|
|
|
struct ea_refcount_el {
|
|
blk_t ea_blk;
|
|
int ea_count;
|
|
};
|
|
|
|
struct ea_refcount {
|
|
blk_t count;
|
|
blk_t size;
|
|
blk_t cursor;
|
|
struct ea_refcount_el *list;
|
|
};
|
|
|
|
static void ea_refcount_free(ext2_refcount_t refcount)
|
|
{
|
|
if (!refcount)
|
|
return;
|
|
|
|
ext2fs_free_mem(&refcount->list);
|
|
ext2fs_free_mem(&refcount);
|
|
}
|
|
|
|
/*
|
|
* This function resets an e2fsck context; it is called when e2fsck
|
|
* needs to be restarted.
|
|
*/
|
|
static errcode_t e2fsck_reset_context(e2fsck_t ctx)
|
|
{
|
|
ctx->flags = 0;
|
|
ctx->lost_and_found = 0;
|
|
ctx->bad_lost_and_found = 0;
|
|
ext2fs_free_inode_bitmap(ctx->inode_used_map);
|
|
ctx->inode_used_map = 0;
|
|
ext2fs_free_inode_bitmap(ctx->inode_dir_map);
|
|
ctx->inode_dir_map = 0;
|
|
ext2fs_free_inode_bitmap(ctx->inode_reg_map);
|
|
ctx->inode_reg_map = 0;
|
|
ext2fs_free_block_bitmap(ctx->block_found_map);
|
|
ctx->block_found_map = 0;
|
|
ext2fs_free_icount(ctx->inode_link_info);
|
|
ctx->inode_link_info = 0;
|
|
if (ctx->journal_io) {
|
|
if (ctx->fs && ctx->fs->io != ctx->journal_io)
|
|
io_channel_close(ctx->journal_io);
|
|
ctx->journal_io = 0;
|
|
}
|
|
if (ctx->fs) {
|
|
ext2fs_free_dblist(ctx->fs->dblist);
|
|
ctx->fs->dblist = 0;
|
|
}
|
|
e2fsck_free_dir_info(ctx);
|
|
#ifdef ENABLE_HTREE
|
|
e2fsck_free_dx_dir_info(ctx);
|
|
#endif
|
|
ea_refcount_free(ctx->refcount);
|
|
ctx->refcount = 0;
|
|
ea_refcount_free(ctx->refcount_extra);
|
|
ctx->refcount_extra = 0;
|
|
ext2fs_free_block_bitmap(ctx->block_dup_map);
|
|
ctx->block_dup_map = 0;
|
|
ext2fs_free_block_bitmap(ctx->block_ea_map);
|
|
ctx->block_ea_map = 0;
|
|
ext2fs_free_inode_bitmap(ctx->inode_bad_map);
|
|
ctx->inode_bad_map = 0;
|
|
ext2fs_free_inode_bitmap(ctx->inode_imagic_map);
|
|
ctx->inode_imagic_map = 0;
|
|
ext2fs_u32_list_free(ctx->dirs_to_hash);
|
|
ctx->dirs_to_hash = 0;
|
|
|
|
/*
|
|
* Clear the array of invalid meta-data flags
|
|
*/
|
|
ext2fs_free_mem(&ctx->invalid_inode_bitmap_flag);
|
|
ext2fs_free_mem(&ctx->invalid_block_bitmap_flag);
|
|
ext2fs_free_mem(&ctx->invalid_inode_table_flag);
|
|
|
|
/* Clear statistic counters */
|
|
ctx->fs_directory_count = 0;
|
|
ctx->fs_regular_count = 0;
|
|
ctx->fs_blockdev_count = 0;
|
|
ctx->fs_chardev_count = 0;
|
|
ctx->fs_links_count = 0;
|
|
ctx->fs_symlinks_count = 0;
|
|
ctx->fs_fast_symlinks_count = 0;
|
|
ctx->fs_fifo_count = 0;
|
|
ctx->fs_total_count = 0;
|
|
ctx->fs_sockets_count = 0;
|
|
ctx->fs_ind_count = 0;
|
|
ctx->fs_dind_count = 0;
|
|
ctx->fs_tind_count = 0;
|
|
ctx->fs_fragmented = 0;
|
|
ctx->large_files = 0;
|
|
|
|
/* Reset the superblock to the user's requested value */
|
|
ctx->superblock = ctx->use_superblock;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void e2fsck_free_context(e2fsck_t ctx)
|
|
{
|
|
if (!ctx)
|
|
return;
|
|
|
|
e2fsck_reset_context(ctx);
|
|
if (ctx->blkid)
|
|
blkid_put_cache(ctx->blkid);
|
|
|
|
ext2fs_free_mem(&ctx);
|
|
}
|
|
|
|
/*
|
|
* ea_refcount.c
|
|
*/
|
|
|
|
/*
|
|
* The strategy we use for keeping track of EA refcounts is as
|
|
* follows. We keep a sorted array of first EA blocks and its
|
|
* reference counts. Once the refcount has dropped to zero, it is
|
|
* removed from the array to save memory space. Once the EA block is
|
|
* checked, its bit is set in the block_ea_map bitmap.
|
|
*/
|
|
|
|
|
|
static errcode_t ea_refcount_create(int size, ext2_refcount_t *ret)
|
|
{
|
|
ext2_refcount_t refcount;
|
|
errcode_t retval;
|
|
size_t bytes;
|
|
|
|
retval = ext2fs_get_mem(sizeof(struct ea_refcount), &refcount);
|
|
if (retval)
|
|
return retval;
|
|
memset(refcount, 0, sizeof(struct ea_refcount));
|
|
|
|
if (!size)
|
|
size = 500;
|
|
refcount->size = size;
|
|
bytes = (size_t) (size * sizeof(struct ea_refcount_el));
|
|
#ifdef DEBUG
|
|
printf("Refcount allocated %d entries, %d bytes.\n",
|
|
refcount->size, bytes);
|
|
#endif
|
|
retval = ext2fs_get_mem(bytes, &refcount->list);
|
|
if (retval)
|
|
goto errout;
|
|
memset(refcount->list, 0, bytes);
|
|
|
|
refcount->count = 0;
|
|
refcount->cursor = 0;
|
|
|
|
*ret = refcount;
|
|
return 0;
|
|
|
|
errout:
|
|
ea_refcount_free(refcount);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* collapse_refcount() --- go through the refcount array, and get rid
|
|
* of any count == zero entries
|
|
*/
|
|
static void refcount_collapse(ext2_refcount_t refcount)
|
|
{
|
|
unsigned int i, j;
|
|
struct ea_refcount_el *list;
|
|
|
|
list = refcount->list;
|
|
for (i = 0, j = 0; i < refcount->count; i++) {
|
|
if (list[i].ea_count) {
|
|
if (i != j)
|
|
list[j] = list[i];
|
|
j++;
|
|
}
|
|
}
|
|
#if defined(DEBUG) || defined(TEST_PROGRAM)
|
|
printf("Refcount_collapse: size was %d, now %d\n",
|
|
refcount->count, j);
|
|
#endif
|
|
refcount->count = j;
|
|
}
|
|
|
|
|
|
/*
|
|
* insert_refcount_el() --- Insert a new entry into the sorted list at a
|
|
* specified position.
|
|
*/
|
|
static struct ea_refcount_el *insert_refcount_el(ext2_refcount_t refcount,
|
|
blk_t blk, int pos)
|
|
{
|
|
struct ea_refcount_el *el;
|
|
errcode_t retval;
|
|
blk_t new_size = 0;
|
|
int num;
|
|
|
|
if (refcount->count >= refcount->size) {
|
|
new_size = refcount->size + 100;
|
|
#ifdef DEBUG
|
|
printf("Reallocating refcount %d entries...\n", new_size);
|
|
#endif
|
|
retval = ext2fs_resize_mem((size_t) refcount->size *
|
|
sizeof(struct ea_refcount_el),
|
|
(size_t) new_size *
|
|
sizeof(struct ea_refcount_el),
|
|
&refcount->list);
|
|
if (retval)
|
|
return 0;
|
|
refcount->size = new_size;
|
|
}
|
|
num = (int) refcount->count - pos;
|
|
if (num < 0)
|
|
return 0; /* should never happen */
|
|
if (num) {
|
|
memmove(&refcount->list[pos+1], &refcount->list[pos],
|
|
sizeof(struct ea_refcount_el) * num);
|
|
}
|
|
refcount->count++;
|
|
el = &refcount->list[pos];
|
|
el->ea_count = 0;
|
|
el->ea_blk = blk;
|
|
return el;
|
|
}
|
|
|
|
|
|
/*
|
|
* get_refcount_el() --- given an block number, try to find refcount
|
|
* information in the sorted list. If the create flag is set,
|
|
* and we can't find an entry, create one in the sorted list.
|
|
*/
|
|
static struct ea_refcount_el *get_refcount_el(ext2_refcount_t refcount,
|
|
blk_t blk, int create)
|
|
{
|
|
float range;
|
|
int low, high, mid;
|
|
blk_t lowval, highval;
|
|
|
|
if (!refcount || !refcount->list)
|
|
return 0;
|
|
retry:
|
|
low = 0;
|
|
high = (int) refcount->count-1;
|
|
if (create && ((refcount->count == 0) ||
|
|
(blk > refcount->list[high].ea_blk))) {
|
|
if (refcount->count >= refcount->size)
|
|
refcount_collapse(refcount);
|
|
|
|
return insert_refcount_el(refcount, blk,
|
|
(unsigned) refcount->count);
|
|
}
|
|
if (refcount->count == 0)
|
|
return 0;
|
|
|
|
if (refcount->cursor >= refcount->count)
|
|
refcount->cursor = 0;
|
|
if (blk == refcount->list[refcount->cursor].ea_blk)
|
|
return &refcount->list[refcount->cursor++];
|
|
#ifdef DEBUG
|
|
printf("Non-cursor get_refcount_el: %u\n", blk);
|
|
#endif
|
|
while (low <= high) {
|
|
if (low == high)
|
|
mid = low;
|
|
else {
|
|
/* Interpolate for efficiency */
|
|
lowval = refcount->list[low].ea_blk;
|
|
highval = refcount->list[high].ea_blk;
|
|
|
|
if (blk < lowval)
|
|
range = 0;
|
|
else if (blk > highval)
|
|
range = 1;
|
|
else
|
|
range = ((float) (blk - lowval)) /
|
|
(highval - lowval);
|
|
mid = low + ((int) (range * (high-low)));
|
|
}
|
|
|
|
if (blk == refcount->list[mid].ea_blk) {
|
|
refcount->cursor = mid+1;
|
|
return &refcount->list[mid];
|
|
}
|
|
if (blk < refcount->list[mid].ea_blk)
|
|
high = mid-1;
|
|
else
|
|
low = mid+1;
|
|
}
|
|
/*
|
|
* If we need to create a new entry, it should be right at
|
|
* low (where high will be left at low-1).
|
|
*/
|
|
if (create) {
|
|
if (refcount->count >= refcount->size) {
|
|
refcount_collapse(refcount);
|
|
if (refcount->count < refcount->size)
|
|
goto retry;
|
|
}
|
|
return insert_refcount_el(refcount, blk, low);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static errcode_t
|
|
ea_refcount_increment(ext2_refcount_t refcount, blk_t blk, int *ret)
|
|
{
|
|
struct ea_refcount_el *el;
|
|
|
|
el = get_refcount_el(refcount, blk, 1);
|
|
if (!el)
|
|
return EXT2_ET_NO_MEMORY;
|
|
el->ea_count++;
|
|
|
|
if (ret)
|
|
*ret = el->ea_count;
|
|
return 0;
|
|
}
|
|
|
|
static errcode_t
|
|
ea_refcount_decrement(ext2_refcount_t refcount, blk_t blk, int *ret)
|
|
{
|
|
struct ea_refcount_el *el;
|
|
|
|
el = get_refcount_el(refcount, blk, 0);
|
|
if (!el || el->ea_count == 0)
|
|
return EXT2_ET_INVALID_ARGUMENT;
|
|
|
|
el->ea_count--;
|
|
|
|
if (ret)
|
|
*ret = el->ea_count;
|
|
return 0;
|
|
}
|
|
|
|
static errcode_t
|
|
ea_refcount_store(ext2_refcount_t refcount, blk_t blk, int count)
|
|
{
|
|
struct ea_refcount_el *el;
|
|
|
|
/*
|
|
* Get the refcount element
|
|
*/
|
|
el = get_refcount_el(refcount, blk, count ? 1 : 0);
|
|
if (!el)
|
|
return count ? EXT2_ET_NO_MEMORY : 0;
|
|
el->ea_count = count;
|
|
return 0;
|
|
}
|
|
|
|
static inline void ea_refcount_intr_begin(ext2_refcount_t refcount)
|
|
{
|
|
refcount->cursor = 0;
|
|
}
|
|
|
|
|
|
static blk_t ea_refcount_intr_next(ext2_refcount_t refcount, int *ret)
|
|
{
|
|
struct ea_refcount_el *list;
|
|
|
|
while (1) {
|
|
if (refcount->cursor >= refcount->count)
|
|
return 0;
|
|
list = refcount->list;
|
|
if (list[refcount->cursor].ea_count) {
|
|
if (ret)
|
|
*ret = list[refcount->cursor].ea_count;
|
|
return list[refcount->cursor++].ea_blk;
|
|
}
|
|
refcount->cursor++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ehandler.c --- handle bad block errors which come up during the
|
|
* course of an e2fsck session.
|
|
*/
|
|
|
|
|
|
static const char *operation;
|
|
|
|
static errcode_t
|
|
e2fsck_handle_read_error(io_channel channel, unsigned long block, int count,
|
|
void *data, size_t size FSCK_ATTR((unused)),
|
|
int actual FSCK_ATTR((unused)), errcode_t error)
|
|
{
|
|
int i;
|
|
char *p;
|
|
ext2_filsys fs = (ext2_filsys) channel->app_data;
|
|
e2fsck_t ctx;
|
|
|
|
ctx = (e2fsck_t) fs->priv_data;
|
|
|
|
/*
|
|
* If more than one block was read, try reading each block
|
|
* separately. We could use the actual bytes read to figure
|
|
* out where to start, but we don't bother.
|
|
*/
|
|
if (count > 1) {
|
|
p = (char *) data;
|
|
for (i=0; i < count; i++, p += channel->block_size, block++) {
|
|
error = io_channel_read_blk(channel, block,
|
|
1, p);
|
|
if (error)
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
if (operation)
|
|
printf(_("Error reading block %lu (%s) while %s. "), block,
|
|
error_message(error), operation);
|
|
else
|
|
printf(_("Error reading block %lu (%s). "), block,
|
|
error_message(error));
|
|
preenhalt(ctx);
|
|
if (ask(ctx, _("Ignore error"), 1)) {
|
|
if (ask(ctx, _("Force rewrite"), 1))
|
|
io_channel_write_blk(channel, block, 1, data);
|
|
return 0;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static errcode_t
|
|
e2fsck_handle_write_error(io_channel channel, unsigned long block, int count,
|
|
const void *data, size_t size FSCK_ATTR((unused)),
|
|
int actual FSCK_ATTR((unused)), errcode_t error)
|
|
{
|
|
int i;
|
|
const char *p;
|
|
ext2_filsys fs = (ext2_filsys) channel->app_data;
|
|
e2fsck_t ctx;
|
|
|
|
ctx = (e2fsck_t) fs->priv_data;
|
|
|
|
/*
|
|
* If more than one block was written, try writing each block
|
|
* separately. We could use the actual bytes read to figure
|
|
* out where to start, but we don't bother.
|
|
*/
|
|
if (count > 1) {
|
|
p = (const char *) data;
|
|
for (i=0; i < count; i++, p += channel->block_size, block++) {
|
|
error = io_channel_write_blk(channel, block,
|
|
1, p);
|
|
if (error)
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (operation)
|
|
printf(_("Error writing block %lu (%s) while %s. "), block,
|
|
error_message(error), operation);
|
|
else
|
|
printf(_("Error writing block %lu (%s). "), block,
|
|
error_message(error));
|
|
preenhalt(ctx);
|
|
if (ask(ctx, _("Ignore error"), 1))
|
|
return 0;
|
|
|
|
return error;
|
|
}
|
|
|
|
static const char *ehandler_operation(const char *op)
|
|
{
|
|
const char *ret = operation;
|
|
|
|
operation = op;
|
|
return ret;
|
|
}
|
|
|
|
static void ehandler_init(io_channel channel)
|
|
{
|
|
channel->read_error = e2fsck_handle_read_error;
|
|
channel->write_error = e2fsck_handle_write_error;
|
|
}
|
|
|
|
/*
|
|
* journal.c --- code for handling the "ext3" journal
|
|
*
|
|
* Copyright (C) 2000 Andreas Dilger
|
|
* Copyright (C) 2000 Theodore Ts'o
|
|
*
|
|
* Parts of the code are based on fs/jfs/journal.c by Stephen C. Tweedie
|
|
* Copyright (C) 1999 Red Hat Software
|
|
*
|
|
* This file may be redistributed under the terms of the
|
|
* GNU General Public License version 2 or at your discretion
|
|
* any later version.
|
|
*/
|
|
|
|
/*
|
|
* Define USE_INODE_IO to use the inode_io.c / fileio.c codepaths.
|
|
* This creates a larger static binary, and a smaller binary using
|
|
* shared libraries. It's also probably slightly less CPU-efficient,
|
|
* which is why it's not on by default. But, it's a good way of
|
|
* testing the functions in inode_io.c and fileio.c.
|
|
*/
|
|
#undef USE_INODE_IO
|
|
|
|
/* Kernel compatibility functions for handling the journal. These allow us
|
|
* to use the recovery.c file virtually unchanged from the kernel, so we
|
|
* don't have to do much to keep kernel and user recovery in sync.
|
|
*/
|
|
static int journal_bmap(journal_t *journal, blk_t block, unsigned long *phys)
|
|
{
|
|
#ifdef USE_INODE_IO
|
|
*phys = block;
|
|
return 0;
|
|
#else
|
|
struct inode *inode = journal->j_inode;
|
|
errcode_t retval;
|
|
blk_t pblk;
|
|
|
|
if (!inode) {
|
|
*phys = block;
|
|
return 0;
|
|
}
|
|
|
|
retval= ext2fs_bmap(inode->i_ctx->fs, inode->i_ino,
|
|
&inode->i_ext2, NULL, 0, block, &pblk);
|
|
*phys = pblk;
|
|
return retval;
|
|
#endif
|
|
}
|
|
|
|
static struct buffer_head *getblk(kdev_t kdev, blk_t blocknr, int blocksize)
|
|
{
|
|
struct buffer_head *bh;
|
|
|
|
bh = e2fsck_allocate_memory(kdev->k_ctx, sizeof(*bh), "block buffer");
|
|
if (!bh)
|
|
return NULL;
|
|
|
|
bh->b_ctx = kdev->k_ctx;
|
|
if (kdev->k_dev == K_DEV_FS)
|
|
bh->b_io = kdev->k_ctx->fs->io;
|
|
else
|
|
bh->b_io = kdev->k_ctx->journal_io;
|
|
bh->b_size = blocksize;
|
|
bh->b_blocknr = blocknr;
|
|
|
|
return bh;
|
|
}
|
|
|
|
static void sync_blockdev(kdev_t kdev)
|
|
{
|
|
io_channel io;
|
|
|
|
if (kdev->k_dev == K_DEV_FS)
|
|
io = kdev->k_ctx->fs->io;
|
|
else
|
|
io = kdev->k_ctx->journal_io;
|
|
|
|
io_channel_flush(io);
|
|
}
|
|
|
|
static void ll_rw_block(int rw, int nr, struct buffer_head *bhp[])
|
|
{
|
|
int retval;
|
|
struct buffer_head *bh;
|
|
|
|
for (; nr > 0; --nr) {
|
|
bh = *bhp++;
|
|
if (rw == READ && !bh->b_uptodate) {
|
|
retval = io_channel_read_blk(bh->b_io,
|
|
bh->b_blocknr,
|
|
1, bh->b_data);
|
|
if (retval) {
|
|
bb_error_msg("while reading block %lu",
|
|
(unsigned long) bh->b_blocknr);
|
|
bh->b_err = retval;
|
|
continue;
|
|
}
|
|
bh->b_uptodate = 1;
|
|
} else if (rw == WRITE && bh->b_dirty) {
|
|
retval = io_channel_write_blk(bh->b_io,
|
|
bh->b_blocknr,
|
|
1, bh->b_data);
|
|
if (retval) {
|
|
bb_error_msg("while writing block %lu",
|
|
(unsigned long) bh->b_blocknr);
|
|
bh->b_err = retval;
|
|
continue;
|
|
}
|
|
bh->b_dirty = 0;
|
|
bh->b_uptodate = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void mark_buffer_dirty(struct buffer_head *bh)
|
|
{
|
|
bh->b_dirty = 1;
|
|
}
|
|
|
|
static inline void mark_buffer_clean(struct buffer_head * bh)
|
|
{
|
|
bh->b_dirty = 0;
|
|
}
|
|
|
|
static void brelse(struct buffer_head *bh)
|
|
{
|
|
if (bh->b_dirty)
|
|
ll_rw_block(WRITE, 1, &bh);
|
|
ext2fs_free_mem(&bh);
|
|
}
|
|
|
|
static int buffer_uptodate(struct buffer_head *bh)
|
|
{
|
|
return bh->b_uptodate;
|
|
}
|
|
|
|
static inline void mark_buffer_uptodate(struct buffer_head *bh, int val)
|
|
{
|
|
bh->b_uptodate = val;
|
|
}
|
|
|
|
static void wait_on_buffer(struct buffer_head *bh)
|
|
{
|
|
if (!bh->b_uptodate)
|
|
ll_rw_block(READ, 1, &bh);
|
|
}
|
|
|
|
|
|
static void e2fsck_clear_recover(e2fsck_t ctx, int error)
|
|
{
|
|
ctx->fs->super->s_feature_incompat &= ~EXT3_FEATURE_INCOMPAT_RECOVER;
|
|
|
|
/* if we had an error doing journal recovery, we need a full fsck */
|
|
if (error)
|
|
ctx->fs->super->s_state &= ~EXT2_VALID_FS;
|
|
ext2fs_mark_super_dirty(ctx->fs);
|
|
}
|
|
|
|
static errcode_t e2fsck_get_journal(e2fsck_t ctx, journal_t **ret_journal)
|
|
{
|
|
struct ext2_super_block *sb = ctx->fs->super;
|
|
struct ext2_super_block jsuper;
|
|
struct problem_context pctx;
|
|
struct buffer_head *bh;
|
|
struct inode *j_inode = NULL;
|
|
struct kdev_s *dev_fs = NULL, *dev_journal;
|
|
const char *journal_name = NULL;
|
|
journal_t *journal = NULL;
|
|
errcode_t retval = 0;
|
|
io_manager io_ptr = 0;
|
|
unsigned long start = 0;
|
|
blk_t blk;
|
|
int ext_journal = 0;
|
|
int tried_backup_jnl = 0;
|
|
int i;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
journal = e2fsck_allocate_memory(ctx, sizeof(journal_t), "journal");
|
|
if (!journal) {
|
|
return EXT2_ET_NO_MEMORY;
|
|
}
|
|
|
|
dev_fs = e2fsck_allocate_memory(ctx, 2*sizeof(struct kdev_s), "kdev");
|
|
if (!dev_fs) {
|
|
retval = EXT2_ET_NO_MEMORY;
|
|
goto errout;
|
|
}
|
|
dev_journal = dev_fs+1;
|
|
|
|
dev_fs->k_ctx = dev_journal->k_ctx = ctx;
|
|
dev_fs->k_dev = K_DEV_FS;
|
|
dev_journal->k_dev = K_DEV_JOURNAL;
|
|
|
|
journal->j_dev = dev_journal;
|
|
journal->j_fs_dev = dev_fs;
|
|
journal->j_inode = NULL;
|
|
journal->j_blocksize = ctx->fs->blocksize;
|
|
|
|
if (uuid_is_null(sb->s_journal_uuid)) {
|
|
if (!sb->s_journal_inum)
|
|
return EXT2_ET_BAD_INODE_NUM;
|
|
j_inode = e2fsck_allocate_memory(ctx, sizeof(*j_inode),
|
|
"journal inode");
|
|
if (!j_inode) {
|
|
retval = EXT2_ET_NO_MEMORY;
|
|
goto errout;
|
|
}
|
|
|
|
j_inode->i_ctx = ctx;
|
|
j_inode->i_ino = sb->s_journal_inum;
|
|
|
|
if ((retval = ext2fs_read_inode(ctx->fs,
|
|
sb->s_journal_inum,
|
|
&j_inode->i_ext2))) {
|
|
try_backup_journal:
|
|
if (sb->s_jnl_backup_type != EXT3_JNL_BACKUP_BLOCKS ||
|
|
tried_backup_jnl)
|
|
goto errout;
|
|
memset(&j_inode->i_ext2, 0, sizeof(struct ext2_inode));
|
|
memcpy(&j_inode->i_ext2.i_block[0], sb->s_jnl_blocks,
|
|
EXT2_N_BLOCKS*4);
|
|
j_inode->i_ext2.i_size = sb->s_jnl_blocks[16];
|
|
j_inode->i_ext2.i_links_count = 1;
|
|
j_inode->i_ext2.i_mode = LINUX_S_IFREG | 0600;
|
|
tried_backup_jnl++;
|
|
}
|
|
if (!j_inode->i_ext2.i_links_count ||
|
|
!LINUX_S_ISREG(j_inode->i_ext2.i_mode)) {
|
|
retval = EXT2_ET_NO_JOURNAL;
|
|
goto try_backup_journal;
|
|
}
|
|
if (j_inode->i_ext2.i_size / journal->j_blocksize <
|
|
JFS_MIN_JOURNAL_BLOCKS) {
|
|
retval = EXT2_ET_JOURNAL_TOO_SMALL;
|
|
goto try_backup_journal;
|
|
}
|
|
for (i=0; i < EXT2_N_BLOCKS; i++) {
|
|
blk = j_inode->i_ext2.i_block[i];
|
|
if (!blk) {
|
|
if (i < EXT2_NDIR_BLOCKS) {
|
|
retval = EXT2_ET_JOURNAL_TOO_SMALL;
|
|
goto try_backup_journal;
|
|
}
|
|
continue;
|
|
}
|
|
if (blk < sb->s_first_data_block ||
|
|
blk >= sb->s_blocks_count) {
|
|
retval = EXT2_ET_BAD_BLOCK_NUM;
|
|
goto try_backup_journal;
|
|
}
|
|
}
|
|
journal->j_maxlen = j_inode->i_ext2.i_size / journal->j_blocksize;
|
|
|
|
#ifdef USE_INODE_IO
|
|
retval = ext2fs_inode_io_intern2(ctx->fs, sb->s_journal_inum,
|
|
&j_inode->i_ext2,
|
|
&journal_name);
|
|
if (retval)
|
|
goto errout;
|
|
|
|
io_ptr = inode_io_manager;
|
|
#else
|
|
journal->j_inode = j_inode;
|
|
ctx->journal_io = ctx->fs->io;
|
|
if ((retval = journal_bmap(journal, 0, &start)) != 0)
|
|
goto errout;
|
|
#endif
|
|
} else {
|
|
ext_journal = 1;
|
|
if (!ctx->journal_name) {
|
|
char uuid[37];
|
|
|
|
uuid_unparse(sb->s_journal_uuid, uuid);
|
|
ctx->journal_name = blkid_get_devname(ctx->blkid,
|
|
"UUID", uuid);
|
|
if (!ctx->journal_name)
|
|
ctx->journal_name = blkid_devno_to_devname(sb->s_journal_dev);
|
|
}
|
|
journal_name = ctx->journal_name;
|
|
|
|
if (!journal_name) {
|
|
fix_problem(ctx, PR_0_CANT_FIND_JOURNAL, &pctx);
|
|
return EXT2_ET_LOAD_EXT_JOURNAL;
|
|
}
|
|
|
|
io_ptr = unix_io_manager;
|
|
}
|
|
|
|
#ifndef USE_INODE_IO
|
|
if (ext_journal)
|
|
#endif
|
|
retval = io_ptr->open(journal_name, IO_FLAG_RW,
|
|
&ctx->journal_io);
|
|
if (retval)
|
|
goto errout;
|
|
|
|
io_channel_set_blksize(ctx->journal_io, ctx->fs->blocksize);
|
|
|
|
if (ext_journal) {
|
|
if (ctx->fs->blocksize == 1024)
|
|
start = 1;
|
|
bh = getblk(dev_journal, start, ctx->fs->blocksize);
|
|
if (!bh) {
|
|
retval = EXT2_ET_NO_MEMORY;
|
|
goto errout;
|
|
}
|
|
ll_rw_block(READ, 1, &bh);
|
|
if ((retval = bh->b_err) != 0)
|
|
goto errout;
|
|
memcpy(&jsuper, start ? bh->b_data : bh->b_data + 1024,
|
|
sizeof(jsuper));
|
|
brelse(bh);
|
|
#if BB_BIG_ENDIAN
|
|
if (jsuper.s_magic == ext2fs_swab16(EXT2_SUPER_MAGIC))
|
|
ext2fs_swap_super(&jsuper);
|
|
#endif
|
|
if (jsuper.s_magic != EXT2_SUPER_MAGIC ||
|
|
!(jsuper.s_feature_incompat & EXT3_FEATURE_INCOMPAT_JOURNAL_DEV)) {
|
|
fix_problem(ctx, PR_0_EXT_JOURNAL_BAD_SUPER, &pctx);
|
|
retval = EXT2_ET_LOAD_EXT_JOURNAL;
|
|
goto errout;
|
|
}
|
|
/* Make sure the journal UUID is correct */
|
|
if (memcmp(jsuper.s_uuid, ctx->fs->super->s_journal_uuid,
|
|
sizeof(jsuper.s_uuid))) {
|
|
fix_problem(ctx, PR_0_JOURNAL_BAD_UUID, &pctx);
|
|
retval = EXT2_ET_LOAD_EXT_JOURNAL;
|
|
goto errout;
|
|
}
|
|
|
|
journal->j_maxlen = jsuper.s_blocks_count;
|
|
start++;
|
|
}
|
|
|
|
if (!(bh = getblk(dev_journal, start, journal->j_blocksize))) {
|
|
retval = EXT2_ET_NO_MEMORY;
|
|
goto errout;
|
|
}
|
|
|
|
journal->j_sb_buffer = bh;
|
|
journal->j_superblock = (journal_superblock_t *)bh->b_data;
|
|
|
|
#ifdef USE_INODE_IO
|
|
ext2fs_free_mem(&j_inode);
|
|
#endif
|
|
|
|
*ret_journal = journal;
|
|
return 0;
|
|
|
|
errout:
|
|
ext2fs_free_mem(&dev_fs);
|
|
ext2fs_free_mem(&j_inode);
|
|
ext2fs_free_mem(&journal);
|
|
return retval;
|
|
}
|
|
|
|
static errcode_t e2fsck_journal_fix_bad_inode(e2fsck_t ctx,
|
|
struct problem_context *pctx)
|
|
{
|
|
struct ext2_super_block *sb = ctx->fs->super;
|
|
int recover = ctx->fs->super->s_feature_incompat &
|
|
EXT3_FEATURE_INCOMPAT_RECOVER;
|
|
int has_journal = ctx->fs->super->s_feature_compat &
|
|
EXT3_FEATURE_COMPAT_HAS_JOURNAL;
|
|
|
|
if (has_journal || sb->s_journal_inum) {
|
|
/* The journal inode is bogus, remove and force full fsck */
|
|
pctx->ino = sb->s_journal_inum;
|
|
if (fix_problem(ctx, PR_0_JOURNAL_BAD_INODE, pctx)) {
|
|
if (has_journal && sb->s_journal_inum)
|
|
printf("*** ext3 journal has been deleted - "
|
|
"filesystem is now ext2 only ***\n\n");
|
|
sb->s_feature_compat &= ~EXT3_FEATURE_COMPAT_HAS_JOURNAL;
|
|
sb->s_journal_inum = 0;
|
|
ctx->flags |= E2F_FLAG_JOURNAL_INODE; /* FIXME: todo */
|
|
e2fsck_clear_recover(ctx, 1);
|
|
return 0;
|
|
}
|
|
return EXT2_ET_BAD_INODE_NUM;
|
|
} else if (recover) {
|
|
if (fix_problem(ctx, PR_0_JOURNAL_RECOVER_SET, pctx)) {
|
|
e2fsck_clear_recover(ctx, 1);
|
|
return 0;
|
|
}
|
|
return EXT2_ET_UNSUPP_FEATURE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define V1_SB_SIZE 0x0024
|
|
static void clear_v2_journal_fields(journal_t *journal)
|
|
{
|
|
e2fsck_t ctx = journal->j_dev->k_ctx;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!fix_problem(ctx, PR_0_CLEAR_V2_JOURNAL, &pctx))
|
|
return;
|
|
|
|
memset(((char *) journal->j_superblock) + V1_SB_SIZE, 0,
|
|
ctx->fs->blocksize-V1_SB_SIZE);
|
|
mark_buffer_dirty(journal->j_sb_buffer);
|
|
}
|
|
|
|
|
|
static errcode_t e2fsck_journal_load(journal_t *journal)
|
|
{
|
|
e2fsck_t ctx = journal->j_dev->k_ctx;
|
|
journal_superblock_t *jsb;
|
|
struct buffer_head *jbh = journal->j_sb_buffer;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
ll_rw_block(READ, 1, &jbh);
|
|
if (jbh->b_err) {
|
|
bb_error_msg(_("reading journal superblock"));
|
|
return jbh->b_err;
|
|
}
|
|
|
|
jsb = journal->j_superblock;
|
|
/* If we don't even have JFS_MAGIC, we probably have a wrong inode */
|
|
if (jsb->s_header.h_magic != htonl(JFS_MAGIC_NUMBER))
|
|
return e2fsck_journal_fix_bad_inode(ctx, &pctx);
|
|
|
|
switch (ntohl(jsb->s_header.h_blocktype)) {
|
|
case JFS_SUPERBLOCK_V1:
|
|
journal->j_format_version = 1;
|
|
if (jsb->s_feature_compat ||
|
|
jsb->s_feature_incompat ||
|
|
jsb->s_feature_ro_compat ||
|
|
jsb->s_nr_users)
|
|
clear_v2_journal_fields(journal);
|
|
break;
|
|
|
|
case JFS_SUPERBLOCK_V2:
|
|
journal->j_format_version = 2;
|
|
if (ntohl(jsb->s_nr_users) > 1 &&
|
|
uuid_is_null(ctx->fs->super->s_journal_uuid))
|
|
clear_v2_journal_fields(journal);
|
|
if (ntohl(jsb->s_nr_users) > 1) {
|
|
fix_problem(ctx, PR_0_JOURNAL_UNSUPP_MULTIFS, &pctx);
|
|
return EXT2_ET_JOURNAL_UNSUPP_VERSION;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* These should never appear in a journal super block, so if
|
|
* they do, the journal is badly corrupted.
|
|
*/
|
|
case JFS_DESCRIPTOR_BLOCK:
|
|
case JFS_COMMIT_BLOCK:
|
|
case JFS_REVOKE_BLOCK:
|
|
return EXT2_ET_CORRUPT_SUPERBLOCK;
|
|
|
|
/* If we don't understand the superblock major type, but there
|
|
* is a magic number, then it is likely to be a new format we
|
|
* just don't understand, so leave it alone. */
|
|
default:
|
|
return EXT2_ET_JOURNAL_UNSUPP_VERSION;
|
|
}
|
|
|
|
if (JFS_HAS_INCOMPAT_FEATURE(journal, ~JFS_KNOWN_INCOMPAT_FEATURES))
|
|
return EXT2_ET_UNSUPP_FEATURE;
|
|
|
|
if (JFS_HAS_RO_COMPAT_FEATURE(journal, ~JFS_KNOWN_ROCOMPAT_FEATURES))
|
|
return EXT2_ET_RO_UNSUPP_FEATURE;
|
|
|
|
/* We have now checked whether we know enough about the journal
|
|
* format to be able to proceed safely, so any other checks that
|
|
* fail we should attempt to recover from. */
|
|
if (jsb->s_blocksize != htonl(journal->j_blocksize)) {
|
|
bb_error_msg(_("%s: no valid journal superblock found"),
|
|
ctx->device_name);
|
|
return EXT2_ET_CORRUPT_SUPERBLOCK;
|
|
}
|
|
|
|
if (ntohl(jsb->s_maxlen) < journal->j_maxlen)
|
|
journal->j_maxlen = ntohl(jsb->s_maxlen);
|
|
else if (ntohl(jsb->s_maxlen) > journal->j_maxlen) {
|
|
bb_error_msg(_("%s: journal too short"),
|
|
ctx->device_name);
|
|
return EXT2_ET_CORRUPT_SUPERBLOCK;
|
|
}
|
|
|
|
journal->j_tail_sequence = ntohl(jsb->s_sequence);
|
|
journal->j_transaction_sequence = journal->j_tail_sequence;
|
|
journal->j_tail = ntohl(jsb->s_start);
|
|
journal->j_first = ntohl(jsb->s_first);
|
|
journal->j_last = ntohl(jsb->s_maxlen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void e2fsck_journal_reset_super(e2fsck_t ctx, journal_superblock_t *jsb,
|
|
journal_t *journal)
|
|
{
|
|
char *p;
|
|
union {
|
|
uuid_t uuid;
|
|
__u32 val[4];
|
|
} u;
|
|
__u32 new_seq = 0;
|
|
int i;
|
|
|
|
/* Leave a valid existing V1 superblock signature alone.
|
|
* Anything unrecognizable we overwrite with a new V2
|
|
* signature. */
|
|
|
|
if (jsb->s_header.h_magic != htonl(JFS_MAGIC_NUMBER) ||
|
|
jsb->s_header.h_blocktype != htonl(JFS_SUPERBLOCK_V1)) {
|
|
jsb->s_header.h_magic = htonl(JFS_MAGIC_NUMBER);
|
|
jsb->s_header.h_blocktype = htonl(JFS_SUPERBLOCK_V2);
|
|
}
|
|
|
|
/* Zero out everything else beyond the superblock header */
|
|
|
|
p = ((char *) jsb) + sizeof(journal_header_t);
|
|
memset (p, 0, ctx->fs->blocksize-sizeof(journal_header_t));
|
|
|
|
jsb->s_blocksize = htonl(ctx->fs->blocksize);
|
|
jsb->s_maxlen = htonl(journal->j_maxlen);
|
|
jsb->s_first = htonl(1);
|
|
|
|
/* Initialize the journal sequence number so that there is "no"
|
|
* chance we will find old "valid" transactions in the journal.
|
|
* This avoids the need to zero the whole journal (slow to do,
|
|
* and risky when we are just recovering the filesystem).
|
|
*/
|
|
uuid_generate(u.uuid);
|
|
for (i = 0; i < 4; i ++)
|
|
new_seq ^= u.val[i];
|
|
jsb->s_sequence = htonl(new_seq);
|
|
|
|
mark_buffer_dirty(journal->j_sb_buffer);
|
|
ll_rw_block(WRITE, 1, &journal->j_sb_buffer);
|
|
}
|
|
|
|
static errcode_t e2fsck_journal_fix_corrupt_super(e2fsck_t ctx,
|
|
journal_t *journal,
|
|
struct problem_context *pctx)
|
|
{
|
|
struct ext2_super_block *sb = ctx->fs->super;
|
|
int recover = ctx->fs->super->s_feature_incompat &
|
|
EXT3_FEATURE_INCOMPAT_RECOVER;
|
|
|
|
if (sb->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL) {
|
|
if (fix_problem(ctx, PR_0_JOURNAL_BAD_SUPER, pctx)) {
|
|
e2fsck_journal_reset_super(ctx, journal->j_superblock,
|
|
journal);
|
|
journal->j_transaction_sequence = 1;
|
|
e2fsck_clear_recover(ctx, recover);
|
|
return 0;
|
|
}
|
|
return EXT2_ET_CORRUPT_SUPERBLOCK;
|
|
} else if (e2fsck_journal_fix_bad_inode(ctx, pctx))
|
|
return EXT2_ET_CORRUPT_SUPERBLOCK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void e2fsck_journal_release(e2fsck_t ctx, journal_t *journal,
|
|
int reset, int drop)
|
|
{
|
|
journal_superblock_t *jsb;
|
|
|
|
if (drop)
|
|
mark_buffer_clean(journal->j_sb_buffer);
|
|
else if (!(ctx->options & E2F_OPT_READONLY)) {
|
|
jsb = journal->j_superblock;
|
|
jsb->s_sequence = htonl(journal->j_transaction_sequence);
|
|
if (reset)
|
|
jsb->s_start = 0; /* this marks the journal as empty */
|
|
mark_buffer_dirty(journal->j_sb_buffer);
|
|
}
|
|
brelse(journal->j_sb_buffer);
|
|
|
|
if (ctx->journal_io) {
|
|
if (ctx->fs && ctx->fs->io != ctx->journal_io)
|
|
io_channel_close(ctx->journal_io);
|
|
ctx->journal_io = 0;
|
|
}
|
|
|
|
#ifndef USE_INODE_IO
|
|
ext2fs_free_mem(&journal->j_inode);
|
|
#endif
|
|
ext2fs_free_mem(&journal->j_fs_dev);
|
|
ext2fs_free_mem(&journal);
|
|
}
|
|
|
|
/*
|
|
* This function makes sure that the superblock fields regarding the
|
|
* journal are consistent.
|
|
*/
|
|
static int e2fsck_check_ext3_journal(e2fsck_t ctx)
|
|
{
|
|
struct ext2_super_block *sb = ctx->fs->super;
|
|
journal_t *journal;
|
|
int recover = ctx->fs->super->s_feature_incompat &
|
|
EXT3_FEATURE_INCOMPAT_RECOVER;
|
|
struct problem_context pctx;
|
|
problem_t problem;
|
|
int reset = 0, force_fsck = 0;
|
|
int retval;
|
|
|
|
/* If we don't have any journal features, don't do anything more */
|
|
if (!(sb->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL) &&
|
|
!recover && sb->s_journal_inum == 0 && sb->s_journal_dev == 0 &&
|
|
uuid_is_null(sb->s_journal_uuid))
|
|
return 0;
|
|
|
|
clear_problem_context(&pctx);
|
|
pctx.num = sb->s_journal_inum;
|
|
|
|
retval = e2fsck_get_journal(ctx, &journal);
|
|
if (retval) {
|
|
if ((retval == EXT2_ET_BAD_INODE_NUM) ||
|
|
(retval == EXT2_ET_BAD_BLOCK_NUM) ||
|
|
(retval == EXT2_ET_JOURNAL_TOO_SMALL) ||
|
|
(retval == EXT2_ET_NO_JOURNAL))
|
|
return e2fsck_journal_fix_bad_inode(ctx, &pctx);
|
|
return retval;
|
|
}
|
|
|
|
retval = e2fsck_journal_load(journal);
|
|
if (retval) {
|
|
if ((retval == EXT2_ET_CORRUPT_SUPERBLOCK) ||
|
|
((retval == EXT2_ET_UNSUPP_FEATURE) &&
|
|
(!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_INCOMPAT,
|
|
&pctx))) ||
|
|
((retval == EXT2_ET_RO_UNSUPP_FEATURE) &&
|
|
(!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_ROCOMPAT,
|
|
&pctx))) ||
|
|
((retval == EXT2_ET_JOURNAL_UNSUPP_VERSION) &&
|
|
(!fix_problem(ctx, PR_0_JOURNAL_UNSUPP_VERSION, &pctx))))
|
|
retval = e2fsck_journal_fix_corrupt_super(ctx, journal,
|
|
&pctx);
|
|
e2fsck_journal_release(ctx, journal, 0, 1);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* We want to make the flags consistent here. We will not leave with
|
|
* needs_recovery set but has_journal clear. We can't get in a loop
|
|
* with -y, -n, or -p, only if a user isn't making up their mind.
|
|
*/
|
|
no_has_journal:
|
|
if (!(sb->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL)) {
|
|
recover = sb->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER;
|
|
pctx.str = "inode";
|
|
if (fix_problem(ctx, PR_0_JOURNAL_HAS_JOURNAL, &pctx)) {
|
|
if (recover &&
|
|
!fix_problem(ctx, PR_0_JOURNAL_RECOVER_SET, &pctx))
|
|
goto no_has_journal;
|
|
/*
|
|
* Need a full fsck if we are releasing a
|
|
* journal stored on a reserved inode.
|
|
*/
|
|
force_fsck = recover ||
|
|
(sb->s_journal_inum < EXT2_FIRST_INODE(sb));
|
|
/* Clear all of the journal fields */
|
|
sb->s_journal_inum = 0;
|
|
sb->s_journal_dev = 0;
|
|
memset(sb->s_journal_uuid, 0,
|
|
sizeof(sb->s_journal_uuid));
|
|
e2fsck_clear_recover(ctx, force_fsck);
|
|
} else if (!(ctx->options & E2F_OPT_READONLY)) {
|
|
sb->s_feature_compat |= EXT3_FEATURE_COMPAT_HAS_JOURNAL;
|
|
ext2fs_mark_super_dirty(ctx->fs);
|
|
}
|
|
}
|
|
|
|
if (sb->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL &&
|
|
!(sb->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER) &&
|
|
journal->j_superblock->s_start != 0) {
|
|
/* Print status information */
|
|
fix_problem(ctx, PR_0_JOURNAL_RECOVERY_CLEAR, &pctx);
|
|
if (ctx->superblock)
|
|
problem = PR_0_JOURNAL_RUN_DEFAULT;
|
|
else
|
|
problem = PR_0_JOURNAL_RUN;
|
|
if (fix_problem(ctx, problem, &pctx)) {
|
|
ctx->options |= E2F_OPT_FORCE;
|
|
sb->s_feature_incompat |=
|
|
EXT3_FEATURE_INCOMPAT_RECOVER;
|
|
ext2fs_mark_super_dirty(ctx->fs);
|
|
} else if (fix_problem(ctx,
|
|
PR_0_JOURNAL_RESET_JOURNAL, &pctx)) {
|
|
reset = 1;
|
|
sb->s_state &= ~EXT2_VALID_FS;
|
|
ext2fs_mark_super_dirty(ctx->fs);
|
|
}
|
|
/*
|
|
* If the user answers no to the above question, we
|
|
* ignore the fact that journal apparently has data;
|
|
* accidentally replaying over valid data would be far
|
|
* worse than skipping a questionable recovery.
|
|
*
|
|
* XXX should we abort with a fatal error here? What
|
|
* will the ext3 kernel code do if a filesystem with
|
|
* !NEEDS_RECOVERY but with a non-zero
|
|
* journal->j_superblock->s_start is mounted?
|
|
*/
|
|
}
|
|
|
|
e2fsck_journal_release(ctx, journal, reset, 0);
|
|
return retval;
|
|
}
|
|
|
|
static errcode_t recover_ext3_journal(e2fsck_t ctx)
|
|
{
|
|
journal_t *journal;
|
|
int retval;
|
|
|
|
journal_init_revoke_caches();
|
|
retval = e2fsck_get_journal(ctx, &journal);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = e2fsck_journal_load(journal);
|
|
if (retval)
|
|
goto errout;
|
|
|
|
retval = journal_init_revoke(journal, 1024);
|
|
if (retval)
|
|
goto errout;
|
|
|
|
retval = -journal_recover(journal);
|
|
if (retval)
|
|
goto errout;
|
|
|
|
if (journal->j_superblock->s_errno) {
|
|
ctx->fs->super->s_state |= EXT2_ERROR_FS;
|
|
ext2fs_mark_super_dirty(ctx->fs);
|
|
journal->j_superblock->s_errno = 0;
|
|
mark_buffer_dirty(journal->j_sb_buffer);
|
|
}
|
|
|
|
errout:
|
|
journal_destroy_revoke(journal);
|
|
journal_destroy_revoke_caches();
|
|
e2fsck_journal_release(ctx, journal, 1, 0);
|
|
return retval;
|
|
}
|
|
|
|
static int e2fsck_run_ext3_journal(e2fsck_t ctx)
|
|
{
|
|
io_manager io_ptr = ctx->fs->io->manager;
|
|
int blocksize = ctx->fs->blocksize;
|
|
errcode_t retval, recover_retval;
|
|
|
|
printf(_("%s: recovering journal\n"), ctx->device_name);
|
|
if (ctx->options & E2F_OPT_READONLY) {
|
|
printf(_("%s: won't do journal recovery while read-only\n"),
|
|
ctx->device_name);
|
|
return EXT2_ET_FILE_RO;
|
|
}
|
|
|
|
if (ctx->fs->flags & EXT2_FLAG_DIRTY)
|
|
ext2fs_flush(ctx->fs); /* Force out any modifications */
|
|
|
|
recover_retval = recover_ext3_journal(ctx);
|
|
|
|
/*
|
|
* Reload the filesystem context to get up-to-date data from disk
|
|
* because journal recovery will change the filesystem under us.
|
|
*/
|
|
ext2fs_close(ctx->fs);
|
|
retval = ext2fs_open(ctx->filesystem_name, EXT2_FLAG_RW,
|
|
ctx->superblock, blocksize, io_ptr,
|
|
&ctx->fs);
|
|
|
|
if (retval) {
|
|
bb_error_msg(_("while trying to re-open %s"),
|
|
ctx->device_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
ctx->fs->priv_data = ctx;
|
|
|
|
/* Set the superblock flags */
|
|
e2fsck_clear_recover(ctx, recover_retval);
|
|
return recover_retval;
|
|
}
|
|
|
|
/*
|
|
* This function will move the journal inode from a visible file in
|
|
* the filesystem directory hierarchy to the reserved inode if necessary.
|
|
*/
|
|
static const char *const journal_names[] = {
|
|
".journal", "journal", ".journal.dat", "journal.dat", 0 };
|
|
|
|
static void e2fsck_move_ext3_journal(e2fsck_t ctx)
|
|
{
|
|
struct ext2_super_block *sb = ctx->fs->super;
|
|
struct problem_context pctx;
|
|
struct ext2_inode inode;
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t ino;
|
|
errcode_t retval;
|
|
const char *const * cpp;
|
|
int group, mount_flags;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
/*
|
|
* If the filesystem is opened read-only, or there is no
|
|
* journal, then do nothing.
|
|
*/
|
|
if ((ctx->options & E2F_OPT_READONLY) ||
|
|
(sb->s_journal_inum == 0) ||
|
|
!(sb->s_feature_compat & EXT3_FEATURE_COMPAT_HAS_JOURNAL))
|
|
return;
|
|
|
|
/*
|
|
* Read in the journal inode
|
|
*/
|
|
if (ext2fs_read_inode(fs, sb->s_journal_inum, &inode) != 0)
|
|
return;
|
|
|
|
/*
|
|
* If it's necessary to backup the journal inode, do so.
|
|
*/
|
|
if ((sb->s_jnl_backup_type == 0) ||
|
|
((sb->s_jnl_backup_type == EXT3_JNL_BACKUP_BLOCKS) &&
|
|
memcmp(inode.i_block, sb->s_jnl_blocks, EXT2_N_BLOCKS*4))) {
|
|
if (fix_problem(ctx, PR_0_BACKUP_JNL, &pctx)) {
|
|
memcpy(sb->s_jnl_blocks, inode.i_block,
|
|
EXT2_N_BLOCKS*4);
|
|
sb->s_jnl_blocks[16] = inode.i_size;
|
|
sb->s_jnl_backup_type = EXT3_JNL_BACKUP_BLOCKS;
|
|
ext2fs_mark_super_dirty(fs);
|
|
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the journal is already the hidden inode, then do nothing
|
|
*/
|
|
if (sb->s_journal_inum == EXT2_JOURNAL_INO)
|
|
return;
|
|
|
|
/*
|
|
* The journal inode had better have only one link and not be readable.
|
|
*/
|
|
if (inode.i_links_count != 1)
|
|
return;
|
|
|
|
/*
|
|
* If the filesystem is mounted, or we can't tell whether
|
|
* or not it's mounted, do nothing.
|
|
*/
|
|
retval = ext2fs_check_if_mounted(ctx->filesystem_name, &mount_flags);
|
|
if (retval || (mount_flags & EXT2_MF_MOUNTED))
|
|
return;
|
|
|
|
/*
|
|
* If we can't find the name of the journal inode, then do
|
|
* nothing.
|
|
*/
|
|
for (cpp = journal_names; *cpp; cpp++) {
|
|
retval = ext2fs_lookup(fs, EXT2_ROOT_INO, *cpp,
|
|
strlen(*cpp), 0, &ino);
|
|
if ((retval == 0) && (ino == sb->s_journal_inum))
|
|
break;
|
|
}
|
|
if (*cpp == 0)
|
|
return;
|
|
|
|
/* We need the inode bitmap to be loaded */
|
|
retval = ext2fs_read_bitmaps(fs);
|
|
if (retval)
|
|
return;
|
|
|
|
pctx.str = *cpp;
|
|
if (!fix_problem(ctx, PR_0_MOVE_JOURNAL, &pctx))
|
|
return;
|
|
|
|
/*
|
|
* OK, we've done all the checks, let's actually move the
|
|
* journal inode. Errors at this point mean we need to force
|
|
* an ext2 filesystem check.
|
|
*/
|
|
if ((retval = ext2fs_unlink(fs, EXT2_ROOT_INO, *cpp, ino, 0)) != 0)
|
|
goto err_out;
|
|
if ((retval = ext2fs_write_inode(fs, EXT2_JOURNAL_INO, &inode)) != 0)
|
|
goto err_out;
|
|
sb->s_journal_inum = EXT2_JOURNAL_INO;
|
|
ext2fs_mark_super_dirty(fs);
|
|
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
|
|
inode.i_links_count = 0;
|
|
inode.i_dtime = time(NULL);
|
|
if ((retval = ext2fs_write_inode(fs, ino, &inode)) != 0)
|
|
goto err_out;
|
|
|
|
group = ext2fs_group_of_ino(fs, ino);
|
|
ext2fs_unmark_inode_bitmap(fs->inode_map, ino);
|
|
ext2fs_mark_ib_dirty(fs);
|
|
fs->group_desc[group].bg_free_inodes_count++;
|
|
fs->super->s_free_inodes_count++;
|
|
return;
|
|
|
|
err_out:
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, PR_0_ERR_MOVE_JOURNAL, &pctx);
|
|
fs->super->s_state &= ~EXT2_VALID_FS;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
|
|
/*
|
|
* message.c --- print e2fsck messages (with compression)
|
|
*
|
|
* print_e2fsck_message() prints a message to the user, using
|
|
* compression techniques and expansions of abbreviations.
|
|
*
|
|
* The following % expansions are supported:
|
|
*
|
|
* %b <blk> block number
|
|
* %B <blkcount> integer
|
|
* %c <blk2> block number
|
|
* %Di <dirent>->ino inode number
|
|
* %Dn <dirent>->name string
|
|
* %Dr <dirent>->rec_len
|
|
* %Dl <dirent>->name_len
|
|
* %Dt <dirent>->filetype
|
|
* %d <dir> inode number
|
|
* %g <group> integer
|
|
* %i <ino> inode number
|
|
* %Is <inode> -> i_size
|
|
* %IS <inode> -> i_extra_isize
|
|
* %Ib <inode> -> i_blocks
|
|
* %Il <inode> -> i_links_count
|
|
* %Im <inode> -> i_mode
|
|
* %IM <inode> -> i_mtime
|
|
* %IF <inode> -> i_faddr
|
|
* %If <inode> -> i_file_acl
|
|
* %Id <inode> -> i_dir_acl
|
|
* %Iu <inode> -> i_uid
|
|
* %Ig <inode> -> i_gid
|
|
* %j <ino2> inode number
|
|
* %m <com_err error message>
|
|
* %N <num>
|
|
* %p ext2fs_get_pathname of directory <ino>
|
|
* %P ext2fs_get_pathname of <dirent>->ino with <ino2> as
|
|
* the containing directory. (If dirent is NULL
|
|
* then return the pathname of directory <ino2>)
|
|
* %q ext2fs_get_pathname of directory <dir>
|
|
* %Q ext2fs_get_pathname of directory <ino> with <dir> as
|
|
* the containing directory.
|
|
* %s <str> miscellaneous string
|
|
* %S backup superblock
|
|
* %X <num> hexadecimal format
|
|
*
|
|
* The following '@' expansions are supported:
|
|
*
|
|
* @a extended attribute
|
|
* @A error allocating
|
|
* @b block
|
|
* @B bitmap
|
|
* @c compress
|
|
* @C conflicts with some other fs block
|
|
* @D deleted
|
|
* @d directory
|
|
* @e entry
|
|
* @E Entry '%Dn' in %p (%i)
|
|
* @f filesystem
|
|
* @F for @i %i (%Q) is
|
|
* @g group
|
|
* @h HTREE directory inode
|
|
* @i inode
|
|
* @I illegal
|
|
* @j journal
|
|
* @l lost+found
|
|
* @L is a link
|
|
* @m multiply-claimed
|
|
* @n invalid
|
|
* @o orphaned
|
|
* @p problem in
|
|
* @r root inode
|
|
* @s should be
|
|
* @S superblock
|
|
* @u unattached
|
|
* @v device
|
|
* @z zero-length
|
|
*/
|
|
|
|
|
|
/*
|
|
* This structure defines the abbreviations used by the text strings
|
|
* below. The first character in the string is the index letter. An
|
|
* abbreviation of the form '@<i>' is expanded by looking up the index
|
|
* letter <i> in the table below.
|
|
*/
|
|
static const char *const abbrevs[] = {
|
|
N_("aextended attribute"),
|
|
N_("Aerror allocating"),
|
|
N_("bblock"),
|
|
N_("Bbitmap"),
|
|
N_("ccompress"),
|
|
N_("Cconflicts with some other fs @b"),
|
|
N_("iinode"),
|
|
N_("Iillegal"),
|
|
N_("jjournal"),
|
|
N_("Ddeleted"),
|
|
N_("ddirectory"),
|
|
N_("eentry"),
|
|
N_("E@e '%Dn' in %p (%i)"),
|
|
N_("ffilesystem"),
|
|
N_("Ffor @i %i (%Q) is"),
|
|
N_("ggroup"),
|
|
N_("hHTREE @d @i"),
|
|
N_("llost+found"),
|
|
N_("Lis a link"),
|
|
N_("mmultiply-claimed"),
|
|
N_("ninvalid"),
|
|
N_("oorphaned"),
|
|
N_("pproblem in"),
|
|
N_("rroot @i"),
|
|
N_("sshould be"),
|
|
N_("Ssuper@b"),
|
|
N_("uunattached"),
|
|
N_("vdevice"),
|
|
N_("zzero-length"),
|
|
"@@",
|
|
0
|
|
};
|
|
|
|
/*
|
|
* Give more user friendly names to the "special" inodes.
|
|
*/
|
|
#define num_special_inodes 11
|
|
static const char *const special_inode_name[] =
|
|
{
|
|
N_("<The NULL inode>"), /* 0 */
|
|
N_("<The bad blocks inode>"), /* 1 */
|
|
"/", /* 2 */
|
|
N_("<The ACL index inode>"), /* 3 */
|
|
N_("<The ACL data inode>"), /* 4 */
|
|
N_("<The boot loader inode>"), /* 5 */
|
|
N_("<The undelete directory inode>"), /* 6 */
|
|
N_("<The group descriptor inode>"), /* 7 */
|
|
N_("<The journal inode>"), /* 8 */
|
|
N_("<Reserved inode 9>"), /* 9 */
|
|
N_("<Reserved inode 10>"), /* 10 */
|
|
};
|
|
|
|
/*
|
|
* This function does "safe" printing. It will convert non-printable
|
|
* ASCII characters using '^' and M- notation.
|
|
*/
|
|
static void safe_print(const char *cp, int len)
|
|
{
|
|
unsigned char ch;
|
|
|
|
if (len < 0)
|
|
len = strlen(cp);
|
|
|
|
while (len--) {
|
|
ch = *cp++;
|
|
if (ch > 128) {
|
|
fputs("M-", stdout);
|
|
ch -= 128;
|
|
}
|
|
if ((ch < 32) || (ch == 0x7f)) {
|
|
bb_putchar('^');
|
|
ch ^= 0x40; /* ^@, ^A, ^B; ^? for DEL */
|
|
}
|
|
bb_putchar(ch);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* This function prints a pathname, using the ext2fs_get_pathname
|
|
* function
|
|
*/
|
|
static void print_pathname(ext2_filsys fs, ext2_ino_t dir, ext2_ino_t ino)
|
|
{
|
|
errcode_t retval;
|
|
char *path;
|
|
|
|
if (!dir && (ino < num_special_inodes)) {
|
|
fputs(_(special_inode_name[ino]), stdout);
|
|
return;
|
|
}
|
|
|
|
retval = ext2fs_get_pathname(fs, dir, ino, &path);
|
|
if (retval)
|
|
fputs("???", stdout);
|
|
else {
|
|
safe_print(path, -1);
|
|
ext2fs_free_mem(&path);
|
|
}
|
|
}
|
|
|
|
static void print_e2fsck_message(e2fsck_t ctx, const char *msg,
|
|
struct problem_context *pctx, int first);
|
|
/*
|
|
* This function handles the '@' expansion. We allow recursive
|
|
* expansion; an @ expression can contain further '@' and '%'
|
|
* expressions.
|
|
*/
|
|
static void expand_at_expression(e2fsck_t ctx, char ch,
|
|
struct problem_context *pctx,
|
|
int *first)
|
|
{
|
|
const char *const *cpp;
|
|
const char *str;
|
|
|
|
/* Search for the abbreviation */
|
|
for (cpp = abbrevs; *cpp; cpp++) {
|
|
if (ch == *cpp[0])
|
|
break;
|
|
}
|
|
if (*cpp) {
|
|
str = _(*cpp) + 1;
|
|
if (*first && islower(*str)) {
|
|
*first = 0;
|
|
bb_putchar(toupper(*str++));
|
|
}
|
|
print_e2fsck_message(ctx, str, pctx, *first);
|
|
} else
|
|
printf("@%c", ch);
|
|
}
|
|
|
|
/*
|
|
* This function expands '%IX' expressions
|
|
*/
|
|
static void expand_inode_expression(char ch,
|
|
struct problem_context *ctx)
|
|
{
|
|
struct ext2_inode *inode;
|
|
struct ext2_inode_large *large_inode;
|
|
char * time_str;
|
|
time_t t;
|
|
int do_gmt = -1;
|
|
|
|
if (!ctx || !ctx->inode)
|
|
goto no_inode;
|
|
|
|
inode = ctx->inode;
|
|
large_inode = (struct ext2_inode_large *) inode;
|
|
|
|
switch (ch) {
|
|
case 's':
|
|
if (LINUX_S_ISDIR(inode->i_mode))
|
|
printf("%u", inode->i_size);
|
|
else {
|
|
printf("%"PRIu64, (inode->i_size |
|
|
((uint64_t) inode->i_size_high << 32)));
|
|
}
|
|
break;
|
|
case 'S':
|
|
printf("%u", large_inode->i_extra_isize);
|
|
break;
|
|
case 'b':
|
|
printf("%u", inode->i_blocks);
|
|
break;
|
|
case 'l':
|
|
printf("%d", inode->i_links_count);
|
|
break;
|
|
case 'm':
|
|
printf("0%o", inode->i_mode);
|
|
break;
|
|
case 'M':
|
|
/* The diet libc doesn't respect the TZ environemnt variable */
|
|
if (do_gmt == -1) {
|
|
time_str = getenv("TZ");
|
|
if (!time_str)
|
|
time_str = "";
|
|
do_gmt = !strcmp(time_str, "GMT");
|
|
}
|
|
t = inode->i_mtime;
|
|
time_str = asctime(do_gmt ? gmtime(&t) : localtime(&t));
|
|
printf("%.24s", time_str);
|
|
break;
|
|
case 'F':
|
|
printf("%u", inode->i_faddr);
|
|
break;
|
|
case 'f':
|
|
printf("%u", inode->i_file_acl);
|
|
break;
|
|
case 'd':
|
|
printf("%u", (LINUX_S_ISDIR(inode->i_mode) ?
|
|
inode->i_dir_acl : 0));
|
|
break;
|
|
case 'u':
|
|
printf("%d", (inode->i_uid |
|
|
(inode->osd2.linux2.l_i_uid_high << 16)));
|
|
break;
|
|
case 'g':
|
|
printf("%d", (inode->i_gid |
|
|
(inode->osd2.linux2.l_i_gid_high << 16)));
|
|
break;
|
|
default:
|
|
no_inode:
|
|
printf("%%I%c", ch);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function expands '%dX' expressions
|
|
*/
|
|
static void expand_dirent_expression(char ch,
|
|
struct problem_context *ctx)
|
|
{
|
|
struct ext2_dir_entry *dirent;
|
|
int len;
|
|
|
|
if (!ctx || !ctx->dirent)
|
|
goto no_dirent;
|
|
|
|
dirent = ctx->dirent;
|
|
|
|
switch (ch) {
|
|
case 'i':
|
|
printf("%u", dirent->inode);
|
|
break;
|
|
case 'n':
|
|
len = dirent->name_len & 0xFF;
|
|
if (len > EXT2_NAME_LEN)
|
|
len = EXT2_NAME_LEN;
|
|
if (len > dirent->rec_len)
|
|
len = dirent->rec_len;
|
|
safe_print(dirent->name, len);
|
|
break;
|
|
case 'r':
|
|
printf("%u", dirent->rec_len);
|
|
break;
|
|
case 'l':
|
|
printf("%u", dirent->name_len & 0xFF);
|
|
break;
|
|
case 't':
|
|
printf("%u", dirent->name_len >> 8);
|
|
break;
|
|
default:
|
|
no_dirent:
|
|
printf("%%D%c", ch);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void expand_percent_expression(ext2_filsys fs, char ch,
|
|
struct problem_context *ctx)
|
|
{
|
|
if (!ctx)
|
|
goto no_context;
|
|
|
|
switch (ch) {
|
|
case '%':
|
|
bb_putchar('%');
|
|
break;
|
|
case 'b':
|
|
printf("%u", ctx->blk);
|
|
break;
|
|
case 'B':
|
|
printf("%"PRIi64, ctx->blkcount);
|
|
break;
|
|
case 'c':
|
|
printf("%u", ctx->blk2);
|
|
break;
|
|
case 'd':
|
|
printf("%u", ctx->dir);
|
|
break;
|
|
case 'g':
|
|
printf("%d", ctx->group);
|
|
break;
|
|
case 'i':
|
|
printf("%u", ctx->ino);
|
|
break;
|
|
case 'j':
|
|
printf("%u", ctx->ino2);
|
|
break;
|
|
case 'm':
|
|
fputs(error_message(ctx->errcode), stdout);
|
|
break;
|
|
case 'N':
|
|
printf("%"PRIi64, ctx->num);
|
|
break;
|
|
case 'p':
|
|
print_pathname(fs, ctx->ino, 0);
|
|
break;
|
|
case 'P':
|
|
print_pathname(fs, ctx->ino2,
|
|
ctx->dirent ? ctx->dirent->inode : 0);
|
|
break;
|
|
case 'q':
|
|
print_pathname(fs, ctx->dir, 0);
|
|
break;
|
|
case 'Q':
|
|
print_pathname(fs, ctx->dir, ctx->ino);
|
|
break;
|
|
case 'S':
|
|
printf("%d", get_backup_sb(NULL, fs, NULL, NULL));
|
|
break;
|
|
case 's':
|
|
fputs((ctx->str ? ctx->str : "NULL"), stdout);
|
|
break;
|
|
case 'X':
|
|
printf("0x%"PRIi64, ctx->num);
|
|
break;
|
|
default:
|
|
no_context:
|
|
printf("%%%c", ch);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void print_e2fsck_message(e2fsck_t ctx, const char *msg,
|
|
struct problem_context *pctx, int first)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
const char * cp;
|
|
int i;
|
|
|
|
e2fsck_clear_progbar(ctx);
|
|
for (cp = msg; *cp; cp++) {
|
|
if (cp[0] == '@') {
|
|
cp++;
|
|
expand_at_expression(ctx, *cp, pctx, &first);
|
|
} else if (cp[0] == '%' && cp[1] == 'I') {
|
|
cp += 2;
|
|
expand_inode_expression(*cp, pctx);
|
|
} else if (cp[0] == '%' && cp[1] == 'D') {
|
|
cp += 2;
|
|
expand_dirent_expression(*cp, pctx);
|
|
} else if ((cp[0] == '%')) {
|
|
cp++;
|
|
expand_percent_expression(fs, *cp, pctx);
|
|
} else {
|
|
for (i=0; cp[i]; i++)
|
|
if ((cp[i] == '@') || cp[i] == '%')
|
|
break;
|
|
printf("%.*s", i, cp);
|
|
cp += i-1;
|
|
}
|
|
first = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* region.c --- code which manages allocations within a region.
|
|
*/
|
|
|
|
struct region_el {
|
|
region_addr_t start;
|
|
region_addr_t end;
|
|
struct region_el *next;
|
|
};
|
|
|
|
struct region_struct {
|
|
region_addr_t min;
|
|
region_addr_t max;
|
|
struct region_el *allocated;
|
|
};
|
|
|
|
static region_t region_create(region_addr_t min, region_addr_t max)
|
|
{
|
|
region_t region;
|
|
|
|
region = xzalloc(sizeof(struct region_struct));
|
|
region->min = min;
|
|
region->max = max;
|
|
return region;
|
|
}
|
|
|
|
static void region_free(region_t region)
|
|
{
|
|
struct region_el *r, *next;
|
|
|
|
for (r = region->allocated; r; r = next) {
|
|
next = r->next;
|
|
free(r);
|
|
}
|
|
memset(region, 0, sizeof(struct region_struct));
|
|
free(region);
|
|
}
|
|
|
|
static int region_allocate(region_t region, region_addr_t start, int n)
|
|
{
|
|
struct region_el *r, *new_region, *prev, *next;
|
|
region_addr_t end;
|
|
|
|
end = start+n;
|
|
if ((start < region->min) || (end > region->max))
|
|
return -1;
|
|
if (n == 0)
|
|
return 1;
|
|
|
|
/*
|
|
* Search through the linked list. If we find that it
|
|
* conflicts witih something that's already allocated, return
|
|
* 1; if we can find an existing region which we can grow, do
|
|
* so. Otherwise, stop when we find the appropriate place
|
|
* insert a new region element into the linked list.
|
|
*/
|
|
for (r = region->allocated, prev=NULL; r; prev = r, r = r->next) {
|
|
if (((start >= r->start) && (start < r->end)) ||
|
|
((end > r->start) && (end <= r->end)) ||
|
|
((start <= r->start) && (end >= r->end)))
|
|
return 1;
|
|
if (end == r->start) {
|
|
r->start = start;
|
|
return 0;
|
|
}
|
|
if (start == r->end) {
|
|
if ((next = r->next)) {
|
|
if (end > next->start)
|
|
return 1;
|
|
if (end == next->start) {
|
|
r->end = next->end;
|
|
r->next = next->next;
|
|
free(next);
|
|
return 0;
|
|
}
|
|
}
|
|
r->end = end;
|
|
return 0;
|
|
}
|
|
if (start < r->start)
|
|
break;
|
|
}
|
|
/*
|
|
* Insert a new region element structure into the linked list
|
|
*/
|
|
new_region = xmalloc(sizeof(struct region_el));
|
|
new_region->start = start;
|
|
new_region->end = start + n;
|
|
new_region->next = r;
|
|
if (prev)
|
|
prev->next = new_region;
|
|
else
|
|
region->allocated = new_region;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pass1.c -- pass #1 of e2fsck: sequential scan of the inode table
|
|
*
|
|
* Pass 1 of e2fsck iterates over all the inodes in the filesystems,
|
|
* and applies the following tests to each inode:
|
|
*
|
|
* - The mode field of the inode must be legal.
|
|
* - The size and block count fields of the inode are correct.
|
|
* - A data block must not be used by another inode
|
|
*
|
|
* Pass 1 also gathers the collects the following information:
|
|
*
|
|
* - A bitmap of which inodes are in use. (inode_used_map)
|
|
* - A bitmap of which inodes are directories. (inode_dir_map)
|
|
* - A bitmap of which inodes are regular files. (inode_reg_map)
|
|
* - A bitmap of which inodes have bad fields. (inode_bad_map)
|
|
* - A bitmap of which inodes are imagic inodes. (inode_imagic_map)
|
|
* - A bitmap of which blocks are in use. (block_found_map)
|
|
* - A bitmap of which blocks are in use by two inodes (block_dup_map)
|
|
* - The data blocks of the directory inodes. (dir_map)
|
|
*
|
|
* Pass 1 is designed to stash away enough information so that the
|
|
* other passes should not need to read in the inode information
|
|
* during the normal course of a filesystem check. (Althogh if an
|
|
* inconsistency is detected, other passes may need to read in an
|
|
* inode to fix it.)
|
|
*
|
|
* Note that pass 1B will be invoked if there are any duplicate blocks
|
|
* found.
|
|
*/
|
|
|
|
|
|
static int process_block(ext2_filsys fs, blk_t *blocknr,
|
|
e2_blkcnt_t blockcnt, blk_t ref_blk,
|
|
int ref_offset, void *priv_data);
|
|
static int process_bad_block(ext2_filsys fs, blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt, blk_t ref_blk,
|
|
int ref_offset, void *priv_data);
|
|
static void check_blocks(e2fsck_t ctx, struct problem_context *pctx,
|
|
char *block_buf);
|
|
static void mark_table_blocks(e2fsck_t ctx);
|
|
static void alloc_imagic_map(e2fsck_t ctx);
|
|
static void mark_inode_bad(e2fsck_t ctx, ino_t ino);
|
|
static void handle_fs_bad_blocks(e2fsck_t ctx);
|
|
static void process_inodes(e2fsck_t ctx, char *block_buf);
|
|
static int process_inode_cmp(const void *a, const void *b);
|
|
static errcode_t scan_callback(ext2_filsys fs,
|
|
dgrp_t group, void * priv_data);
|
|
static void adjust_extattr_refcount(e2fsck_t ctx, ext2_refcount_t refcount,
|
|
char *block_buf, int adjust_sign);
|
|
/* static char *describe_illegal_block(ext2_filsys fs, blk_t block); */
|
|
|
|
static void e2fsck_write_inode_full(e2fsck_t ctx, unsigned long ino,
|
|
struct ext2_inode * inode, int bufsize,
|
|
const char *proc);
|
|
|
|
struct process_block_struct_1 {
|
|
ext2_ino_t ino;
|
|
unsigned is_dir:1, is_reg:1, clear:1, suppress:1,
|
|
fragmented:1, compressed:1, bbcheck:1;
|
|
blk_t num_blocks;
|
|
blk_t max_blocks;
|
|
e2_blkcnt_t last_block;
|
|
int num_illegal_blocks;
|
|
blk_t previous_block;
|
|
struct ext2_inode *inode;
|
|
struct problem_context *pctx;
|
|
ext2fs_block_bitmap fs_meta_blocks;
|
|
e2fsck_t ctx;
|
|
};
|
|
|
|
struct process_inode_block {
|
|
ext2_ino_t ino;
|
|
struct ext2_inode inode;
|
|
};
|
|
|
|
struct scan_callback_struct {
|
|
e2fsck_t ctx;
|
|
char *block_buf;
|
|
};
|
|
|
|
/*
|
|
* For the inodes to process list.
|
|
*/
|
|
static struct process_inode_block *inodes_to_process;
|
|
static int process_inode_count;
|
|
|
|
static __u64 ext2_max_sizes[EXT2_MAX_BLOCK_LOG_SIZE -
|
|
EXT2_MIN_BLOCK_LOG_SIZE + 1];
|
|
|
|
/*
|
|
* Free all memory allocated by pass1 in preparation for restarting
|
|
* things.
|
|
*/
|
|
static void unwind_pass1(void)
|
|
{
|
|
ext2fs_free_mem(&inodes_to_process);
|
|
}
|
|
|
|
/*
|
|
* Check to make sure a device inode is real. Returns 1 if the device
|
|
* checks out, 0 if not.
|
|
*
|
|
* Note: this routine is now also used to check FIFO's and Sockets,
|
|
* since they have the same requirement; the i_block fields should be
|
|
* zero.
|
|
*/
|
|
static int
|
|
e2fsck_pass1_check_device_inode(ext2_filsys fs, struct ext2_inode *inode)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* If i_blocks is non-zero, or the index flag is set, then
|
|
* this is a bogus device/fifo/socket
|
|
*/
|
|
if ((ext2fs_inode_data_blocks(fs, inode) != 0) ||
|
|
(inode->i_flags & EXT2_INDEX_FL))
|
|
return 0;
|
|
|
|
/*
|
|
* We should be able to do the test below all the time, but
|
|
* because the kernel doesn't forcibly clear the device
|
|
* inode's additional i_block fields, there are some rare
|
|
* occasions when a legitimate device inode will have non-zero
|
|
* additional i_block fields. So for now, we only complain
|
|
* when the immutable flag is set, which should never happen
|
|
* for devices. (And that's when the problem is caused, since
|
|
* you can't set or clear immutable flags for devices.) Once
|
|
* the kernel has been fixed we can change this...
|
|
*/
|
|
if (inode->i_flags & (EXT2_IMMUTABLE_FL | EXT2_APPEND_FL)) {
|
|
for (i=4; i < EXT2_N_BLOCKS; i++)
|
|
if (inode->i_block[i])
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check to make sure a symlink inode is real. Returns 1 if the symlink
|
|
* checks out, 0 if not.
|
|
*/
|
|
static int
|
|
e2fsck_pass1_check_symlink(ext2_filsys fs, struct ext2_inode *inode, char *buf)
|
|
{
|
|
unsigned int len;
|
|
int i;
|
|
blk_t blocks;
|
|
|
|
if ((inode->i_size_high || inode->i_size == 0) ||
|
|
(inode->i_flags & EXT2_INDEX_FL))
|
|
return 0;
|
|
|
|
blocks = ext2fs_inode_data_blocks(fs, inode);
|
|
if (blocks) {
|
|
if ((inode->i_size >= fs->blocksize) ||
|
|
(blocks != fs->blocksize >> 9) ||
|
|
(inode->i_block[0] < fs->super->s_first_data_block) ||
|
|
(inode->i_block[0] >= fs->super->s_blocks_count))
|
|
return 0;
|
|
|
|
for (i = 1; i < EXT2_N_BLOCKS; i++)
|
|
if (inode->i_block[i])
|
|
return 0;
|
|
|
|
if (io_channel_read_blk(fs->io, inode->i_block[0], 1, buf))
|
|
return 0;
|
|
|
|
len = strnlen(buf, fs->blocksize);
|
|
if (len == fs->blocksize)
|
|
return 0;
|
|
} else {
|
|
if (inode->i_size >= sizeof(inode->i_block))
|
|
return 0;
|
|
|
|
len = strnlen((char *)inode->i_block, sizeof(inode->i_block));
|
|
if (len == sizeof(inode->i_block))
|
|
return 0;
|
|
}
|
|
if (len != inode->i_size)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If the immutable (or append-only) flag is set on the inode, offer
|
|
* to clear it.
|
|
*/
|
|
#define BAD_SPECIAL_FLAGS (EXT2_IMMUTABLE_FL | EXT2_APPEND_FL)
|
|
static void check_immutable(e2fsck_t ctx, struct problem_context *pctx)
|
|
{
|
|
if (!(pctx->inode->i_flags & BAD_SPECIAL_FLAGS))
|
|
return;
|
|
|
|
if (!fix_problem(ctx, PR_1_SET_IMMUTABLE, pctx))
|
|
return;
|
|
|
|
pctx->inode->i_flags &= ~BAD_SPECIAL_FLAGS;
|
|
e2fsck_write_inode(ctx, pctx->ino, pctx->inode, "pass1");
|
|
}
|
|
|
|
/*
|
|
* If device, fifo or socket, check size is zero -- if not offer to
|
|
* clear it
|
|
*/
|
|
static void check_size(e2fsck_t ctx, struct problem_context *pctx)
|
|
{
|
|
struct ext2_inode *inode = pctx->inode;
|
|
|
|
if ((inode->i_size == 0) && (inode->i_size_high == 0))
|
|
return;
|
|
|
|
if (!fix_problem(ctx, PR_1_SET_NONZSIZE, pctx))
|
|
return;
|
|
|
|
inode->i_size = 0;
|
|
inode->i_size_high = 0;
|
|
e2fsck_write_inode(ctx, pctx->ino, pctx->inode, "pass1");
|
|
}
|
|
|
|
static void check_ea_in_inode(e2fsck_t ctx, struct problem_context *pctx)
|
|
{
|
|
struct ext2_super_block *sb = ctx->fs->super;
|
|
struct ext2_inode_large *inode;
|
|
struct ext2_ext_attr_entry *entry;
|
|
char *start, *end;
|
|
int storage_size, remain, offs;
|
|
int problem = 0;
|
|
|
|
inode = (struct ext2_inode_large *) pctx->inode;
|
|
storage_size = EXT2_INODE_SIZE(ctx->fs->super) - EXT2_GOOD_OLD_INODE_SIZE -
|
|
inode->i_extra_isize;
|
|
start = ((char *) inode) + EXT2_GOOD_OLD_INODE_SIZE +
|
|
inode->i_extra_isize + sizeof(__u32);
|
|
end = (char *) inode + EXT2_INODE_SIZE(ctx->fs->super);
|
|
entry = (struct ext2_ext_attr_entry *) start;
|
|
|
|
/* scan all entry's headers first */
|
|
|
|
/* take finish entry 0UL into account */
|
|
remain = storage_size - sizeof(__u32);
|
|
offs = end - start;
|
|
|
|
while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
|
|
|
|
/* header eats this space */
|
|
remain -= sizeof(struct ext2_ext_attr_entry);
|
|
|
|
/* is attribute name valid? */
|
|
if (EXT2_EXT_ATTR_SIZE(entry->e_name_len) > remain) {
|
|
pctx->num = entry->e_name_len;
|
|
problem = PR_1_ATTR_NAME_LEN;
|
|
goto fix;
|
|
}
|
|
|
|
/* attribute len eats this space */
|
|
remain -= EXT2_EXT_ATTR_SIZE(entry->e_name_len);
|
|
|
|
/* check value size */
|
|
if (entry->e_value_size == 0 || entry->e_value_size > remain) {
|
|
pctx->num = entry->e_value_size;
|
|
problem = PR_1_ATTR_VALUE_SIZE;
|
|
goto fix;
|
|
}
|
|
|
|
/* check value placement */
|
|
if (entry->e_value_offs +
|
|
EXT2_XATTR_SIZE(entry->e_value_size) != offs) {
|
|
printf("(entry->e_value_offs + entry->e_value_size: %d, offs: %d)\n", entry->e_value_offs + entry->e_value_size, offs);
|
|
pctx->num = entry->e_value_offs;
|
|
problem = PR_1_ATTR_VALUE_OFFSET;
|
|
goto fix;
|
|
}
|
|
|
|
/* e_value_block must be 0 in inode's ea */
|
|
if (entry->e_value_block != 0) {
|
|
pctx->num = entry->e_value_block;
|
|
problem = PR_1_ATTR_VALUE_BLOCK;
|
|
goto fix;
|
|
}
|
|
|
|
/* e_hash must be 0 in inode's ea */
|
|
if (entry->e_hash != 0) {
|
|
pctx->num = entry->e_hash;
|
|
problem = PR_1_ATTR_HASH;
|
|
goto fix;
|
|
}
|
|
|
|
remain -= entry->e_value_size;
|
|
offs -= EXT2_XATTR_SIZE(entry->e_value_size);
|
|
|
|
entry = EXT2_EXT_ATTR_NEXT(entry);
|
|
}
|
|
fix:
|
|
/*
|
|
* it seems like a corruption. it's very unlikely we could repair
|
|
* EA(s) in automatic fashion -bzzz
|
|
*/
|
|
if (problem == 0 || !fix_problem(ctx, problem, pctx))
|
|
return;
|
|
|
|
/* simple remove all possible EA(s) */
|
|
*((__u32 *)start) = 0UL;
|
|
e2fsck_write_inode_full(ctx, pctx->ino, (struct ext2_inode *)inode,
|
|
EXT2_INODE_SIZE(sb), "pass1");
|
|
}
|
|
|
|
static void check_inode_extra_space(e2fsck_t ctx, struct problem_context *pctx)
|
|
{
|
|
struct ext2_super_block *sb = ctx->fs->super;
|
|
struct ext2_inode_large *inode;
|
|
__u32 *eamagic;
|
|
int min, max;
|
|
|
|
inode = (struct ext2_inode_large *) pctx->inode;
|
|
if (EXT2_INODE_SIZE(sb) == EXT2_GOOD_OLD_INODE_SIZE) {
|
|
/* this isn't large inode. so, nothing to check */
|
|
return;
|
|
}
|
|
|
|
/* i_extra_isize must cover i_extra_isize + i_pad1 at least */
|
|
min = sizeof(inode->i_extra_isize) + sizeof(inode->i_pad1);
|
|
max = EXT2_INODE_SIZE(sb) - EXT2_GOOD_OLD_INODE_SIZE;
|
|
/*
|
|
* For now we will allow i_extra_isize to be 0, but really
|
|
* implementations should never allow i_extra_isize to be 0
|
|
*/
|
|
if (inode->i_extra_isize &&
|
|
(inode->i_extra_isize < min || inode->i_extra_isize > max)) {
|
|
if (!fix_problem(ctx, PR_1_EXTRA_ISIZE, pctx))
|
|
return;
|
|
inode->i_extra_isize = min;
|
|
e2fsck_write_inode_full(ctx, pctx->ino, pctx->inode,
|
|
EXT2_INODE_SIZE(sb), "pass1");
|
|
return;
|
|
}
|
|
|
|
eamagic = (__u32 *) (((char *) inode) + EXT2_GOOD_OLD_INODE_SIZE +
|
|
inode->i_extra_isize);
|
|
if (*eamagic == EXT2_EXT_ATTR_MAGIC) {
|
|
/* it seems inode has an extended attribute(s) in body */
|
|
check_ea_in_inode(ctx, pctx);
|
|
}
|
|
}
|
|
|
|
static void e2fsck_pass1(e2fsck_t ctx)
|
|
{
|
|
int i;
|
|
__u64 max_sizes;
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t ino;
|
|
struct ext2_inode *inode;
|
|
ext2_inode_scan scan;
|
|
char *block_buf;
|
|
unsigned char frag, fsize;
|
|
struct problem_context pctx;
|
|
struct scan_callback_struct scan_struct;
|
|
struct ext2_super_block *sb = ctx->fs->super;
|
|
int imagic_fs;
|
|
int busted_fs_time = 0;
|
|
int inode_size;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_1_PASS_HEADER, &pctx);
|
|
|
|
if ((fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_DIR_INDEX) &&
|
|
!(ctx->options & E2F_OPT_NO)) {
|
|
if (ext2fs_u32_list_create(&ctx->dirs_to_hash, 50))
|
|
ctx->dirs_to_hash = 0;
|
|
}
|
|
|
|
/* Pass 1 */
|
|
|
|
#define EXT2_BPP(bits) (1ULL << ((bits) - 2))
|
|
|
|
for (i = EXT2_MIN_BLOCK_LOG_SIZE; i <= EXT2_MAX_BLOCK_LOG_SIZE; i++) {
|
|
max_sizes = EXT2_NDIR_BLOCKS + EXT2_BPP(i);
|
|
max_sizes = max_sizes + EXT2_BPP(i) * EXT2_BPP(i);
|
|
max_sizes = max_sizes + EXT2_BPP(i) * EXT2_BPP(i) * EXT2_BPP(i);
|
|
max_sizes = (max_sizes * (1UL << i)) - 1;
|
|
ext2_max_sizes[i - EXT2_MIN_BLOCK_LOG_SIZE] = max_sizes;
|
|
}
|
|
#undef EXT2_BPP
|
|
|
|
imagic_fs = (sb->s_feature_compat & EXT2_FEATURE_COMPAT_IMAGIC_INODES);
|
|
|
|
/*
|
|
* Allocate bitmaps structures
|
|
*/
|
|
pctx.errcode = ext2fs_allocate_inode_bitmap(fs, _("in-use inode map"),
|
|
&ctx->inode_used_map);
|
|
if (pctx.errcode) {
|
|
pctx.num = 1;
|
|
fix_problem(ctx, PR_1_ALLOCATE_IBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
pctx.errcode = ext2fs_allocate_inode_bitmap(fs,
|
|
_("directory inode map"), &ctx->inode_dir_map);
|
|
if (pctx.errcode) {
|
|
pctx.num = 2;
|
|
fix_problem(ctx, PR_1_ALLOCATE_IBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
pctx.errcode = ext2fs_allocate_inode_bitmap(fs,
|
|
_("regular file inode map"), &ctx->inode_reg_map);
|
|
if (pctx.errcode) {
|
|
pctx.num = 6;
|
|
fix_problem(ctx, PR_1_ALLOCATE_IBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
pctx.errcode = ext2fs_allocate_block_bitmap(fs, _("in-use block map"),
|
|
&ctx->block_found_map);
|
|
if (pctx.errcode) {
|
|
pctx.num = 1;
|
|
fix_problem(ctx, PR_1_ALLOCATE_BBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
pctx.errcode = ext2fs_create_icount2(fs, 0, 0, 0,
|
|
&ctx->inode_link_info);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1_ALLOCATE_ICOUNT, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
inode_size = EXT2_INODE_SIZE(fs->super);
|
|
inode = (struct ext2_inode *)
|
|
e2fsck_allocate_memory(ctx, inode_size, "scratch inode");
|
|
|
|
inodes_to_process = (struct process_inode_block *)
|
|
e2fsck_allocate_memory(ctx,
|
|
(ctx->process_inode_size *
|
|
sizeof(struct process_inode_block)),
|
|
"array of inodes to process");
|
|
process_inode_count = 0;
|
|
|
|
pctx.errcode = ext2fs_init_dblist(fs, 0);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1_ALLOCATE_DBCOUNT, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the last orphan field is set, clear it, since the pass1
|
|
* processing will automatically find and clear the orphans.
|
|
* In the future, we may want to try using the last_orphan
|
|
* linked list ourselves, but for now, we clear it so that the
|
|
* ext3 mount code won't get confused.
|
|
*/
|
|
if (!(ctx->options & E2F_OPT_READONLY)) {
|
|
if (fs->super->s_last_orphan) {
|
|
fs->super->s_last_orphan = 0;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
}
|
|
|
|
mark_table_blocks(ctx);
|
|
block_buf = (char *) e2fsck_allocate_memory(ctx, fs->blocksize * 3,
|
|
"block interate buffer");
|
|
e2fsck_use_inode_shortcuts(ctx, 1);
|
|
ehandler_operation(_("doing inode scan"));
|
|
pctx.errcode = ext2fs_open_inode_scan(fs, ctx->inode_buffer_blocks,
|
|
&scan);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1_ISCAN_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
ext2fs_inode_scan_flags(scan, EXT2_SF_SKIP_MISSING_ITABLE, 0);
|
|
ctx->stashed_inode = inode;
|
|
scan_struct.ctx = ctx;
|
|
scan_struct.block_buf = block_buf;
|
|
ext2fs_set_inode_callback(scan, scan_callback, &scan_struct);
|
|
if (ctx->progress)
|
|
if ((ctx->progress)(ctx, 1, 0, ctx->fs->group_desc_count))
|
|
return;
|
|
if ((fs->super->s_wtime < fs->super->s_inodes_count) ||
|
|
(fs->super->s_mtime < fs->super->s_inodes_count))
|
|
busted_fs_time = 1;
|
|
|
|
while (1) {
|
|
pctx.errcode = ext2fs_get_next_inode_full(scan, &ino,
|
|
inode, inode_size);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
if (pctx.errcode == EXT2_ET_BAD_BLOCK_IN_INODE_TABLE) {
|
|
continue;
|
|
}
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1_ISCAN_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
if (!ino)
|
|
break;
|
|
pctx.ino = ino;
|
|
pctx.inode = inode;
|
|
ctx->stashed_ino = ino;
|
|
if (inode->i_links_count) {
|
|
pctx.errcode = ext2fs_icount_store(ctx->inode_link_info,
|
|
ino, inode->i_links_count);
|
|
if (pctx.errcode) {
|
|
pctx.num = inode->i_links_count;
|
|
fix_problem(ctx, PR_1_ICOUNT_STORE, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
}
|
|
if (ino == EXT2_BAD_INO) {
|
|
struct process_block_struct_1 pb;
|
|
|
|
pctx.errcode = ext2fs_copy_bitmap(ctx->block_found_map,
|
|
&pb.fs_meta_blocks);
|
|
if (pctx.errcode) {
|
|
pctx.num = 4;
|
|
fix_problem(ctx, PR_1_ALLOCATE_BBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
pb.ino = EXT2_BAD_INO;
|
|
pb.num_blocks = pb.last_block = 0;
|
|
pb.num_illegal_blocks = 0;
|
|
pb.suppress = 0; pb.clear = 0; pb.is_dir = 0;
|
|
pb.is_reg = 0; pb.fragmented = 0; pb.bbcheck = 0;
|
|
pb.inode = inode;
|
|
pb.pctx = &pctx;
|
|
pb.ctx = ctx;
|
|
pctx.errcode = ext2fs_block_iterate2(fs, ino, 0,
|
|
block_buf, process_bad_block, &pb);
|
|
ext2fs_free_block_bitmap(pb.fs_meta_blocks);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1_BLOCK_ITERATE, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
if (pb.bbcheck)
|
|
if (!fix_problem(ctx, PR_1_BBINODE_BAD_METABLOCK_PROMPT, &pctx)) {
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
ext2fs_mark_inode_bitmap(ctx->inode_used_map, ino);
|
|
clear_problem_context(&pctx);
|
|
continue;
|
|
} else if (ino == EXT2_ROOT_INO) {
|
|
/*
|
|
* Make sure the root inode is a directory; if
|
|
* not, offer to clear it. It will be
|
|
* regnerated in pass #3.
|
|
*/
|
|
if (!LINUX_S_ISDIR(inode->i_mode)) {
|
|
if (fix_problem(ctx, PR_1_ROOT_NO_DIR, &pctx)) {
|
|
inode->i_dtime = time(NULL);
|
|
inode->i_links_count = 0;
|
|
ext2fs_icount_store(ctx->inode_link_info,
|
|
ino, 0);
|
|
e2fsck_write_inode(ctx, ino, inode,
|
|
"pass1");
|
|
}
|
|
}
|
|
/*
|
|
* If dtime is set, offer to clear it. mke2fs
|
|
* version 0.2b created filesystems with the
|
|
* dtime field set for the root and lost+found
|
|
* directories. We won't worry about
|
|
* /lost+found, since that can be regenerated
|
|
* easily. But we will fix the root directory
|
|
* as a special case.
|
|
*/
|
|
if (inode->i_dtime && inode->i_links_count) {
|
|
if (fix_problem(ctx, PR_1_ROOT_DTIME, &pctx)) {
|
|
inode->i_dtime = 0;
|
|
e2fsck_write_inode(ctx, ino, inode,
|
|
"pass1");
|
|
}
|
|
}
|
|
} else if (ino == EXT2_JOURNAL_INO) {
|
|
ext2fs_mark_inode_bitmap(ctx->inode_used_map, ino);
|
|
if (fs->super->s_journal_inum == EXT2_JOURNAL_INO) {
|
|
if (!LINUX_S_ISREG(inode->i_mode) &&
|
|
fix_problem(ctx, PR_1_JOURNAL_BAD_MODE,
|
|
&pctx)) {
|
|
inode->i_mode = LINUX_S_IFREG;
|
|
e2fsck_write_inode(ctx, ino, inode,
|
|
"pass1");
|
|
}
|
|
check_blocks(ctx, &pctx, block_buf);
|
|
continue;
|
|
}
|
|
if ((inode->i_links_count || inode->i_blocks ||
|
|
inode->i_blocks || inode->i_block[0]) &&
|
|
fix_problem(ctx, PR_1_JOURNAL_INODE_NOT_CLEAR,
|
|
&pctx)) {
|
|
memset(inode, 0, inode_size);
|
|
ext2fs_icount_store(ctx->inode_link_info,
|
|
ino, 0);
|
|
e2fsck_write_inode_full(ctx, ino, inode,
|
|
inode_size, "pass1");
|
|
}
|
|
} else if (ino < EXT2_FIRST_INODE(fs->super)) {
|
|
int problem = 0;
|
|
|
|
ext2fs_mark_inode_bitmap(ctx->inode_used_map, ino);
|
|
if (ino == EXT2_BOOT_LOADER_INO) {
|
|
if (LINUX_S_ISDIR(inode->i_mode))
|
|
problem = PR_1_RESERVED_BAD_MODE;
|
|
} else if (ino == EXT2_RESIZE_INO) {
|
|
if (inode->i_mode &&
|
|
!LINUX_S_ISREG(inode->i_mode))
|
|
problem = PR_1_RESERVED_BAD_MODE;
|
|
} else {
|
|
if (inode->i_mode != 0)
|
|
problem = PR_1_RESERVED_BAD_MODE;
|
|
}
|
|
if (problem) {
|
|
if (fix_problem(ctx, problem, &pctx)) {
|
|
inode->i_mode = 0;
|
|
e2fsck_write_inode(ctx, ino, inode,
|
|
"pass1");
|
|
}
|
|
}
|
|
check_blocks(ctx, &pctx, block_buf);
|
|
continue;
|
|
}
|
|
/*
|
|
* Check for inodes who might have been part of the
|
|
* orphaned list linked list. They should have gotten
|
|
* dealt with by now, unless the list had somehow been
|
|
* corrupted.
|
|
*
|
|
* FIXME: In the future, inodes which are still in use
|
|
* (and which are therefore) pending truncation should
|
|
* be handled specially. Right now we just clear the
|
|
* dtime field, and the normal e2fsck handling of
|
|
* inodes where i_size and the inode blocks are
|
|
* inconsistent is to fix i_size, instead of releasing
|
|
* the extra blocks. This won't catch the inodes that
|
|
* was at the end of the orphan list, but it's better
|
|
* than nothing. The right answer is that there
|
|
* shouldn't be any bugs in the orphan list handling. :-)
|
|
*/
|
|
if (inode->i_dtime && !busted_fs_time &&
|
|
inode->i_dtime < ctx->fs->super->s_inodes_count) {
|
|
if (fix_problem(ctx, PR_1_LOW_DTIME, &pctx)) {
|
|
inode->i_dtime = inode->i_links_count ?
|
|
0 : time(NULL);
|
|
e2fsck_write_inode(ctx, ino, inode,
|
|
"pass1");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This code assumes that deleted inodes have
|
|
* i_links_count set to 0.
|
|
*/
|
|
if (!inode->i_links_count) {
|
|
if (!inode->i_dtime && inode->i_mode) {
|
|
if (fix_problem(ctx,
|
|
PR_1_ZERO_DTIME, &pctx)) {
|
|
inode->i_dtime = time(NULL);
|
|
e2fsck_write_inode(ctx, ino, inode,
|
|
"pass1");
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
/*
|
|
* n.b. 0.3c ext2fs code didn't clear i_links_count for
|
|
* deleted files. Oops.
|
|
*
|
|
* Since all new ext2 implementations get this right,
|
|
* we now assume that the case of non-zero
|
|
* i_links_count and non-zero dtime means that we
|
|
* should keep the file, not delete it.
|
|
*
|
|
*/
|
|
if (inode->i_dtime) {
|
|
if (fix_problem(ctx, PR_1_SET_DTIME, &pctx)) {
|
|
inode->i_dtime = 0;
|
|
e2fsck_write_inode(ctx, ino, inode, "pass1");
|
|
}
|
|
}
|
|
|
|
ext2fs_mark_inode_bitmap(ctx->inode_used_map, ino);
|
|
switch (fs->super->s_creator_os) {
|
|
case EXT2_OS_LINUX:
|
|
frag = inode->osd2.linux2.l_i_frag;
|
|
fsize = inode->osd2.linux2.l_i_fsize;
|
|
break;
|
|
case EXT2_OS_HURD:
|
|
frag = inode->osd2.hurd2.h_i_frag;
|
|
fsize = inode->osd2.hurd2.h_i_fsize;
|
|
break;
|
|
case EXT2_OS_MASIX:
|
|
frag = inode->osd2.masix2.m_i_frag;
|
|
fsize = inode->osd2.masix2.m_i_fsize;
|
|
break;
|
|
default:
|
|
frag = fsize = 0;
|
|
}
|
|
|
|
if (inode->i_faddr || frag || fsize ||
|
|
(LINUX_S_ISDIR(inode->i_mode) && inode->i_dir_acl))
|
|
mark_inode_bad(ctx, ino);
|
|
if (inode->i_flags & EXT2_IMAGIC_FL) {
|
|
if (imagic_fs) {
|
|
if (!ctx->inode_imagic_map)
|
|
alloc_imagic_map(ctx);
|
|
ext2fs_mark_inode_bitmap(ctx->inode_imagic_map,
|
|
ino);
|
|
} else {
|
|
if (fix_problem(ctx, PR_1_SET_IMAGIC, &pctx)) {
|
|
inode->i_flags &= ~EXT2_IMAGIC_FL;
|
|
e2fsck_write_inode(ctx, ino,
|
|
inode, "pass1");
|
|
}
|
|
}
|
|
}
|
|
|
|
check_inode_extra_space(ctx, &pctx);
|
|
|
|
if (LINUX_S_ISDIR(inode->i_mode)) {
|
|
ext2fs_mark_inode_bitmap(ctx->inode_dir_map, ino);
|
|
e2fsck_add_dir_info(ctx, ino, 0);
|
|
ctx->fs_directory_count++;
|
|
} else if (LINUX_S_ISREG (inode->i_mode)) {
|
|
ext2fs_mark_inode_bitmap(ctx->inode_reg_map, ino);
|
|
ctx->fs_regular_count++;
|
|
} else if (LINUX_S_ISCHR (inode->i_mode) &&
|
|
e2fsck_pass1_check_device_inode(fs, inode)) {
|
|
check_immutable(ctx, &pctx);
|
|
check_size(ctx, &pctx);
|
|
ctx->fs_chardev_count++;
|
|
} else if (LINUX_S_ISBLK (inode->i_mode) &&
|
|
e2fsck_pass1_check_device_inode(fs, inode)) {
|
|
check_immutable(ctx, &pctx);
|
|
check_size(ctx, &pctx);
|
|
ctx->fs_blockdev_count++;
|
|
} else if (LINUX_S_ISLNK (inode->i_mode) &&
|
|
e2fsck_pass1_check_symlink(fs, inode, block_buf)) {
|
|
check_immutable(ctx, &pctx);
|
|
ctx->fs_symlinks_count++;
|
|
if (ext2fs_inode_data_blocks(fs, inode) == 0) {
|
|
ctx->fs_fast_symlinks_count++;
|
|
check_blocks(ctx, &pctx, block_buf);
|
|
continue;
|
|
}
|
|
}
|
|
else if (LINUX_S_ISFIFO (inode->i_mode) &&
|
|
e2fsck_pass1_check_device_inode(fs, inode)) {
|
|
check_immutable(ctx, &pctx);
|
|
check_size(ctx, &pctx);
|
|
ctx->fs_fifo_count++;
|
|
} else if ((LINUX_S_ISSOCK (inode->i_mode)) &&
|
|
e2fsck_pass1_check_device_inode(fs, inode)) {
|
|
check_immutable(ctx, &pctx);
|
|
check_size(ctx, &pctx);
|
|
ctx->fs_sockets_count++;
|
|
} else
|
|
mark_inode_bad(ctx, ino);
|
|
if (inode->i_block[EXT2_IND_BLOCK])
|
|
ctx->fs_ind_count++;
|
|
if (inode->i_block[EXT2_DIND_BLOCK])
|
|
ctx->fs_dind_count++;
|
|
if (inode->i_block[EXT2_TIND_BLOCK])
|
|
ctx->fs_tind_count++;
|
|
if (inode->i_block[EXT2_IND_BLOCK] ||
|
|
inode->i_block[EXT2_DIND_BLOCK] ||
|
|
inode->i_block[EXT2_TIND_BLOCK] ||
|
|
inode->i_file_acl) {
|
|
inodes_to_process[process_inode_count].ino = ino;
|
|
inodes_to_process[process_inode_count].inode = *inode;
|
|
process_inode_count++;
|
|
} else
|
|
check_blocks(ctx, &pctx, block_buf);
|
|
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
|
|
if (process_inode_count >= ctx->process_inode_size) {
|
|
process_inodes(ctx, block_buf);
|
|
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
}
|
|
}
|
|
process_inodes(ctx, block_buf);
|
|
ext2fs_close_inode_scan(scan);
|
|
ehandler_operation(0);
|
|
|
|
/*
|
|
* If any extended attribute blocks' reference counts need to
|
|
* be adjusted, either up (ctx->refcount_extra), or down
|
|
* (ctx->refcount), then fix them.
|
|
*/
|
|
if (ctx->refcount) {
|
|
adjust_extattr_refcount(ctx, ctx->refcount, block_buf, -1);
|
|
ea_refcount_free(ctx->refcount);
|
|
ctx->refcount = 0;
|
|
}
|
|
if (ctx->refcount_extra) {
|
|
adjust_extattr_refcount(ctx, ctx->refcount_extra,
|
|
block_buf, +1);
|
|
ea_refcount_free(ctx->refcount_extra);
|
|
ctx->refcount_extra = 0;
|
|
}
|
|
|
|
if (ctx->invalid_bitmaps)
|
|
handle_fs_bad_blocks(ctx);
|
|
|
|
/* We don't need the block_ea_map any more */
|
|
ext2fs_free_block_bitmap(ctx->block_ea_map);
|
|
ctx->block_ea_map = 0;
|
|
|
|
if (ctx->flags & E2F_FLAG_RESIZE_INODE) {
|
|
ext2fs_block_bitmap save_bmap;
|
|
|
|
save_bmap = fs->block_map;
|
|
fs->block_map = ctx->block_found_map;
|
|
clear_problem_context(&pctx);
|
|
pctx.errcode = ext2fs_create_resize_inode(fs);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1_RESIZE_INODE_CREATE, &pctx);
|
|
/* Should never get here */
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
e2fsck_read_inode(ctx, EXT2_RESIZE_INO, inode,
|
|
"recreate inode");
|
|
inode->i_mtime = time(NULL);
|
|
e2fsck_write_inode(ctx, EXT2_RESIZE_INO, inode,
|
|
"recreate inode");
|
|
fs->block_map = save_bmap;
|
|
ctx->flags &= ~E2F_FLAG_RESIZE_INODE;
|
|
}
|
|
|
|
if (ctx->flags & E2F_FLAG_RESTART) {
|
|
/*
|
|
* Only the master copy of the superblock and block
|
|
* group descriptors are going to be written during a
|
|
* restart, so set the superblock to be used to be the
|
|
* master superblock.
|
|
*/
|
|
ctx->use_superblock = 0;
|
|
unwind_pass1();
|
|
goto endit;
|
|
}
|
|
|
|
if (ctx->block_dup_map) {
|
|
if (ctx->options & E2F_OPT_PREEN) {
|
|
clear_problem_context(&pctx);
|
|
fix_problem(ctx, PR_1_DUP_BLOCKS_PREENSTOP, &pctx);
|
|
}
|
|
e2fsck_pass1_dupblocks(ctx, block_buf);
|
|
}
|
|
ext2fs_free_mem(&inodes_to_process);
|
|
endit:
|
|
e2fsck_use_inode_shortcuts(ctx, 0);
|
|
|
|
ext2fs_free_mem(&block_buf);
|
|
ext2fs_free_mem(&inode);
|
|
}
|
|
|
|
/*
|
|
* When the inode_scan routines call this callback at the end of the
|
|
* glock group, call process_inodes.
|
|
*/
|
|
static errcode_t scan_callback(ext2_filsys fs,
|
|
dgrp_t group, void * priv_data)
|
|
{
|
|
struct scan_callback_struct *scan_struct;
|
|
e2fsck_t ctx;
|
|
|
|
scan_struct = (struct scan_callback_struct *) priv_data;
|
|
ctx = scan_struct->ctx;
|
|
|
|
process_inodes((e2fsck_t) fs->priv_data, scan_struct->block_buf);
|
|
|
|
if (ctx->progress)
|
|
if ((ctx->progress)(ctx, 1, group+1,
|
|
ctx->fs->group_desc_count))
|
|
return EXT2_ET_CANCEL_REQUESTED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process the inodes in the "inodes to process" list.
|
|
*/
|
|
static void process_inodes(e2fsck_t ctx, char *block_buf)
|
|
{
|
|
int i;
|
|
struct ext2_inode *old_stashed_inode;
|
|
ext2_ino_t old_stashed_ino;
|
|
const char *old_operation;
|
|
char buf[80];
|
|
struct problem_context pctx;
|
|
|
|
/* begin process_inodes */
|
|
if (process_inode_count == 0)
|
|
return;
|
|
old_operation = ehandler_operation(0);
|
|
old_stashed_inode = ctx->stashed_inode;
|
|
old_stashed_ino = ctx->stashed_ino;
|
|
qsort(inodes_to_process, process_inode_count,
|
|
sizeof(struct process_inode_block), process_inode_cmp);
|
|
clear_problem_context(&pctx);
|
|
for (i=0; i < process_inode_count; i++) {
|
|
pctx.inode = ctx->stashed_inode = &inodes_to_process[i].inode;
|
|
pctx.ino = ctx->stashed_ino = inodes_to_process[i].ino;
|
|
sprintf(buf, _("reading indirect blocks of inode %u"),
|
|
pctx.ino);
|
|
ehandler_operation(buf);
|
|
check_blocks(ctx, &pctx, block_buf);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
break;
|
|
}
|
|
ctx->stashed_inode = old_stashed_inode;
|
|
ctx->stashed_ino = old_stashed_ino;
|
|
process_inode_count = 0;
|
|
/* end process inodes */
|
|
|
|
ehandler_operation(old_operation);
|
|
}
|
|
|
|
static int process_inode_cmp(const void *a, const void *b)
|
|
{
|
|
const struct process_inode_block *ib_a =
|
|
(const struct process_inode_block *) a;
|
|
const struct process_inode_block *ib_b =
|
|
(const struct process_inode_block *) b;
|
|
int ret;
|
|
|
|
ret = (ib_a->inode.i_block[EXT2_IND_BLOCK] -
|
|
ib_b->inode.i_block[EXT2_IND_BLOCK]);
|
|
if (ret == 0)
|
|
ret = ib_a->inode.i_file_acl - ib_b->inode.i_file_acl;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Mark an inode as being bad in some what
|
|
*/
|
|
static void mark_inode_bad(e2fsck_t ctx, ino_t ino)
|
|
{
|
|
struct problem_context pctx;
|
|
|
|
if (!ctx->inode_bad_map) {
|
|
clear_problem_context(&pctx);
|
|
|
|
pctx.errcode = ext2fs_allocate_inode_bitmap(ctx->fs,
|
|
_("bad inode map"), &ctx->inode_bad_map);
|
|
if (pctx.errcode) {
|
|
pctx.num = 3;
|
|
fix_problem(ctx, PR_1_ALLOCATE_IBITMAP_ERROR, &pctx);
|
|
/* Should never get here */
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
}
|
|
ext2fs_mark_inode_bitmap(ctx->inode_bad_map, ino);
|
|
}
|
|
|
|
|
|
/*
|
|
* This procedure will allocate the inode imagic table
|
|
*/
|
|
static void alloc_imagic_map(e2fsck_t ctx)
|
|
{
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
pctx.errcode = ext2fs_allocate_inode_bitmap(ctx->fs,
|
|
_("imagic inode map"),
|
|
&ctx->inode_imagic_map);
|
|
if (pctx.errcode) {
|
|
pctx.num = 5;
|
|
fix_problem(ctx, PR_1_ALLOCATE_IBITMAP_ERROR, &pctx);
|
|
/* Should never get here */
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Marks a block as in use, setting the dup_map if it's been set
|
|
* already. Called by process_block and process_bad_block.
|
|
*
|
|
* WARNING: Assumes checks have already been done to make sure block
|
|
* is valid. This is true in both process_block and process_bad_block.
|
|
*/
|
|
static void mark_block_used(e2fsck_t ctx, blk_t block)
|
|
{
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (ext2fs_fast_test_block_bitmap(ctx->block_found_map, block)) {
|
|
if (!ctx->block_dup_map) {
|
|
pctx.errcode = ext2fs_allocate_block_bitmap(ctx->fs,
|
|
_("multiply claimed block map"),
|
|
&ctx->block_dup_map);
|
|
if (pctx.errcode) {
|
|
pctx.num = 3;
|
|
fix_problem(ctx, PR_1_ALLOCATE_BBITMAP_ERROR,
|
|
&pctx);
|
|
/* Should never get here */
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
}
|
|
ext2fs_fast_mark_block_bitmap(ctx->block_dup_map, block);
|
|
} else {
|
|
ext2fs_fast_mark_block_bitmap(ctx->block_found_map, block);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adjust the extended attribute block's reference counts at the end
|
|
* of pass 1, either by subtracting out references for EA blocks that
|
|
* are still referenced in ctx->refcount, or by adding references for
|
|
* EA blocks that had extra references as accounted for in
|
|
* ctx->refcount_extra.
|
|
*/
|
|
static void adjust_extattr_refcount(e2fsck_t ctx, ext2_refcount_t refcount,
|
|
char *block_buf, int adjust_sign)
|
|
{
|
|
struct ext2_ext_attr_header *header;
|
|
struct problem_context pctx;
|
|
ext2_filsys fs = ctx->fs;
|
|
blk_t blk;
|
|
__u32 should_be;
|
|
int count;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
ea_refcount_intr_begin(refcount);
|
|
while (1) {
|
|
if ((blk = ea_refcount_intr_next(refcount, &count)) == 0)
|
|
break;
|
|
pctx.blk = blk;
|
|
pctx.errcode = ext2fs_read_ext_attr(fs, blk, block_buf);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1_EXTATTR_READ_ABORT, &pctx);
|
|
return;
|
|
}
|
|
header = (struct ext2_ext_attr_header *) block_buf;
|
|
pctx.blkcount = header->h_refcount;
|
|
should_be = header->h_refcount + adjust_sign * count;
|
|
pctx.num = should_be;
|
|
if (fix_problem(ctx, PR_1_EXTATTR_REFCOUNT, &pctx)) {
|
|
header->h_refcount = should_be;
|
|
pctx.errcode = ext2fs_write_ext_attr(fs, blk,
|
|
block_buf);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1_EXTATTR_WRITE, &pctx);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle processing the extended attribute blocks
|
|
*/
|
|
static int check_ext_attr(e2fsck_t ctx, struct problem_context *pctx,
|
|
char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t ino = pctx->ino;
|
|
struct ext2_inode *inode = pctx->inode;
|
|
blk_t blk;
|
|
char * end;
|
|
struct ext2_ext_attr_header *header;
|
|
struct ext2_ext_attr_entry *entry;
|
|
int count;
|
|
region_t region;
|
|
|
|
blk = inode->i_file_acl;
|
|
if (blk == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* If the Extended attribute flag isn't set, then a non-zero
|
|
* file acl means that the inode is corrupted.
|
|
*
|
|
* Or if the extended attribute block is an invalid block,
|
|
* then the inode is also corrupted.
|
|
*/
|
|
if (!(fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_EXT_ATTR) ||
|
|
(blk < fs->super->s_first_data_block) ||
|
|
(blk >= fs->super->s_blocks_count)) {
|
|
mark_inode_bad(ctx, ino);
|
|
return 0;
|
|
}
|
|
|
|
/* If ea bitmap hasn't been allocated, create it */
|
|
if (!ctx->block_ea_map) {
|
|
pctx->errcode = ext2fs_allocate_block_bitmap(fs,
|
|
_("ext attr block map"),
|
|
&ctx->block_ea_map);
|
|
if (pctx->errcode) {
|
|
pctx->num = 2;
|
|
fix_problem(ctx, PR_1_ALLOCATE_BBITMAP_ERROR, pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Create the EA refcount structure if necessary */
|
|
if (!ctx->refcount) {
|
|
pctx->errcode = ea_refcount_create(0, &ctx->refcount);
|
|
if (pctx->errcode) {
|
|
pctx->num = 1;
|
|
fix_problem(ctx, PR_1_ALLOCATE_REFCOUNT, pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Have we seen this EA block before? */
|
|
if (ext2fs_fast_test_block_bitmap(ctx->block_ea_map, blk)) {
|
|
if (ea_refcount_decrement(ctx->refcount, blk, 0) == 0)
|
|
return 1;
|
|
/* Ooops, this EA was referenced more than it stated */
|
|
if (!ctx->refcount_extra) {
|
|
pctx->errcode = ea_refcount_create(0,
|
|
&ctx->refcount_extra);
|
|
if (pctx->errcode) {
|
|
pctx->num = 2;
|
|
fix_problem(ctx, PR_1_ALLOCATE_REFCOUNT, pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return 0;
|
|
}
|
|
}
|
|
ea_refcount_increment(ctx->refcount_extra, blk, 0);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* OK, we haven't seen this EA block yet. So we need to
|
|
* validate it
|
|
*/
|
|
pctx->blk = blk;
|
|
pctx->errcode = ext2fs_read_ext_attr(fs, blk, block_buf);
|
|
if (pctx->errcode && fix_problem(ctx, PR_1_READ_EA_BLOCK, pctx))
|
|
goto clear_extattr;
|
|
header = (struct ext2_ext_attr_header *) block_buf;
|
|
pctx->blk = inode->i_file_acl;
|
|
if (((ctx->ext_attr_ver == 1) &&
|
|
(header->h_magic != EXT2_EXT_ATTR_MAGIC_v1)) ||
|
|
((ctx->ext_attr_ver == 2) &&
|
|
(header->h_magic != EXT2_EXT_ATTR_MAGIC))) {
|
|
if (fix_problem(ctx, PR_1_BAD_EA_BLOCK, pctx))
|
|
goto clear_extattr;
|
|
}
|
|
|
|
if (header->h_blocks != 1) {
|
|
if (fix_problem(ctx, PR_1_EA_MULTI_BLOCK, pctx))
|
|
goto clear_extattr;
|
|
}
|
|
|
|
region = region_create(0, fs->blocksize);
|
|
if (!region) {
|
|
fix_problem(ctx, PR_1_EA_ALLOC_REGION, pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return 0;
|
|
}
|
|
if (region_allocate(region, 0, sizeof(struct ext2_ext_attr_header))) {
|
|
if (fix_problem(ctx, PR_1_EA_ALLOC_COLLISION, pctx))
|
|
goto clear_extattr;
|
|
}
|
|
|
|
entry = (struct ext2_ext_attr_entry *)(header+1);
|
|
end = block_buf + fs->blocksize;
|
|
while ((char *)entry < end && *(__u32 *)entry) {
|
|
if (region_allocate(region, (char *)entry - (char *)header,
|
|
EXT2_EXT_ATTR_LEN(entry->e_name_len))) {
|
|
if (fix_problem(ctx, PR_1_EA_ALLOC_COLLISION, pctx))
|
|
goto clear_extattr;
|
|
}
|
|
if ((ctx->ext_attr_ver == 1 &&
|
|
(entry->e_name_len == 0 || entry->e_name_index != 0)) ||
|
|
(ctx->ext_attr_ver == 2 &&
|
|
entry->e_name_index == 0)) {
|
|
if (fix_problem(ctx, PR_1_EA_BAD_NAME, pctx))
|
|
goto clear_extattr;
|
|
}
|
|
if (entry->e_value_block != 0) {
|
|
if (fix_problem(ctx, PR_1_EA_BAD_VALUE, pctx))
|
|
goto clear_extattr;
|
|
}
|
|
if (entry->e_value_size &&
|
|
region_allocate(region, entry->e_value_offs,
|
|
EXT2_EXT_ATTR_SIZE(entry->e_value_size))) {
|
|
if (fix_problem(ctx, PR_1_EA_ALLOC_COLLISION, pctx))
|
|
goto clear_extattr;
|
|
}
|
|
entry = EXT2_EXT_ATTR_NEXT(entry);
|
|
}
|
|
if (region_allocate(region, (char *)entry - (char *)header, 4)) {
|
|
if (fix_problem(ctx, PR_1_EA_ALLOC_COLLISION, pctx))
|
|
goto clear_extattr;
|
|
}
|
|
region_free(region);
|
|
|
|
count = header->h_refcount - 1;
|
|
if (count)
|
|
ea_refcount_store(ctx->refcount, blk, count);
|
|
mark_block_used(ctx, blk);
|
|
ext2fs_fast_mark_block_bitmap(ctx->block_ea_map, blk);
|
|
|
|
return 1;
|
|
|
|
clear_extattr:
|
|
inode->i_file_acl = 0;
|
|
e2fsck_write_inode(ctx, ino, inode, "check_ext_attr");
|
|
return 0;
|
|
}
|
|
|
|
/* Returns 1 if bad htree, 0 if OK */
|
|
static int handle_htree(e2fsck_t ctx, struct problem_context *pctx,
|
|
ext2_ino_t ino FSCK_ATTR((unused)),
|
|
struct ext2_inode *inode,
|
|
char *block_buf)
|
|
{
|
|
struct ext2_dx_root_info *root;
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
blk_t blk;
|
|
|
|
if ((!LINUX_S_ISDIR(inode->i_mode) &&
|
|
fix_problem(ctx, PR_1_HTREE_NODIR, pctx)) ||
|
|
(!(fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_DIR_INDEX) &&
|
|
fix_problem(ctx, PR_1_HTREE_SET, pctx)))
|
|
return 1;
|
|
|
|
blk = inode->i_block[0];
|
|
if (((blk == 0) ||
|
|
(blk < fs->super->s_first_data_block) ||
|
|
(blk >= fs->super->s_blocks_count)) &&
|
|
fix_problem(ctx, PR_1_HTREE_BADROOT, pctx))
|
|
return 1;
|
|
|
|
retval = io_channel_read_blk(fs->io, blk, 1, block_buf);
|
|
if (retval && fix_problem(ctx, PR_1_HTREE_BADROOT, pctx))
|
|
return 1;
|
|
|
|
/* XXX should check that beginning matches a directory */
|
|
root = (struct ext2_dx_root_info *) (block_buf + 24);
|
|
|
|
if ((root->reserved_zero || root->info_length < 8) &&
|
|
fix_problem(ctx, PR_1_HTREE_BADROOT, pctx))
|
|
return 1;
|
|
|
|
pctx->num = root->hash_version;
|
|
if ((root->hash_version != EXT2_HASH_LEGACY) &&
|
|
(root->hash_version != EXT2_HASH_HALF_MD4) &&
|
|
(root->hash_version != EXT2_HASH_TEA) &&
|
|
fix_problem(ctx, PR_1_HTREE_HASHV, pctx))
|
|
return 1;
|
|
|
|
if ((root->unused_flags & EXT2_HASH_FLAG_INCOMPAT) &&
|
|
fix_problem(ctx, PR_1_HTREE_INCOMPAT, pctx))
|
|
return 1;
|
|
|
|
pctx->num = root->indirect_levels;
|
|
if ((root->indirect_levels > 1) &&
|
|
fix_problem(ctx, PR_1_HTREE_DEPTH, pctx))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This subroutine is called on each inode to account for all of the
|
|
* blocks used by that inode.
|
|
*/
|
|
static void check_blocks(e2fsck_t ctx, struct problem_context *pctx,
|
|
char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct process_block_struct_1 pb;
|
|
ext2_ino_t ino = pctx->ino;
|
|
struct ext2_inode *inode = pctx->inode;
|
|
int bad_size = 0;
|
|
int dirty_inode = 0;
|
|
__u64 size;
|
|
|
|
pb.ino = ino;
|
|
pb.num_blocks = 0;
|
|
pb.last_block = -1;
|
|
pb.num_illegal_blocks = 0;
|
|
pb.suppress = 0; pb.clear = 0;
|
|
pb.fragmented = 0;
|
|
pb.compressed = 0;
|
|
pb.previous_block = 0;
|
|
pb.is_dir = LINUX_S_ISDIR(inode->i_mode);
|
|
pb.is_reg = LINUX_S_ISREG(inode->i_mode);
|
|
pb.max_blocks = 1 << (31 - fs->super->s_log_block_size);
|
|
pb.inode = inode;
|
|
pb.pctx = pctx;
|
|
pb.ctx = ctx;
|
|
pctx->ino = ino;
|
|
pctx->errcode = 0;
|
|
|
|
if (inode->i_flags & EXT2_COMPRBLK_FL) {
|
|
if (fs->super->s_feature_incompat &
|
|
EXT2_FEATURE_INCOMPAT_COMPRESSION)
|
|
pb.compressed = 1;
|
|
else {
|
|
if (fix_problem(ctx, PR_1_COMPR_SET, pctx)) {
|
|
inode->i_flags &= ~EXT2_COMPRBLK_FL;
|
|
dirty_inode++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inode->i_file_acl && check_ext_attr(ctx, pctx, block_buf))
|
|
pb.num_blocks++;
|
|
|
|
if (ext2fs_inode_has_valid_blocks(inode))
|
|
pctx->errcode = ext2fs_block_iterate2(fs, ino,
|
|
pb.is_dir ? BLOCK_FLAG_HOLE : 0,
|
|
block_buf, process_block, &pb);
|
|
end_problem_latch(ctx, PR_LATCH_BLOCK);
|
|
end_problem_latch(ctx, PR_LATCH_TOOBIG);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
goto out;
|
|
if (pctx->errcode)
|
|
fix_problem(ctx, PR_1_BLOCK_ITERATE, pctx);
|
|
|
|
if (pb.fragmented && pb.num_blocks < fs->super->s_blocks_per_group)
|
|
ctx->fs_fragmented++;
|
|
|
|
if (pb.clear) {
|
|
inode->i_links_count = 0;
|
|
ext2fs_icount_store(ctx->inode_link_info, ino, 0);
|
|
inode->i_dtime = time(NULL);
|
|
dirty_inode++;
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_dir_map, ino);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_reg_map, ino);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_used_map, ino);
|
|
/*
|
|
* The inode was probably partially accounted for
|
|
* before processing was aborted, so we need to
|
|
* restart the pass 1 scan.
|
|
*/
|
|
ctx->flags |= E2F_FLAG_RESTART;
|
|
goto out;
|
|
}
|
|
|
|
if (inode->i_flags & EXT2_INDEX_FL) {
|
|
if (handle_htree(ctx, pctx, ino, inode, block_buf)) {
|
|
inode->i_flags &= ~EXT2_INDEX_FL;
|
|
dirty_inode++;
|
|
} else {
|
|
#ifdef ENABLE_HTREE
|
|
e2fsck_add_dx_dir(ctx, ino, pb.last_block+1);
|
|
#endif
|
|
}
|
|
}
|
|
if (ctx->dirs_to_hash && pb.is_dir &&
|
|
!(inode->i_flags & EXT2_INDEX_FL) &&
|
|
((inode->i_size / fs->blocksize) >= 3))
|
|
ext2fs_u32_list_add(ctx->dirs_to_hash, ino);
|
|
|
|
if (!pb.num_blocks && pb.is_dir) {
|
|
if (fix_problem(ctx, PR_1_ZERO_LENGTH_DIR, pctx)) {
|
|
inode->i_links_count = 0;
|
|
ext2fs_icount_store(ctx->inode_link_info, ino, 0);
|
|
inode->i_dtime = time(NULL);
|
|
dirty_inode++;
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_dir_map, ino);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_reg_map, ino);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_used_map, ino);
|
|
ctx->fs_directory_count--;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
pb.num_blocks *= (fs->blocksize / 512);
|
|
|
|
if (pb.is_dir) {
|
|
int nblock = inode->i_size >> EXT2_BLOCK_SIZE_BITS(fs->super);
|
|
if (nblock > (pb.last_block + 1))
|
|
bad_size = 1;
|
|
else if (nblock < (pb.last_block + 1)) {
|
|
if (((pb.last_block + 1) - nblock) >
|
|
fs->super->s_prealloc_dir_blocks)
|
|
bad_size = 2;
|
|
}
|
|
} else {
|
|
size = EXT2_I_SIZE(inode);
|
|
if ((pb.last_block >= 0) &&
|
|
(size < (__u64) pb.last_block * fs->blocksize))
|
|
bad_size = 3;
|
|
else if (size > ext2_max_sizes[fs->super->s_log_block_size])
|
|
bad_size = 4;
|
|
}
|
|
/* i_size for symlinks is checked elsewhere */
|
|
if (bad_size && !LINUX_S_ISLNK(inode->i_mode)) {
|
|
pctx->num = (pb.last_block+1) * fs->blocksize;
|
|
if (fix_problem(ctx, PR_1_BAD_I_SIZE, pctx)) {
|
|
inode->i_size = pctx->num;
|
|
if (!LINUX_S_ISDIR(inode->i_mode))
|
|
inode->i_size_high = pctx->num >> 32;
|
|
dirty_inode++;
|
|
}
|
|
pctx->num = 0;
|
|
}
|
|
if (LINUX_S_ISREG(inode->i_mode) &&
|
|
(inode->i_size_high || inode->i_size & 0x80000000UL))
|
|
ctx->large_files++;
|
|
if (pb.num_blocks != inode->i_blocks) {
|
|
pctx->num = pb.num_blocks;
|
|
if (fix_problem(ctx, PR_1_BAD_I_BLOCKS, pctx)) {
|
|
inode->i_blocks = pb.num_blocks;
|
|
dirty_inode++;
|
|
}
|
|
pctx->num = 0;
|
|
}
|
|
out:
|
|
if (dirty_inode)
|
|
e2fsck_write_inode(ctx, ino, inode, "check_blocks");
|
|
}
|
|
|
|
|
|
/*
|
|
* This is a helper function for check_blocks().
|
|
*/
|
|
static int process_block(ext2_filsys fs,
|
|
blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk_t ref_block FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct process_block_struct_1 *p;
|
|
struct problem_context *pctx;
|
|
blk_t blk = *block_nr;
|
|
int ret_code = 0;
|
|
int problem = 0;
|
|
e2fsck_t ctx;
|
|
|
|
p = (struct process_block_struct_1 *) priv_data;
|
|
pctx = p->pctx;
|
|
ctx = p->ctx;
|
|
|
|
if (p->compressed && (blk == EXT2FS_COMPRESSED_BLKADDR)) {
|
|
/* todo: Check that the comprblk_fl is high, that the
|
|
blkaddr pattern looks right (all non-holes up to
|
|
first EXT2FS_COMPRESSED_BLKADDR, then all
|
|
EXT2FS_COMPRESSED_BLKADDR up to end of cluster),
|
|
that the feature_incompat bit is high, and that the
|
|
inode is a regular file. If we're doing a "full
|
|
check" (a concept introduced to e2fsck by e2compr,
|
|
meaning that we look at data blocks as well as
|
|
metadata) then call some library routine that
|
|
checks the compressed data. I'll have to think
|
|
about this, because one particularly important
|
|
problem to be able to fix is to recalculate the
|
|
cluster size if necessary. I think that perhaps
|
|
we'd better do most/all e2compr-specific checks
|
|
separately, after the non-e2compr checks. If not
|
|
doing a full check, it may be useful to test that
|
|
the personality is linux; e.g. if it isn't then
|
|
perhaps this really is just an illegal block. */
|
|
return 0;
|
|
}
|
|
|
|
if (blk == 0) {
|
|
if (p->is_dir == 0) {
|
|
/*
|
|
* Should never happen, since only directories
|
|
* get called with BLOCK_FLAG_HOLE
|
|
*/
|
|
#ifdef DEBUG_E2FSCK
|
|
printf("process_block() called with blk == 0, "
|
|
"blockcnt=%d, inode %lu???\n",
|
|
blockcnt, p->ino);
|
|
#endif
|
|
return 0;
|
|
}
|
|
if (blockcnt < 0)
|
|
return 0;
|
|
if (blockcnt * fs->blocksize < p->inode->i_size) {
|
|
goto mark_dir;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Simplistic fragmentation check. We merely require that the
|
|
* file be contiguous. (Which can never be true for really
|
|
* big files that are greater than a block group.)
|
|
*/
|
|
if (!HOLE_BLKADDR(p->previous_block)) {
|
|
if (p->previous_block+1 != blk)
|
|
p->fragmented = 1;
|
|
}
|
|
p->previous_block = blk;
|
|
|
|
if (p->is_dir && blockcnt > (1 << (21 - fs->super->s_log_block_size)))
|
|
problem = PR_1_TOOBIG_DIR;
|
|
if (p->is_reg && p->num_blocks+1 >= p->max_blocks)
|
|
problem = PR_1_TOOBIG_REG;
|
|
if (!p->is_dir && !p->is_reg && blockcnt > 0)
|
|
problem = PR_1_TOOBIG_SYMLINK;
|
|
|
|
if (blk < fs->super->s_first_data_block ||
|
|
blk >= fs->super->s_blocks_count)
|
|
problem = PR_1_ILLEGAL_BLOCK_NUM;
|
|
|
|
if (problem) {
|
|
p->num_illegal_blocks++;
|
|
if (!p->suppress && (p->num_illegal_blocks % 12) == 0) {
|
|
if (fix_problem(ctx, PR_1_TOO_MANY_BAD_BLOCKS, pctx)) {
|
|
p->clear = 1;
|
|
return BLOCK_ABORT;
|
|
}
|
|
if (fix_problem(ctx, PR_1_SUPPRESS_MESSAGES, pctx)) {
|
|
p->suppress = 1;
|
|
set_latch_flags(PR_LATCH_BLOCK,
|
|
PRL_SUPPRESS, 0);
|
|
}
|
|
}
|
|
pctx->blk = blk;
|
|
pctx->blkcount = blockcnt;
|
|
if (fix_problem(ctx, problem, pctx)) {
|
|
blk = *block_nr = 0;
|
|
ret_code = BLOCK_CHANGED;
|
|
goto mark_dir;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
if (p->ino == EXT2_RESIZE_INO) {
|
|
/*
|
|
* The resize inode has already be sanity checked
|
|
* during pass #0 (the superblock checks). All we
|
|
* have to do is mark the double indirect block as
|
|
* being in use; all of the other blocks are handled
|
|
* by mark_table_blocks()).
|
|
*/
|
|
if (blockcnt == BLOCK_COUNT_DIND)
|
|
mark_block_used(ctx, blk);
|
|
} else
|
|
mark_block_used(ctx, blk);
|
|
p->num_blocks++;
|
|
if (blockcnt >= 0)
|
|
p->last_block = blockcnt;
|
|
mark_dir:
|
|
if (p->is_dir && (blockcnt >= 0)) {
|
|
pctx->errcode = ext2fs_add_dir_block(fs->dblist, p->ino,
|
|
blk, blockcnt);
|
|
if (pctx->errcode) {
|
|
pctx->blk = blk;
|
|
pctx->num = blockcnt;
|
|
fix_problem(ctx, PR_1_ADD_DBLOCK, pctx);
|
|
/* Should never get here */
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return BLOCK_ABORT;
|
|
}
|
|
}
|
|
return ret_code;
|
|
}
|
|
|
|
static int process_bad_block(ext2_filsys fs FSCK_ATTR((unused)),
|
|
blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk_t ref_block FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data EXT2FS_ATTR((unused)))
|
|
{
|
|
/*
|
|
* Note: This function processes blocks for the bad blocks
|
|
* inode, which is never compressed. So we don't use HOLE_BLKADDR().
|
|
*/
|
|
|
|
printf("Unrecoverable Error: Found %"PRIi64" bad blocks starting at block number: %u\n", blockcnt, *block_nr);
|
|
return BLOCK_ERROR;
|
|
}
|
|
|
|
/*
|
|
* This routine gets called at the end of pass 1 if bad blocks are
|
|
* detected in the superblock, group descriptors, inode_bitmaps, or
|
|
* block bitmaps. At this point, all of the blocks have been mapped
|
|
* out, so we can try to allocate new block(s) to replace the bad
|
|
* blocks.
|
|
*/
|
|
static void handle_fs_bad_blocks(e2fsck_t ctx)
|
|
{
|
|
printf("Bad blocks detected on your filesystem\n"
|
|
"You should get your data off as the device will soon die\n");
|
|
}
|
|
|
|
/*
|
|
* This routine marks all blocks which are used by the superblock,
|
|
* group descriptors, inode bitmaps, and block bitmaps.
|
|
*/
|
|
static void mark_table_blocks(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
blk_t block, b;
|
|
dgrp_t i;
|
|
int j;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
block = fs->super->s_first_data_block;
|
|
for (i = 0; i < fs->group_desc_count; i++) {
|
|
pctx.group = i;
|
|
|
|
ext2fs_reserve_super_and_bgd(fs, i, ctx->block_found_map);
|
|
|
|
/*
|
|
* Mark the blocks used for the inode table
|
|
*/
|
|
if (fs->group_desc[i].bg_inode_table) {
|
|
for (j = 0, b = fs->group_desc[i].bg_inode_table;
|
|
j < fs->inode_blocks_per_group;
|
|
j++, b++) {
|
|
if (ext2fs_test_block_bitmap(ctx->block_found_map,
|
|
b)) {
|
|
pctx.blk = b;
|
|
if (fix_problem(ctx,
|
|
PR_1_ITABLE_CONFLICT, &pctx)) {
|
|
ctx->invalid_inode_table_flag[i]++;
|
|
ctx->invalid_bitmaps++;
|
|
}
|
|
} else {
|
|
ext2fs_mark_block_bitmap(ctx->block_found_map, b);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark block used for the block bitmap
|
|
*/
|
|
if (fs->group_desc[i].bg_block_bitmap) {
|
|
if (ext2fs_test_block_bitmap(ctx->block_found_map,
|
|
fs->group_desc[i].bg_block_bitmap)) {
|
|
pctx.blk = fs->group_desc[i].bg_block_bitmap;
|
|
if (fix_problem(ctx, PR_1_BB_CONFLICT, &pctx)) {
|
|
ctx->invalid_block_bitmap_flag[i]++;
|
|
ctx->invalid_bitmaps++;
|
|
}
|
|
} else {
|
|
ext2fs_mark_block_bitmap(ctx->block_found_map,
|
|
fs->group_desc[i].bg_block_bitmap);
|
|
}
|
|
}
|
|
/*
|
|
* Mark block used for the inode bitmap
|
|
*/
|
|
if (fs->group_desc[i].bg_inode_bitmap) {
|
|
if (ext2fs_test_block_bitmap(ctx->block_found_map,
|
|
fs->group_desc[i].bg_inode_bitmap)) {
|
|
pctx.blk = fs->group_desc[i].bg_inode_bitmap;
|
|
if (fix_problem(ctx, PR_1_IB_CONFLICT, &pctx)) {
|
|
ctx->invalid_inode_bitmap_flag[i]++;
|
|
ctx->invalid_bitmaps++;
|
|
}
|
|
} else {
|
|
ext2fs_mark_block_bitmap(ctx->block_found_map,
|
|
fs->group_desc[i].bg_inode_bitmap);
|
|
}
|
|
}
|
|
block += fs->super->s_blocks_per_group;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Thes subroutines short circuits ext2fs_get_blocks and
|
|
* ext2fs_check_directory; we use them since we already have the inode
|
|
* structure, so there's no point in letting the ext2fs library read
|
|
* the inode again.
|
|
*/
|
|
static errcode_t pass1_get_blocks(ext2_filsys fs, ext2_ino_t ino,
|
|
blk_t *blocks)
|
|
{
|
|
e2fsck_t ctx = (e2fsck_t) fs->priv_data;
|
|
int i;
|
|
|
|
if ((ino != ctx->stashed_ino) || !ctx->stashed_inode)
|
|
return EXT2_ET_CALLBACK_NOTHANDLED;
|
|
|
|
for (i=0; i < EXT2_N_BLOCKS; i++)
|
|
blocks[i] = ctx->stashed_inode->i_block[i];
|
|
return 0;
|
|
}
|
|
|
|
static errcode_t pass1_read_inode(ext2_filsys fs, ext2_ino_t ino,
|
|
struct ext2_inode *inode)
|
|
{
|
|
e2fsck_t ctx = (e2fsck_t) fs->priv_data;
|
|
|
|
if ((ino != ctx->stashed_ino) || !ctx->stashed_inode)
|
|
return EXT2_ET_CALLBACK_NOTHANDLED;
|
|
*inode = *ctx->stashed_inode;
|
|
return 0;
|
|
}
|
|
|
|
static errcode_t pass1_write_inode(ext2_filsys fs, ext2_ino_t ino,
|
|
struct ext2_inode *inode)
|
|
{
|
|
e2fsck_t ctx = (e2fsck_t) fs->priv_data;
|
|
|
|
if ((ino == ctx->stashed_ino) && ctx->stashed_inode)
|
|
*ctx->stashed_inode = *inode;
|
|
return EXT2_ET_CALLBACK_NOTHANDLED;
|
|
}
|
|
|
|
static errcode_t pass1_check_directory(ext2_filsys fs, ext2_ino_t ino)
|
|
{
|
|
e2fsck_t ctx = (e2fsck_t) fs->priv_data;
|
|
|
|
if ((ino != ctx->stashed_ino) || !ctx->stashed_inode)
|
|
return EXT2_ET_CALLBACK_NOTHANDLED;
|
|
|
|
if (!LINUX_S_ISDIR(ctx->stashed_inode->i_mode))
|
|
return EXT2_ET_NO_DIRECTORY;
|
|
return 0;
|
|
}
|
|
|
|
void e2fsck_use_inode_shortcuts(e2fsck_t ctx, int bool)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
|
|
if (bool) {
|
|
fs->get_blocks = pass1_get_blocks;
|
|
fs->check_directory = pass1_check_directory;
|
|
fs->read_inode = pass1_read_inode;
|
|
fs->write_inode = pass1_write_inode;
|
|
ctx->stashed_ino = 0;
|
|
} else {
|
|
fs->get_blocks = 0;
|
|
fs->check_directory = 0;
|
|
fs->read_inode = 0;
|
|
fs->write_inode = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pass1b.c --- Pass #1b of e2fsck
|
|
*
|
|
* This file contains pass1B, pass1C, and pass1D of e2fsck. They are
|
|
* only invoked if pass 1 discovered blocks which are in use by more
|
|
* than one inode.
|
|
*
|
|
* Pass1B scans the data blocks of all the inodes again, generating a
|
|
* complete list of duplicate blocks and which inodes have claimed
|
|
* them.
|
|
*
|
|
* Pass1C does a tree-traversal of the filesystem, to determine the
|
|
* parent directories of these inodes. This step is necessary so that
|
|
* e2fsck can print out the pathnames of affected inodes.
|
|
*
|
|
* Pass1D is a reconciliation pass. For each inode with duplicate
|
|
* blocks, the user is prompted if s/he would like to clone the file
|
|
* (so that the file gets a fresh copy of the duplicated blocks) or
|
|
* simply to delete the file.
|
|
*
|
|
*/
|
|
|
|
|
|
/* Needed for architectures where sizeof(int) != sizeof(void *) */
|
|
#define INT_TO_VOIDPTR(val) ((void *)(intptr_t)(val))
|
|
#define VOIDPTR_TO_INT(ptr) ((int)(intptr_t)(ptr))
|
|
|
|
/* Define an extension to the ext2 library's block count information */
|
|
#define BLOCK_COUNT_EXTATTR (-5)
|
|
|
|
struct block_el {
|
|
blk_t block;
|
|
struct block_el *next;
|
|
};
|
|
|
|
struct inode_el {
|
|
ext2_ino_t inode;
|
|
struct inode_el *next;
|
|
};
|
|
|
|
struct dup_block {
|
|
int num_bad;
|
|
struct inode_el *inode_list;
|
|
};
|
|
|
|
/*
|
|
* This structure stores information about a particular inode which
|
|
* is sharing blocks with other inodes. This information is collected
|
|
* to display to the user, so that the user knows what files he or she
|
|
* is dealing with, when trying to decide how to resolve the conflict
|
|
* of multiply-claimed blocks.
|
|
*/
|
|
struct dup_inode {
|
|
ext2_ino_t dir;
|
|
int num_dupblocks;
|
|
struct ext2_inode inode;
|
|
struct block_el *block_list;
|
|
};
|
|
|
|
static int process_pass1b_block(ext2_filsys fs, blk_t *blocknr,
|
|
e2_blkcnt_t blockcnt, blk_t ref_blk,
|
|
int ref_offset, void *priv_data);
|
|
static void delete_file(e2fsck_t ctx, ext2_ino_t ino,
|
|
struct dup_inode *dp, char *block_buf);
|
|
static int clone_file(e2fsck_t ctx, ext2_ino_t ino,
|
|
struct dup_inode *dp, char* block_buf);
|
|
static int check_if_fs_block(e2fsck_t ctx, blk_t test_blk);
|
|
|
|
static void pass1b(e2fsck_t ctx, char *block_buf);
|
|
static void pass1c(e2fsck_t ctx, char *block_buf);
|
|
static void pass1d(e2fsck_t ctx, char *block_buf);
|
|
|
|
static int dup_inode_count = 0;
|
|
|
|
static dict_t blk_dict, ino_dict;
|
|
|
|
static ext2fs_inode_bitmap inode_dup_map;
|
|
|
|
static int dict_int_cmp(const void *a, const void *b)
|
|
{
|
|
intptr_t ia, ib;
|
|
|
|
ia = (intptr_t)a;
|
|
ib = (intptr_t)b;
|
|
|
|
return (ia-ib);
|
|
}
|
|
|
|
/*
|
|
* Add a duplicate block record
|
|
*/
|
|
static void add_dupe(e2fsck_t ctx, ext2_ino_t ino, blk_t blk,
|
|
struct ext2_inode *inode)
|
|
{
|
|
dnode_t *n;
|
|
struct dup_block *db;
|
|
struct dup_inode *di;
|
|
struct block_el *blk_el;
|
|
struct inode_el *ino_el;
|
|
|
|
n = dict_lookup(&blk_dict, INT_TO_VOIDPTR(blk));
|
|
if (n)
|
|
db = (struct dup_block *) dnode_get(n);
|
|
else {
|
|
db = (struct dup_block *) e2fsck_allocate_memory(ctx,
|
|
sizeof(struct dup_block), "duplicate block header");
|
|
db->num_bad = 0;
|
|
db->inode_list = 0;
|
|
dict_alloc_insert(&blk_dict, INT_TO_VOIDPTR(blk), db);
|
|
}
|
|
ino_el = (struct inode_el *) e2fsck_allocate_memory(ctx,
|
|
sizeof(struct inode_el), "inode element");
|
|
ino_el->inode = ino;
|
|
ino_el->next = db->inode_list;
|
|
db->inode_list = ino_el;
|
|
db->num_bad++;
|
|
|
|
n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(ino));
|
|
if (n)
|
|
di = (struct dup_inode *) dnode_get(n);
|
|
else {
|
|
di = (struct dup_inode *) e2fsck_allocate_memory(ctx,
|
|
sizeof(struct dup_inode), "duplicate inode header");
|
|
di->dir = (ino == EXT2_ROOT_INO) ? EXT2_ROOT_INO : 0;
|
|
di->num_dupblocks = 0;
|
|
di->block_list = 0;
|
|
di->inode = *inode;
|
|
dict_alloc_insert(&ino_dict, INT_TO_VOIDPTR(ino), di);
|
|
}
|
|
blk_el = (struct block_el *) e2fsck_allocate_memory(ctx,
|
|
sizeof(struct block_el), "block element");
|
|
blk_el->block = blk;
|
|
blk_el->next = di->block_list;
|
|
di->block_list = blk_el;
|
|
di->num_dupblocks++;
|
|
}
|
|
|
|
/*
|
|
* Free a duplicate inode record
|
|
*/
|
|
static void inode_dnode_free(dnode_t *node)
|
|
{
|
|
struct dup_inode *di;
|
|
struct block_el *p, *next;
|
|
|
|
di = (struct dup_inode *) dnode_get(node);
|
|
for (p = di->block_list; p; p = next) {
|
|
next = p->next;
|
|
free(p);
|
|
}
|
|
free(node);
|
|
}
|
|
|
|
/*
|
|
* Free a duplicate block record
|
|
*/
|
|
static void block_dnode_free(dnode_t *node)
|
|
{
|
|
struct dup_block *db;
|
|
struct inode_el *p, *next;
|
|
|
|
db = (struct dup_block *) dnode_get(node);
|
|
for (p = db->inode_list; p; p = next) {
|
|
next = p->next;
|
|
free(p);
|
|
}
|
|
free(node);
|
|
}
|
|
|
|
|
|
/*
|
|
* Main procedure for handling duplicate blocks
|
|
*/
|
|
void e2fsck_pass1_dupblocks(e2fsck_t ctx, char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
pctx.errcode = ext2fs_allocate_inode_bitmap(fs,
|
|
_("multiply claimed inode map"), &inode_dup_map);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1B_ALLOCATE_IBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
dict_init(&ino_dict, DICTCOUNT_T_MAX, dict_int_cmp);
|
|
dict_init(&blk_dict, DICTCOUNT_T_MAX, dict_int_cmp);
|
|
dict_set_allocator(&ino_dict, inode_dnode_free);
|
|
dict_set_allocator(&blk_dict, block_dnode_free);
|
|
|
|
pass1b(ctx, block_buf);
|
|
pass1c(ctx, block_buf);
|
|
pass1d(ctx, block_buf);
|
|
|
|
/*
|
|
* Time to free all of the accumulated data structures that we
|
|
* don't need anymore.
|
|
*/
|
|
dict_free_nodes(&ino_dict);
|
|
dict_free_nodes(&blk_dict);
|
|
}
|
|
|
|
/*
|
|
* Scan the inodes looking for inodes that contain duplicate blocks.
|
|
*/
|
|
struct process_block_struct_1b {
|
|
e2fsck_t ctx;
|
|
ext2_ino_t ino;
|
|
int dup_blocks;
|
|
struct ext2_inode *inode;
|
|
struct problem_context *pctx;
|
|
};
|
|
|
|
static void pass1b(e2fsck_t ctx, char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t ino;
|
|
struct ext2_inode inode;
|
|
ext2_inode_scan scan;
|
|
struct process_block_struct_1b pb;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_1B_PASS_HEADER, &pctx);
|
|
pctx.errcode = ext2fs_open_inode_scan(fs, ctx->inode_buffer_blocks,
|
|
&scan);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1B_ISCAN_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
ctx->stashed_inode = &inode;
|
|
pb.ctx = ctx;
|
|
pb.pctx = &pctx;
|
|
pctx.str = "pass1b";
|
|
while (1) {
|
|
pctx.errcode = ext2fs_get_next_inode(scan, &ino, &inode);
|
|
if (pctx.errcode == EXT2_ET_BAD_BLOCK_IN_INODE_TABLE)
|
|
continue;
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1B_ISCAN_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
if (!ino)
|
|
break;
|
|
pctx.ino = ctx->stashed_ino = ino;
|
|
if ((ino != EXT2_BAD_INO) &&
|
|
!ext2fs_test_inode_bitmap(ctx->inode_used_map, ino))
|
|
continue;
|
|
|
|
pb.ino = ino;
|
|
pb.dup_blocks = 0;
|
|
pb.inode = &inode;
|
|
|
|
if (ext2fs_inode_has_valid_blocks(&inode) ||
|
|
(ino == EXT2_BAD_INO))
|
|
pctx.errcode = ext2fs_block_iterate2(fs, ino,
|
|
0, block_buf, process_pass1b_block, &pb);
|
|
if (inode.i_file_acl)
|
|
process_pass1b_block(fs, &inode.i_file_acl,
|
|
BLOCK_COUNT_EXTATTR, 0, 0, &pb);
|
|
if (pb.dup_blocks) {
|
|
end_problem_latch(ctx, PR_LATCH_DBLOCK);
|
|
if (ino >= EXT2_FIRST_INODE(fs->super) ||
|
|
ino == EXT2_ROOT_INO)
|
|
dup_inode_count++;
|
|
}
|
|
if (pctx.errcode)
|
|
fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx);
|
|
}
|
|
ext2fs_close_inode_scan(scan);
|
|
e2fsck_use_inode_shortcuts(ctx, 0);
|
|
}
|
|
|
|
static int process_pass1b_block(ext2_filsys fs FSCK_ATTR((unused)),
|
|
blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt FSCK_ATTR((unused)),
|
|
blk_t ref_blk FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct process_block_struct_1b *p;
|
|
e2fsck_t ctx;
|
|
|
|
if (HOLE_BLKADDR(*block_nr))
|
|
return 0;
|
|
p = (struct process_block_struct_1b *) priv_data;
|
|
ctx = p->ctx;
|
|
|
|
if (!ext2fs_test_block_bitmap(ctx->block_dup_map, *block_nr))
|
|
return 0;
|
|
|
|
/* OK, this is a duplicate block */
|
|
if (p->ino != EXT2_BAD_INO) {
|
|
p->pctx->blk = *block_nr;
|
|
fix_problem(ctx, PR_1B_DUP_BLOCK, p->pctx);
|
|
}
|
|
p->dup_blocks++;
|
|
ext2fs_mark_inode_bitmap(inode_dup_map, p->ino);
|
|
|
|
add_dupe(ctx, p->ino, *block_nr, p->inode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pass 1c: Scan directories for inodes with duplicate blocks. This
|
|
* is used so that we can print pathnames when prompting the user for
|
|
* what to do.
|
|
*/
|
|
struct search_dir_struct {
|
|
int count;
|
|
ext2_ino_t first_inode;
|
|
ext2_ino_t max_inode;
|
|
};
|
|
|
|
static int search_dirent_proc(ext2_ino_t dir, int entry,
|
|
struct ext2_dir_entry *dirent,
|
|
int offset FSCK_ATTR((unused)),
|
|
int blocksize FSCK_ATTR((unused)),
|
|
char *buf FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct search_dir_struct *sd;
|
|
struct dup_inode *p;
|
|
dnode_t *n;
|
|
|
|
sd = (struct search_dir_struct *) priv_data;
|
|
|
|
if (dirent->inode > sd->max_inode)
|
|
/* Should abort this inode, but not everything */
|
|
return 0;
|
|
|
|
if ((dirent->inode < sd->first_inode) || (entry < DIRENT_OTHER_FILE) ||
|
|
!ext2fs_test_inode_bitmap(inode_dup_map, dirent->inode))
|
|
return 0;
|
|
|
|
n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(dirent->inode));
|
|
if (!n)
|
|
return 0;
|
|
p = (struct dup_inode *) dnode_get(n);
|
|
p->dir = dir;
|
|
sd->count--;
|
|
|
|
return sd->count ? 0 : DIRENT_ABORT;
|
|
}
|
|
|
|
|
|
static void pass1c(e2fsck_t ctx, char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct search_dir_struct sd;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_1C_PASS_HEADER, &pctx);
|
|
|
|
/*
|
|
* Search through all directories to translate inodes to names
|
|
* (by searching for the containing directory for that inode.)
|
|
*/
|
|
sd.count = dup_inode_count;
|
|
sd.first_inode = EXT2_FIRST_INODE(fs->super);
|
|
sd.max_inode = fs->super->s_inodes_count;
|
|
ext2fs_dblist_dir_iterate(fs->dblist, 0, block_buf,
|
|
search_dirent_proc, &sd);
|
|
}
|
|
|
|
static void pass1d(e2fsck_t ctx, char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct dup_inode *p, *t;
|
|
struct dup_block *q;
|
|
ext2_ino_t *shared, ino;
|
|
int shared_len;
|
|
int i;
|
|
int file_ok;
|
|
int meta_data = 0;
|
|
struct problem_context pctx;
|
|
dnode_t *n, *m;
|
|
struct block_el *s;
|
|
struct inode_el *r;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_1D_PASS_HEADER, &pctx);
|
|
e2fsck_read_bitmaps(ctx);
|
|
|
|
pctx.num = dup_inode_count; /* dict_count(&ino_dict); */
|
|
fix_problem(ctx, PR_1D_NUM_DUP_INODES, &pctx);
|
|
shared = (ext2_ino_t *) e2fsck_allocate_memory(ctx,
|
|
sizeof(ext2_ino_t) * dict_count(&ino_dict),
|
|
"Shared inode list");
|
|
for (n = dict_first(&ino_dict); n; n = dict_next(&ino_dict, n)) {
|
|
p = (struct dup_inode *) dnode_get(n);
|
|
shared_len = 0;
|
|
file_ok = 1;
|
|
ino = (ext2_ino_t)VOIDPTR_TO_INT(dnode_getkey(n));
|
|
if (ino == EXT2_BAD_INO || ino == EXT2_RESIZE_INO)
|
|
continue;
|
|
|
|
/*
|
|
* Find all of the inodes which share blocks with this
|
|
* one. First we find all of the duplicate blocks
|
|
* belonging to this inode, and then search each block
|
|
* get the list of inodes, and merge them together.
|
|
*/
|
|
for (s = p->block_list; s; s = s->next) {
|
|
m = dict_lookup(&blk_dict, INT_TO_VOIDPTR(s->block));
|
|
if (!m)
|
|
continue; /* Should never happen... */
|
|
q = (struct dup_block *) dnode_get(m);
|
|
if (q->num_bad > 1)
|
|
file_ok = 0;
|
|
if (check_if_fs_block(ctx, s->block)) {
|
|
file_ok = 0;
|
|
meta_data = 1;
|
|
}
|
|
|
|
/*
|
|
* Add all inodes used by this block to the
|
|
* shared[] --- which is a unique list, so
|
|
* if an inode is already in shared[], don't
|
|
* add it again.
|
|
*/
|
|
for (r = q->inode_list; r; r = r->next) {
|
|
if (r->inode == ino)
|
|
continue;
|
|
for (i = 0; i < shared_len; i++)
|
|
if (shared[i] == r->inode)
|
|
break;
|
|
if (i == shared_len) {
|
|
shared[shared_len++] = r->inode;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Report the inode that we are working on
|
|
*/
|
|
pctx.inode = &p->inode;
|
|
pctx.ino = ino;
|
|
pctx.dir = p->dir;
|
|
pctx.blkcount = p->num_dupblocks;
|
|
pctx.num = meta_data ? shared_len+1 : shared_len;
|
|
fix_problem(ctx, PR_1D_DUP_FILE, &pctx);
|
|
pctx.blkcount = 0;
|
|
pctx.num = 0;
|
|
|
|
if (meta_data)
|
|
fix_problem(ctx, PR_1D_SHARE_METADATA, &pctx);
|
|
|
|
for (i = 0; i < shared_len; i++) {
|
|
m = dict_lookup(&ino_dict, INT_TO_VOIDPTR(shared[i]));
|
|
if (!m)
|
|
continue; /* should never happen */
|
|
t = (struct dup_inode *) dnode_get(m);
|
|
/*
|
|
* Report the inode that we are sharing with
|
|
*/
|
|
pctx.inode = &t->inode;
|
|
pctx.ino = shared[i];
|
|
pctx.dir = t->dir;
|
|
fix_problem(ctx, PR_1D_DUP_FILE_LIST, &pctx);
|
|
}
|
|
if (file_ok) {
|
|
fix_problem(ctx, PR_1D_DUP_BLOCKS_DEALT, &pctx);
|
|
continue;
|
|
}
|
|
if (fix_problem(ctx, PR_1D_CLONE_QUESTION, &pctx)) {
|
|
pctx.errcode = clone_file(ctx, ino, p, block_buf);
|
|
if (pctx.errcode)
|
|
fix_problem(ctx, PR_1D_CLONE_ERROR, &pctx);
|
|
else
|
|
continue;
|
|
}
|
|
if (fix_problem(ctx, PR_1D_DELETE_QUESTION, &pctx))
|
|
delete_file(ctx, ino, p, block_buf);
|
|
else
|
|
ext2fs_unmark_valid(fs);
|
|
}
|
|
ext2fs_free_mem(&shared);
|
|
}
|
|
|
|
/*
|
|
* Drop the refcount on the dup_block structure, and clear the entry
|
|
* in the block_dup_map if appropriate.
|
|
*/
|
|
static void decrement_badcount(e2fsck_t ctx, blk_t block, struct dup_block *p)
|
|
{
|
|
p->num_bad--;
|
|
if (p->num_bad <= 0 ||
|
|
(p->num_bad == 1 && !check_if_fs_block(ctx, block)))
|
|
ext2fs_unmark_block_bitmap(ctx->block_dup_map, block);
|
|
}
|
|
|
|
static int delete_file_block(ext2_filsys fs,
|
|
blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt FSCK_ATTR((unused)),
|
|
blk_t ref_block FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct process_block_struct_1b *pb;
|
|
struct dup_block *p;
|
|
dnode_t *n;
|
|
e2fsck_t ctx;
|
|
|
|
pb = (struct process_block_struct_1b *) priv_data;
|
|
ctx = pb->ctx;
|
|
|
|
if (HOLE_BLKADDR(*block_nr))
|
|
return 0;
|
|
|
|
if (ext2fs_test_block_bitmap(ctx->block_dup_map, *block_nr)) {
|
|
n = dict_lookup(&blk_dict, INT_TO_VOIDPTR(*block_nr));
|
|
if (n) {
|
|
p = (struct dup_block *) dnode_get(n);
|
|
decrement_badcount(ctx, *block_nr, p);
|
|
} else
|
|
bb_error_msg(_("internal error; can't find dup_blk for %d"),
|
|
*block_nr);
|
|
} else {
|
|
ext2fs_unmark_block_bitmap(ctx->block_found_map, *block_nr);
|
|
ext2fs_block_alloc_stats(fs, *block_nr, -1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void delete_file(e2fsck_t ctx, ext2_ino_t ino,
|
|
struct dup_inode *dp, char* block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct process_block_struct_1b pb;
|
|
struct ext2_inode inode;
|
|
struct problem_context pctx;
|
|
unsigned int count;
|
|
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = pb.ino = ino;
|
|
pb.dup_blocks = dp->num_dupblocks;
|
|
pb.ctx = ctx;
|
|
pctx.str = "delete_file";
|
|
|
|
e2fsck_read_inode(ctx, ino, &inode, "delete_file");
|
|
if (ext2fs_inode_has_valid_blocks(&inode))
|
|
pctx.errcode = ext2fs_block_iterate2(fs, ino, 0, block_buf,
|
|
delete_file_block, &pb);
|
|
if (pctx.errcode)
|
|
fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_used_map, ino);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_dir_map, ino);
|
|
if (ctx->inode_bad_map)
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_bad_map, ino);
|
|
ext2fs_inode_alloc_stats2(fs, ino, -1, LINUX_S_ISDIR(inode.i_mode));
|
|
|
|
/* Inode may have changed by block_iterate, so reread it */
|
|
e2fsck_read_inode(ctx, ino, &inode, "delete_file");
|
|
inode.i_links_count = 0;
|
|
inode.i_dtime = time(NULL);
|
|
if (inode.i_file_acl &&
|
|
(fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_EXT_ATTR)) {
|
|
count = 1;
|
|
pctx.errcode = ext2fs_adjust_ea_refcount(fs, inode.i_file_acl,
|
|
block_buf, -1, &count);
|
|
if (pctx.errcode == EXT2_ET_BAD_EA_BLOCK_NUM) {
|
|
pctx.errcode = 0;
|
|
count = 1;
|
|
}
|
|
if (pctx.errcode) {
|
|
pctx.blk = inode.i_file_acl;
|
|
fix_problem(ctx, PR_1B_ADJ_EA_REFCOUNT, &pctx);
|
|
}
|
|
/*
|
|
* If the count is zero, then arrange to have the
|
|
* block deleted. If the block is in the block_dup_map,
|
|
* also call delete_file_block since it will take care
|
|
* of keeping the accounting straight.
|
|
*/
|
|
if ((count == 0) ||
|
|
ext2fs_test_block_bitmap(ctx->block_dup_map,
|
|
inode.i_file_acl))
|
|
delete_file_block(fs, &inode.i_file_acl,
|
|
BLOCK_COUNT_EXTATTR, 0, 0, &pb);
|
|
}
|
|
e2fsck_write_inode(ctx, ino, &inode, "delete_file");
|
|
}
|
|
|
|
struct clone_struct {
|
|
errcode_t errcode;
|
|
ext2_ino_t dir;
|
|
char *buf;
|
|
e2fsck_t ctx;
|
|
};
|
|
|
|
static int clone_file_block(ext2_filsys fs,
|
|
blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk_t ref_block FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct dup_block *p;
|
|
blk_t new_block;
|
|
errcode_t retval;
|
|
struct clone_struct *cs = (struct clone_struct *) priv_data;
|
|
dnode_t *n;
|
|
e2fsck_t ctx;
|
|
|
|
ctx = cs->ctx;
|
|
|
|
if (HOLE_BLKADDR(*block_nr))
|
|
return 0;
|
|
|
|
if (ext2fs_test_block_bitmap(ctx->block_dup_map, *block_nr)) {
|
|
n = dict_lookup(&blk_dict, INT_TO_VOIDPTR(*block_nr));
|
|
if (n) {
|
|
p = (struct dup_block *) dnode_get(n);
|
|
retval = ext2fs_new_block(fs, 0, ctx->block_found_map,
|
|
&new_block);
|
|
if (retval) {
|
|
cs->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
if (cs->dir && (blockcnt >= 0)) {
|
|
retval = ext2fs_set_dir_block(fs->dblist,
|
|
cs->dir, new_block, blockcnt);
|
|
if (retval) {
|
|
cs->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
}
|
|
|
|
retval = io_channel_read_blk(fs->io, *block_nr, 1,
|
|
cs->buf);
|
|
if (retval) {
|
|
cs->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
retval = io_channel_write_blk(fs->io, new_block, 1,
|
|
cs->buf);
|
|
if (retval) {
|
|
cs->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
decrement_badcount(ctx, *block_nr, p);
|
|
*block_nr = new_block;
|
|
ext2fs_mark_block_bitmap(ctx->block_found_map,
|
|
new_block);
|
|
ext2fs_mark_block_bitmap(fs->block_map, new_block);
|
|
return BLOCK_CHANGED;
|
|
} else
|
|
bb_error_msg(_("internal error; can't find dup_blk for %d"),
|
|
*block_nr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int clone_file(e2fsck_t ctx, ext2_ino_t ino,
|
|
struct dup_inode *dp, char* block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
struct clone_struct cs;
|
|
struct problem_context pctx;
|
|
blk_t blk;
|
|
dnode_t *n;
|
|
struct inode_el *ino_el;
|
|
struct dup_block *db;
|
|
struct dup_inode *di;
|
|
|
|
clear_problem_context(&pctx);
|
|
cs.errcode = 0;
|
|
cs.dir = 0;
|
|
cs.ctx = ctx;
|
|
retval = ext2fs_get_mem(fs->blocksize, &cs.buf);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (ext2fs_test_inode_bitmap(ctx->inode_dir_map, ino))
|
|
cs.dir = ino;
|
|
|
|
pctx.ino = ino;
|
|
pctx.str = "clone_file";
|
|
if (ext2fs_inode_has_valid_blocks(&dp->inode))
|
|
pctx.errcode = ext2fs_block_iterate2(fs, ino, 0, block_buf,
|
|
clone_file_block, &cs);
|
|
ext2fs_mark_bb_dirty(fs);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx);
|
|
retval = pctx.errcode;
|
|
goto errout;
|
|
}
|
|
if (cs.errcode) {
|
|
bb_error_msg(_("returned from clone_file_block"));
|
|
retval = cs.errcode;
|
|
goto errout;
|
|
}
|
|
/* The inode may have changed on disk, so we have to re-read it */
|
|
e2fsck_read_inode(ctx, ino, &dp->inode, "clone file EA");
|
|
blk = dp->inode.i_file_acl;
|
|
if (blk && (clone_file_block(fs, &dp->inode.i_file_acl,
|
|
BLOCK_COUNT_EXTATTR, 0, 0, &cs) ==
|
|
BLOCK_CHANGED)) {
|
|
e2fsck_write_inode(ctx, ino, &dp->inode, "clone file EA");
|
|
/*
|
|
* If we cloned the EA block, find all other inodes
|
|
* which refered to that EA block, and modify
|
|
* them to point to the new EA block.
|
|
*/
|
|
n = dict_lookup(&blk_dict, INT_TO_VOIDPTR(blk));
|
|
db = (struct dup_block *) dnode_get(n);
|
|
for (ino_el = db->inode_list; ino_el; ino_el = ino_el->next) {
|
|
if (ino_el->inode == ino)
|
|
continue;
|
|
n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(ino_el->inode));
|
|
di = (struct dup_inode *) dnode_get(n);
|
|
if (di->inode.i_file_acl == blk) {
|
|
di->inode.i_file_acl = dp->inode.i_file_acl;
|
|
e2fsck_write_inode(ctx, ino_el->inode,
|
|
&di->inode, "clone file EA");
|
|
decrement_badcount(ctx, blk, db);
|
|
}
|
|
}
|
|
}
|
|
retval = 0;
|
|
errout:
|
|
ext2fs_free_mem(&cs.buf);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* This routine returns 1 if a block overlaps with one of the superblocks,
|
|
* group descriptors, inode bitmaps, or block bitmaps.
|
|
*/
|
|
static int check_if_fs_block(e2fsck_t ctx, blk_t test_block)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
blk_t block;
|
|
dgrp_t i;
|
|
|
|
block = fs->super->s_first_data_block;
|
|
for (i = 0; i < fs->group_desc_count; i++) {
|
|
|
|
/* Check superblocks/block group descriptros */
|
|
if (ext2fs_bg_has_super(fs, i)) {
|
|
if (test_block >= block &&
|
|
(test_block <= block + fs->desc_blocks))
|
|
return 1;
|
|
}
|
|
|
|
/* Check the inode table */
|
|
if ((fs->group_desc[i].bg_inode_table) &&
|
|
(test_block >= fs->group_desc[i].bg_inode_table) &&
|
|
(test_block < (fs->group_desc[i].bg_inode_table +
|
|
fs->inode_blocks_per_group)))
|
|
return 1;
|
|
|
|
/* Check the bitmap blocks */
|
|
if ((test_block == fs->group_desc[i].bg_block_bitmap) ||
|
|
(test_block == fs->group_desc[i].bg_inode_bitmap))
|
|
return 1;
|
|
|
|
block += fs->super->s_blocks_per_group;
|
|
}
|
|
return 0;
|
|
}
|
|
/*
|
|
* pass2.c --- check directory structure
|
|
*
|
|
* Pass 2 of e2fsck iterates through all active directory inodes, and
|
|
* applies to following tests to each directory entry in the directory
|
|
* blocks in the inodes:
|
|
*
|
|
* - The length of the directory entry (rec_len) should be at
|
|
* least 8 bytes, and no more than the remaining space
|
|
* left in the directory block.
|
|
* - The length of the name in the directory entry (name_len)
|
|
* should be less than (rec_len - 8).
|
|
* - The inode number in the directory entry should be within
|
|
* legal bounds.
|
|
* - The inode number should refer to a in-use inode.
|
|
* - The first entry should be '.', and its inode should be
|
|
* the inode of the directory.
|
|
* - The second entry should be '..'.
|
|
*
|
|
* To minimize disk seek time, the directory blocks are processed in
|
|
* sorted order of block numbers.
|
|
*
|
|
* Pass 2 also collects the following information:
|
|
* - The inode numbers of the subdirectories for each directory.
|
|
*
|
|
* Pass 2 relies on the following information from previous passes:
|
|
* - The directory information collected in pass 1.
|
|
* - The inode_used_map bitmap
|
|
* - The inode_bad_map bitmap
|
|
* - The inode_dir_map bitmap
|
|
*
|
|
* Pass 2 frees the following data structures
|
|
* - The inode_bad_map bitmap
|
|
* - The inode_reg_map bitmap
|
|
*/
|
|
|
|
/*
|
|
* Keeps track of how many times an inode is referenced.
|
|
*/
|
|
static void deallocate_inode(e2fsck_t ctx, ext2_ino_t ino, char* block_buf);
|
|
static int check_dir_block(ext2_filsys fs,
|
|
struct ext2_db_entry *dir_blocks_info,
|
|
void *priv_data);
|
|
static int allocate_dir_block(e2fsck_t ctx, struct ext2_db_entry *dir_blocks_info,
|
|
struct problem_context *pctx);
|
|
static int update_dir_block(ext2_filsys fs,
|
|
blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk_t ref_block,
|
|
int ref_offset,
|
|
void *priv_data);
|
|
static void clear_htree(e2fsck_t ctx, ext2_ino_t ino);
|
|
static int htree_depth(struct dx_dir_info *dx_dir,
|
|
struct dx_dirblock_info *dx_db);
|
|
static int special_dir_block_cmp(const void *a, const void *b);
|
|
|
|
struct check_dir_struct {
|
|
char *buf;
|
|
struct problem_context pctx;
|
|
int count, max;
|
|
e2fsck_t ctx;
|
|
};
|
|
|
|
static void e2fsck_pass2(e2fsck_t ctx)
|
|
{
|
|
struct ext2_super_block *sb = ctx->fs->super;
|
|
struct problem_context pctx;
|
|
ext2_filsys fs = ctx->fs;
|
|
char *buf;
|
|
struct dir_info *dir;
|
|
struct check_dir_struct cd;
|
|
struct dx_dir_info *dx_dir;
|
|
struct dx_dirblock_info *dx_db, *dx_parent;
|
|
int b;
|
|
int i, depth;
|
|
problem_t code;
|
|
int bad_dir;
|
|
|
|
clear_problem_context(&cd.pctx);
|
|
|
|
/* Pass 2 */
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_2_PASS_HEADER, &cd.pctx);
|
|
|
|
cd.pctx.errcode = ext2fs_create_icount2(fs, EXT2_ICOUNT_OPT_INCREMENT,
|
|
0, ctx->inode_link_info,
|
|
&ctx->inode_count);
|
|
if (cd.pctx.errcode) {
|
|
fix_problem(ctx, PR_2_ALLOCATE_ICOUNT, &cd.pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
buf = (char *) e2fsck_allocate_memory(ctx, 2*fs->blocksize,
|
|
"directory scan buffer");
|
|
|
|
/*
|
|
* Set up the parent pointer for the root directory, if
|
|
* present. (If the root directory is not present, we will
|
|
* create it in pass 3.)
|
|
*/
|
|
dir = e2fsck_get_dir_info(ctx, EXT2_ROOT_INO);
|
|
if (dir)
|
|
dir->parent = EXT2_ROOT_INO;
|
|
|
|
cd.buf = buf;
|
|
cd.ctx = ctx;
|
|
cd.count = 1;
|
|
cd.max = ext2fs_dblist_count(fs->dblist);
|
|
|
|
if (ctx->progress)
|
|
(void) (ctx->progress)(ctx, 2, 0, cd.max);
|
|
|
|
if (fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_DIR_INDEX)
|
|
ext2fs_dblist_sort(fs->dblist, special_dir_block_cmp);
|
|
|
|
cd.pctx.errcode = ext2fs_dblist_iterate(fs->dblist, check_dir_block,
|
|
&cd);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
if (cd.pctx.errcode) {
|
|
fix_problem(ctx, PR_2_DBLIST_ITERATE, &cd.pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
#ifdef ENABLE_HTREE
|
|
for (i=0; (dx_dir = e2fsck_dx_dir_info_iter(ctx, &i)) != 0;) {
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
if (dx_dir->numblocks == 0)
|
|
continue;
|
|
clear_problem_context(&pctx);
|
|
bad_dir = 0;
|
|
pctx.dir = dx_dir->ino;
|
|
dx_db = dx_dir->dx_block;
|
|
if (dx_db->flags & DX_FLAG_REFERENCED)
|
|
dx_db->flags |= DX_FLAG_DUP_REF;
|
|
else
|
|
dx_db->flags |= DX_FLAG_REFERENCED;
|
|
/*
|
|
* Find all of the first and last leaf blocks, and
|
|
* update their parent's min and max hash values
|
|
*/
|
|
for (b=0, dx_db = dx_dir->dx_block;
|
|
b < dx_dir->numblocks;
|
|
b++, dx_db++) {
|
|
if ((dx_db->type != DX_DIRBLOCK_LEAF) ||
|
|
!(dx_db->flags & (DX_FLAG_FIRST | DX_FLAG_LAST)))
|
|
continue;
|
|
dx_parent = &dx_dir->dx_block[dx_db->parent];
|
|
/*
|
|
* XXX Make sure dx_parent->min_hash > dx_db->min_hash
|
|
*/
|
|
if (dx_db->flags & DX_FLAG_FIRST)
|
|
dx_parent->min_hash = dx_db->min_hash;
|
|
/*
|
|
* XXX Make sure dx_parent->max_hash < dx_db->max_hash
|
|
*/
|
|
if (dx_db->flags & DX_FLAG_LAST)
|
|
dx_parent->max_hash = dx_db->max_hash;
|
|
}
|
|
|
|
for (b=0, dx_db = dx_dir->dx_block;
|
|
b < dx_dir->numblocks;
|
|
b++, dx_db++) {
|
|
pctx.blkcount = b;
|
|
pctx.group = dx_db->parent;
|
|
code = 0;
|
|
if (!(dx_db->flags & DX_FLAG_FIRST) &&
|
|
(dx_db->min_hash < dx_db->node_min_hash)) {
|
|
pctx.blk = dx_db->min_hash;
|
|
pctx.blk2 = dx_db->node_min_hash;
|
|
code = PR_2_HTREE_MIN_HASH;
|
|
fix_problem(ctx, code, &pctx);
|
|
bad_dir++;
|
|
}
|
|
if (dx_db->type == DX_DIRBLOCK_LEAF) {
|
|
depth = htree_depth(dx_dir, dx_db);
|
|
if (depth != dx_dir->depth) {
|
|
code = PR_2_HTREE_BAD_DEPTH;
|
|
fix_problem(ctx, code, &pctx);
|
|
bad_dir++;
|
|
}
|
|
}
|
|
/*
|
|
* This test doesn't apply for the root block
|
|
* at block #0
|
|
*/
|
|
if (b &&
|
|
(dx_db->max_hash > dx_db->node_max_hash)) {
|
|
pctx.blk = dx_db->max_hash;
|
|
pctx.blk2 = dx_db->node_max_hash;
|
|
code = PR_2_HTREE_MAX_HASH;
|
|
fix_problem(ctx, code, &pctx);
|
|
bad_dir++;
|
|
}
|
|
if (!(dx_db->flags & DX_FLAG_REFERENCED)) {
|
|
code = PR_2_HTREE_NOTREF;
|
|
fix_problem(ctx, code, &pctx);
|
|
bad_dir++;
|
|
} else if (dx_db->flags & DX_FLAG_DUP_REF) {
|
|
code = PR_2_HTREE_DUPREF;
|
|
fix_problem(ctx, code, &pctx);
|
|
bad_dir++;
|
|
}
|
|
if (code == 0)
|
|
continue;
|
|
}
|
|
if (bad_dir && fix_problem(ctx, PR_2_HTREE_CLEAR, &pctx)) {
|
|
clear_htree(ctx, dx_dir->ino);
|
|
dx_dir->numblocks = 0;
|
|
}
|
|
}
|
|
#endif
|
|
ext2fs_free_mem(&buf);
|
|
ext2fs_free_dblist(fs->dblist);
|
|
|
|
ext2fs_free_inode_bitmap(ctx->inode_bad_map);
|
|
ctx->inode_bad_map = 0;
|
|
ext2fs_free_inode_bitmap(ctx->inode_reg_map);
|
|
ctx->inode_reg_map = 0;
|
|
|
|
clear_problem_context(&pctx);
|
|
if (ctx->large_files) {
|
|
if (!(sb->s_feature_ro_compat &
|
|
EXT2_FEATURE_RO_COMPAT_LARGE_FILE) &&
|
|
fix_problem(ctx, PR_2_FEATURE_LARGE_FILES, &pctx)) {
|
|
sb->s_feature_ro_compat |=
|
|
EXT2_FEATURE_RO_COMPAT_LARGE_FILE;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
if (sb->s_rev_level == EXT2_GOOD_OLD_REV &&
|
|
fix_problem(ctx, PR_1_FS_REV_LEVEL, &pctx)) {
|
|
ext2fs_update_dynamic_rev(fs);
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
} else if (!ctx->large_files &&
|
|
(sb->s_feature_ro_compat &
|
|
EXT2_FEATURE_RO_COMPAT_LARGE_FILE)) {
|
|
if (fs->flags & EXT2_FLAG_RW) {
|
|
sb->s_feature_ro_compat &=
|
|
~EXT2_FEATURE_RO_COMPAT_LARGE_FILE;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define MAX_DEPTH 32000
|
|
static int htree_depth(struct dx_dir_info *dx_dir,
|
|
struct dx_dirblock_info *dx_db)
|
|
{
|
|
int depth = 0;
|
|
|
|
while (dx_db->type != DX_DIRBLOCK_ROOT && depth < MAX_DEPTH) {
|
|
dx_db = &dx_dir->dx_block[dx_db->parent];
|
|
depth++;
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
static int dict_de_cmp(const void *a, const void *b)
|
|
{
|
|
const struct ext2_dir_entry *de_a, *de_b;
|
|
int a_len, b_len;
|
|
|
|
de_a = (const struct ext2_dir_entry *) a;
|
|
a_len = de_a->name_len & 0xFF;
|
|
de_b = (const struct ext2_dir_entry *) b;
|
|
b_len = de_b->name_len & 0xFF;
|
|
|
|
if (a_len != b_len)
|
|
return (a_len - b_len);
|
|
|
|
return strncmp(de_a->name, de_b->name, a_len);
|
|
}
|
|
|
|
/*
|
|
* This is special sort function that makes sure that directory blocks
|
|
* with a dirblock of zero are sorted to the beginning of the list.
|
|
* This guarantees that the root node of the htree directories are
|
|
* processed first, so we know what hash version to use.
|
|
*/
|
|
static int special_dir_block_cmp(const void *a, const void *b)
|
|
{
|
|
const struct ext2_db_entry *db_a =
|
|
(const struct ext2_db_entry *) a;
|
|
const struct ext2_db_entry *db_b =
|
|
(const struct ext2_db_entry *) b;
|
|
|
|
if (db_a->blockcnt && !db_b->blockcnt)
|
|
return 1;
|
|
|
|
if (!db_a->blockcnt && db_b->blockcnt)
|
|
return -1;
|
|
|
|
if (db_a->blk != db_b->blk)
|
|
return (int) (db_a->blk - db_b->blk);
|
|
|
|
if (db_a->ino != db_b->ino)
|
|
return (int) (db_a->ino - db_b->ino);
|
|
|
|
return (int) (db_a->blockcnt - db_b->blockcnt);
|
|
}
|
|
|
|
|
|
/*
|
|
* Make sure the first entry in the directory is '.', and that the
|
|
* directory entry is sane.
|
|
*/
|
|
static int check_dot(e2fsck_t ctx,
|
|
struct ext2_dir_entry *dirent,
|
|
ext2_ino_t ino, struct problem_context *pctx)
|
|
{
|
|
struct ext2_dir_entry *nextdir;
|
|
int status = 0;
|
|
int created = 0;
|
|
int new_len;
|
|
int problem = 0;
|
|
|
|
if (!dirent->inode)
|
|
problem = PR_2_MISSING_DOT;
|
|
else if (((dirent->name_len & 0xFF) != 1) ||
|
|
(dirent->name[0] != '.'))
|
|
problem = PR_2_1ST_NOT_DOT;
|
|
else if (dirent->name[1] != '\0')
|
|
problem = PR_2_DOT_NULL_TERM;
|
|
|
|
if (problem) {
|
|
if (fix_problem(ctx, problem, pctx)) {
|
|
if (dirent->rec_len < 12)
|
|
dirent->rec_len = 12;
|
|
dirent->inode = ino;
|
|
dirent->name_len = 1;
|
|
dirent->name[0] = '.';
|
|
dirent->name[1] = '\0';
|
|
status = 1;
|
|
created = 1;
|
|
}
|
|
}
|
|
if (dirent->inode != ino) {
|
|
if (fix_problem(ctx, PR_2_BAD_INODE_DOT, pctx)) {
|
|
dirent->inode = ino;
|
|
status = 1;
|
|
}
|
|
}
|
|
if (dirent->rec_len > 12) {
|
|
new_len = dirent->rec_len - 12;
|
|
if (new_len > 12) {
|
|
if (created ||
|
|
fix_problem(ctx, PR_2_SPLIT_DOT, pctx)) {
|
|
nextdir = (struct ext2_dir_entry *)
|
|
((char *) dirent + 12);
|
|
dirent->rec_len = 12;
|
|
nextdir->rec_len = new_len;
|
|
nextdir->inode = 0;
|
|
nextdir->name_len = 0;
|
|
status = 1;
|
|
}
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Make sure the second entry in the directory is '..', and that the
|
|
* directory entry is sane. We do not check the inode number of '..'
|
|
* here; this gets done in pass 3.
|
|
*/
|
|
static int check_dotdot(e2fsck_t ctx,
|
|
struct ext2_dir_entry *dirent,
|
|
struct dir_info *dir, struct problem_context *pctx)
|
|
{
|
|
int problem = 0;
|
|
|
|
if (!dirent->inode)
|
|
problem = PR_2_MISSING_DOT_DOT;
|
|
else if (((dirent->name_len & 0xFF) != 2) ||
|
|
(dirent->name[0] != '.') ||
|
|
(dirent->name[1] != '.'))
|
|
problem = PR_2_2ND_NOT_DOT_DOT;
|
|
else if (dirent->name[2] != '\0')
|
|
problem = PR_2_DOT_DOT_NULL_TERM;
|
|
|
|
if (problem) {
|
|
if (fix_problem(ctx, problem, pctx)) {
|
|
if (dirent->rec_len < 12)
|
|
dirent->rec_len = 12;
|
|
/*
|
|
* Note: we don't have the parent inode just
|
|
* yet, so we will fill it in with the root
|
|
* inode. This will get fixed in pass 3.
|
|
*/
|
|
dirent->inode = EXT2_ROOT_INO;
|
|
dirent->name_len = 2;
|
|
dirent->name[0] = '.';
|
|
dirent->name[1] = '.';
|
|
dirent->name[2] = '\0';
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
dir->dotdot = dirent->inode;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check to make sure a directory entry doesn't contain any illegal
|
|
* characters.
|
|
*/
|
|
static int check_name(e2fsck_t ctx,
|
|
struct ext2_dir_entry *dirent,
|
|
struct problem_context *pctx)
|
|
{
|
|
int i;
|
|
int fixup = -1;
|
|
int ret = 0;
|
|
|
|
for ( i = 0; i < (dirent->name_len & 0xFF); i++) {
|
|
if (dirent->name[i] == '/' || dirent->name[i] == '\0') {
|
|
if (fixup < 0) {
|
|
fixup = fix_problem(ctx, PR_2_BAD_NAME, pctx);
|
|
}
|
|
if (fixup) {
|
|
dirent->name[i] = '.';
|
|
ret = 1;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check the directory filetype (if present)
|
|
*/
|
|
|
|
/*
|
|
* Given a mode, return the ext2 file type
|
|
*/
|
|
static int ext2_file_type(unsigned int mode)
|
|
{
|
|
if (LINUX_S_ISREG(mode))
|
|
return EXT2_FT_REG_FILE;
|
|
|
|
if (LINUX_S_ISDIR(mode))
|
|
return EXT2_FT_DIR;
|
|
|
|
if (LINUX_S_ISCHR(mode))
|
|
return EXT2_FT_CHRDEV;
|
|
|
|
if (LINUX_S_ISBLK(mode))
|
|
return EXT2_FT_BLKDEV;
|
|
|
|
if (LINUX_S_ISLNK(mode))
|
|
return EXT2_FT_SYMLINK;
|
|
|
|
if (LINUX_S_ISFIFO(mode))
|
|
return EXT2_FT_FIFO;
|
|
|
|
if (LINUX_S_ISSOCK(mode))
|
|
return EXT2_FT_SOCK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_filetype(e2fsck_t ctx,
|
|
struct ext2_dir_entry *dirent,
|
|
struct problem_context *pctx)
|
|
{
|
|
int filetype = dirent->name_len >> 8;
|
|
int should_be = EXT2_FT_UNKNOWN;
|
|
struct ext2_inode inode;
|
|
|
|
if (!(ctx->fs->super->s_feature_incompat &
|
|
EXT2_FEATURE_INCOMPAT_FILETYPE)) {
|
|
if (filetype == 0 ||
|
|
!fix_problem(ctx, PR_2_CLEAR_FILETYPE, pctx))
|
|
return 0;
|
|
dirent->name_len = dirent->name_len & 0xFF;
|
|
return 1;
|
|
}
|
|
|
|
if (ext2fs_test_inode_bitmap(ctx->inode_dir_map, dirent->inode)) {
|
|
should_be = EXT2_FT_DIR;
|
|
} else if (ext2fs_test_inode_bitmap(ctx->inode_reg_map,
|
|
dirent->inode)) {
|
|
should_be = EXT2_FT_REG_FILE;
|
|
} else if (ctx->inode_bad_map &&
|
|
ext2fs_test_inode_bitmap(ctx->inode_bad_map,
|
|
dirent->inode))
|
|
should_be = 0;
|
|
else {
|
|
e2fsck_read_inode(ctx, dirent->inode, &inode,
|
|
"check_filetype");
|
|
should_be = ext2_file_type(inode.i_mode);
|
|
}
|
|
if (filetype == should_be)
|
|
return 0;
|
|
pctx->num = should_be;
|
|
|
|
if (fix_problem(ctx, filetype ? PR_2_BAD_FILETYPE : PR_2_SET_FILETYPE,
|
|
pctx) == 0)
|
|
return 0;
|
|
|
|
dirent->name_len = (dirent->name_len & 0xFF) | should_be << 8;
|
|
return 1;
|
|
}
|
|
|
|
#ifdef ENABLE_HTREE
|
|
static void parse_int_node(ext2_filsys fs,
|
|
struct ext2_db_entry *db,
|
|
struct check_dir_struct *cd,
|
|
struct dx_dir_info *dx_dir,
|
|
char *block_buf)
|
|
{
|
|
struct ext2_dx_root_info *root;
|
|
struct ext2_dx_entry *ent;
|
|
struct ext2_dx_countlimit *limit;
|
|
struct dx_dirblock_info *dx_db;
|
|
int i, expect_limit, count;
|
|
blk_t blk;
|
|
ext2_dirhash_t min_hash = 0xffffffff;
|
|
ext2_dirhash_t max_hash = 0;
|
|
ext2_dirhash_t hash = 0, prev_hash;
|
|
|
|
if (db->blockcnt == 0) {
|
|
root = (struct ext2_dx_root_info *) (block_buf + 24);
|
|
ent = (struct ext2_dx_entry *) (block_buf + 24 + root->info_length);
|
|
} else {
|
|
ent = (struct ext2_dx_entry *) (block_buf+8);
|
|
}
|
|
limit = (struct ext2_dx_countlimit *) ent;
|
|
|
|
count = ext2fs_le16_to_cpu(limit->count);
|
|
expect_limit = (fs->blocksize - ((char *) ent - block_buf)) /
|
|
sizeof(struct ext2_dx_entry);
|
|
if (ext2fs_le16_to_cpu(limit->limit) != expect_limit) {
|
|
cd->pctx.num = ext2fs_le16_to_cpu(limit->limit);
|
|
if (fix_problem(cd->ctx, PR_2_HTREE_BAD_LIMIT, &cd->pctx))
|
|
goto clear_and_exit;
|
|
}
|
|
if (count > expect_limit) {
|
|
cd->pctx.num = count;
|
|
if (fix_problem(cd->ctx, PR_2_HTREE_BAD_COUNT, &cd->pctx))
|
|
goto clear_and_exit;
|
|
count = expect_limit;
|
|
}
|
|
|
|
for (i=0; i < count; i++) {
|
|
prev_hash = hash;
|
|
hash = i ? (ext2fs_le32_to_cpu(ent[i].hash) & ~1) : 0;
|
|
blk = ext2fs_le32_to_cpu(ent[i].block) & 0x0ffffff;
|
|
/* Check to make sure the block is valid */
|
|
if (blk > (blk_t) dx_dir->numblocks) {
|
|
cd->pctx.blk = blk;
|
|
if (fix_problem(cd->ctx, PR_2_HTREE_BADBLK,
|
|
&cd->pctx))
|
|
goto clear_and_exit;
|
|
}
|
|
if (hash < prev_hash &&
|
|
fix_problem(cd->ctx, PR_2_HTREE_HASH_ORDER, &cd->pctx))
|
|
goto clear_and_exit;
|
|
dx_db = &dx_dir->dx_block[blk];
|
|
if (dx_db->flags & DX_FLAG_REFERENCED) {
|
|
dx_db->flags |= DX_FLAG_DUP_REF;
|
|
} else {
|
|
dx_db->flags |= DX_FLAG_REFERENCED;
|
|
dx_db->parent = db->blockcnt;
|
|
}
|
|
if (hash < min_hash)
|
|
min_hash = hash;
|
|
if (hash > max_hash)
|
|
max_hash = hash;
|
|
dx_db->node_min_hash = hash;
|
|
if ((i+1) < count)
|
|
dx_db->node_max_hash =
|
|
ext2fs_le32_to_cpu(ent[i+1].hash) & ~1;
|
|
else {
|
|
dx_db->node_max_hash = 0xfffffffe;
|
|
dx_db->flags |= DX_FLAG_LAST;
|
|
}
|
|
if (i == 0)
|
|
dx_db->flags |= DX_FLAG_FIRST;
|
|
}
|
|
dx_db = &dx_dir->dx_block[db->blockcnt];
|
|
dx_db->min_hash = min_hash;
|
|
dx_db->max_hash = max_hash;
|
|
return;
|
|
|
|
clear_and_exit:
|
|
clear_htree(cd->ctx, cd->pctx.ino);
|
|
dx_dir->numblocks = 0;
|
|
}
|
|
#endif /* ENABLE_HTREE */
|
|
|
|
/*
|
|
* Given a busted directory, try to salvage it somehow.
|
|
*
|
|
*/
|
|
static void salvage_directory(ext2_filsys fs,
|
|
struct ext2_dir_entry *dirent,
|
|
struct ext2_dir_entry *prev,
|
|
unsigned int *offset)
|
|
{
|
|
char *cp = (char *) dirent;
|
|
int left = fs->blocksize - *offset - dirent->rec_len;
|
|
int name_len = dirent->name_len & 0xFF;
|
|
|
|
/*
|
|
* Special case of directory entry of size 8: copy what's left
|
|
* of the directory block up to cover up the invalid hole.
|
|
*/
|
|
if ((left >= 12) && (dirent->rec_len == 8)) {
|
|
memmove(cp, cp+8, left);
|
|
memset(cp + left, 0, 8);
|
|
return;
|
|
}
|
|
/*
|
|
* If the directory entry overruns the end of the directory
|
|
* block, and the name is small enough to fit, then adjust the
|
|
* record length.
|
|
*/
|
|
if ((left < 0) &&
|
|
(name_len + 8 <= dirent->rec_len + left) &&
|
|
dirent->inode <= fs->super->s_inodes_count &&
|
|
strnlen(dirent->name, name_len) == name_len) {
|
|
dirent->rec_len += left;
|
|
return;
|
|
}
|
|
/*
|
|
* If the directory entry is a multiple of four, so it is
|
|
* valid, let the previous directory entry absorb the invalid
|
|
* one.
|
|
*/
|
|
if (prev && dirent->rec_len && (dirent->rec_len % 4) == 0) {
|
|
prev->rec_len += dirent->rec_len;
|
|
*offset += dirent->rec_len;
|
|
return;
|
|
}
|
|
/*
|
|
* Default salvage method --- kill all of the directory
|
|
* entries for the rest of the block. We will either try to
|
|
* absorb it into the previous directory entry, or create a
|
|
* new empty directory entry the rest of the directory block.
|
|
*/
|
|
if (prev) {
|
|
prev->rec_len += fs->blocksize - *offset;
|
|
*offset = fs->blocksize;
|
|
} else {
|
|
dirent->rec_len = fs->blocksize - *offset;
|
|
dirent->name_len = 0;
|
|
dirent->inode = 0;
|
|
}
|
|
}
|
|
|
|
static int check_dir_block(ext2_filsys fs,
|
|
struct ext2_db_entry *db,
|
|
void *priv_data)
|
|
{
|
|
struct dir_info *subdir, *dir;
|
|
struct dx_dir_info *dx_dir;
|
|
#ifdef ENABLE_HTREE
|
|
struct dx_dirblock_info *dx_db = NULL;
|
|
#endif /* ENABLE_HTREE */
|
|
struct ext2_dir_entry *dirent, *prev;
|
|
ext2_dirhash_t hash;
|
|
unsigned int offset = 0;
|
|
int dir_modified = 0;
|
|
int dot_state;
|
|
blk_t block_nr = db->blk;
|
|
ext2_ino_t ino = db->ino;
|
|
__u16 links;
|
|
struct check_dir_struct *cd;
|
|
char *buf;
|
|
e2fsck_t ctx;
|
|
int problem;
|
|
struct ext2_dx_root_info *root;
|
|
struct ext2_dx_countlimit *limit;
|
|
static dict_t de_dict;
|
|
struct problem_context pctx;
|
|
int dups_found = 0;
|
|
|
|
cd = (struct check_dir_struct *) priv_data;
|
|
buf = cd->buf;
|
|
ctx = cd->ctx;
|
|
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return DIRENT_ABORT;
|
|
|
|
if (ctx->progress && (ctx->progress)(ctx, 2, cd->count++, cd->max))
|
|
return DIRENT_ABORT;
|
|
|
|
/*
|
|
* Make sure the inode is still in use (could have been
|
|
* deleted in the duplicate/bad blocks pass.
|
|
*/
|
|
if (!(ext2fs_test_inode_bitmap(ctx->inode_used_map, ino)))
|
|
return 0;
|
|
|
|
cd->pctx.ino = ino;
|
|
cd->pctx.blk = block_nr;
|
|
cd->pctx.blkcount = db->blockcnt;
|
|
cd->pctx.ino2 = 0;
|
|
cd->pctx.dirent = 0;
|
|
cd->pctx.num = 0;
|
|
|
|
if (db->blk == 0) {
|
|
if (allocate_dir_block(ctx, db, &cd->pctx))
|
|
return 0;
|
|
block_nr = db->blk;
|
|
}
|
|
|
|
if (db->blockcnt)
|
|
dot_state = 2;
|
|
else
|
|
dot_state = 0;
|
|
|
|
if (ctx->dirs_to_hash &&
|
|
ext2fs_u32_list_test(ctx->dirs_to_hash, ino))
|
|
dups_found++;
|
|
|
|
cd->pctx.errcode = ext2fs_read_dir_block(fs, block_nr, buf);
|
|
if (cd->pctx.errcode == EXT2_ET_DIR_CORRUPTED)
|
|
cd->pctx.errcode = 0; /* We'll handle this ourselves */
|
|
if (cd->pctx.errcode) {
|
|
if (!fix_problem(ctx, PR_2_READ_DIRBLOCK, &cd->pctx)) {
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return DIRENT_ABORT;
|
|
}
|
|
memset(buf, 0, fs->blocksize);
|
|
}
|
|
#ifdef ENABLE_HTREE
|
|
dx_dir = e2fsck_get_dx_dir_info(ctx, ino);
|
|
if (dx_dir && dx_dir->numblocks) {
|
|
if (db->blockcnt >= dx_dir->numblocks) {
|
|
printf("XXX should never happen!!!\n");
|
|
abort();
|
|
}
|
|
dx_db = &dx_dir->dx_block[db->blockcnt];
|
|
dx_db->type = DX_DIRBLOCK_LEAF;
|
|
dx_db->phys = block_nr;
|
|
dx_db->min_hash = ~0;
|
|
dx_db->max_hash = 0;
|
|
|
|
dirent = (struct ext2_dir_entry *) buf;
|
|
limit = (struct ext2_dx_countlimit *) (buf+8);
|
|
if (db->blockcnt == 0) {
|
|
root = (struct ext2_dx_root_info *) (buf + 24);
|
|
dx_db->type = DX_DIRBLOCK_ROOT;
|
|
dx_db->flags |= DX_FLAG_FIRST | DX_FLAG_LAST;
|
|
if ((root->reserved_zero ||
|
|
root->info_length < 8 ||
|
|
root->indirect_levels > 1) &&
|
|
fix_problem(ctx, PR_2_HTREE_BAD_ROOT, &cd->pctx)) {
|
|
clear_htree(ctx, ino);
|
|
dx_dir->numblocks = 0;
|
|
dx_db = 0;
|
|
}
|
|
dx_dir->hashversion = root->hash_version;
|
|
dx_dir->depth = root->indirect_levels + 1;
|
|
} else if ((dirent->inode == 0) &&
|
|
(dirent->rec_len == fs->blocksize) &&
|
|
(dirent->name_len == 0) &&
|
|
(ext2fs_le16_to_cpu(limit->limit) ==
|
|
((fs->blocksize-8) /
|
|
sizeof(struct ext2_dx_entry))))
|
|
dx_db->type = DX_DIRBLOCK_NODE;
|
|
}
|
|
#endif /* ENABLE_HTREE */
|
|
|
|
dict_init(&de_dict, DICTCOUNT_T_MAX, dict_de_cmp);
|
|
prev = 0;
|
|
do {
|
|
problem = 0;
|
|
dirent = (struct ext2_dir_entry *) (buf + offset);
|
|
cd->pctx.dirent = dirent;
|
|
cd->pctx.num = offset;
|
|
if (((offset + dirent->rec_len) > fs->blocksize) ||
|
|
(dirent->rec_len < 12) ||
|
|
((dirent->rec_len % 4) != 0) ||
|
|
(((dirent->name_len & 0xFF)+8) > dirent->rec_len)) {
|
|
if (fix_problem(ctx, PR_2_DIR_CORRUPTED, &cd->pctx)) {
|
|
salvage_directory(fs, dirent, prev, &offset);
|
|
dir_modified++;
|
|
continue;
|
|
} else
|
|
goto abort_free_dict;
|
|
}
|
|
if ((dirent->name_len & 0xFF) > EXT2_NAME_LEN) {
|
|
if (fix_problem(ctx, PR_2_FILENAME_LONG, &cd->pctx)) {
|
|
dirent->name_len = EXT2_NAME_LEN;
|
|
dir_modified++;
|
|
}
|
|
}
|
|
|
|
if (dot_state == 0) {
|
|
if (check_dot(ctx, dirent, ino, &cd->pctx))
|
|
dir_modified++;
|
|
} else if (dot_state == 1) {
|
|
dir = e2fsck_get_dir_info(ctx, ino);
|
|
if (!dir) {
|
|
fix_problem(ctx, PR_2_NO_DIRINFO, &cd->pctx);
|
|
goto abort_free_dict;
|
|
}
|
|
if (check_dotdot(ctx, dirent, dir, &cd->pctx))
|
|
dir_modified++;
|
|
} else if (dirent->inode == ino) {
|
|
problem = PR_2_LINK_DOT;
|
|
if (fix_problem(ctx, PR_2_LINK_DOT, &cd->pctx)) {
|
|
dirent->inode = 0;
|
|
dir_modified++;
|
|
goto next;
|
|
}
|
|
}
|
|
if (!dirent->inode)
|
|
goto next;
|
|
|
|
/*
|
|
* Make sure the inode listed is a legal one.
|
|
*/
|
|
if (((dirent->inode != EXT2_ROOT_INO) &&
|
|
(dirent->inode < EXT2_FIRST_INODE(fs->super))) ||
|
|
(dirent->inode > fs->super->s_inodes_count)) {
|
|
problem = PR_2_BAD_INO;
|
|
} else if (!(ext2fs_test_inode_bitmap(ctx->inode_used_map,
|
|
dirent->inode))) {
|
|
/*
|
|
* If the inode is unused, offer to clear it.
|
|
*/
|
|
problem = PR_2_UNUSED_INODE;
|
|
} else if ((dot_state > 1) &&
|
|
((dirent->name_len & 0xFF) == 1) &&
|
|
(dirent->name[0] == '.')) {
|
|
/*
|
|
* If there's a '.' entry in anything other
|
|
* than the first directory entry, it's a
|
|
* duplicate entry that should be removed.
|
|
*/
|
|
problem = PR_2_DUP_DOT;
|
|
} else if ((dot_state > 1) &&
|
|
((dirent->name_len & 0xFF) == 2) &&
|
|
(dirent->name[0] == '.') &&
|
|
(dirent->name[1] == '.')) {
|
|
/*
|
|
* If there's a '..' entry in anything other
|
|
* than the second directory entry, it's a
|
|
* duplicate entry that should be removed.
|
|
*/
|
|
problem = PR_2_DUP_DOT_DOT;
|
|
} else if ((dot_state > 1) &&
|
|
(dirent->inode == EXT2_ROOT_INO)) {
|
|
/*
|
|
* Don't allow links to the root directory.
|
|
* We check this specially to make sure we
|
|
* catch this error case even if the root
|
|
* directory hasn't been created yet.
|
|
*/
|
|
problem = PR_2_LINK_ROOT;
|
|
} else if ((dot_state > 1) &&
|
|
(dirent->name_len & 0xFF) == 0) {
|
|
/*
|
|
* Don't allow zero-length directory names.
|
|
*/
|
|
problem = PR_2_NULL_NAME;
|
|
}
|
|
|
|
if (problem) {
|
|
if (fix_problem(ctx, problem, &cd->pctx)) {
|
|
dirent->inode = 0;
|
|
dir_modified++;
|
|
goto next;
|
|
} else {
|
|
ext2fs_unmark_valid(fs);
|
|
if (problem == PR_2_BAD_INO)
|
|
goto next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the inode was marked as having bad fields in
|
|
* pass1, process it and offer to fix/clear it.
|
|
* (We wait until now so that we can display the
|
|
* pathname to the user.)
|
|
*/
|
|
if (ctx->inode_bad_map &&
|
|
ext2fs_test_inode_bitmap(ctx->inode_bad_map,
|
|
dirent->inode)) {
|
|
if (e2fsck_process_bad_inode(ctx, ino,
|
|
dirent->inode,
|
|
buf + fs->blocksize)) {
|
|
dirent->inode = 0;
|
|
dir_modified++;
|
|
goto next;
|
|
}
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return DIRENT_ABORT;
|
|
}
|
|
|
|
if (check_name(ctx, dirent, &cd->pctx))
|
|
dir_modified++;
|
|
|
|
if (check_filetype(ctx, dirent, &cd->pctx))
|
|
dir_modified++;
|
|
|
|
#ifdef ENABLE_HTREE
|
|
if (dx_db) {
|
|
ext2fs_dirhash(dx_dir->hashversion, dirent->name,
|
|
(dirent->name_len & 0xFF),
|
|
fs->super->s_hash_seed, &hash, 0);
|
|
if (hash < dx_db->min_hash)
|
|
dx_db->min_hash = hash;
|
|
if (hash > dx_db->max_hash)
|
|
dx_db->max_hash = hash;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If this is a directory, then mark its parent in its
|
|
* dir_info structure. If the parent field is already
|
|
* filled in, then this directory has more than one
|
|
* hard link. We assume the first link is correct,
|
|
* and ask the user if he/she wants to clear this one.
|
|
*/
|
|
if ((dot_state > 1) &&
|
|
(ext2fs_test_inode_bitmap(ctx->inode_dir_map,
|
|
dirent->inode))) {
|
|
subdir = e2fsck_get_dir_info(ctx, dirent->inode);
|
|
if (!subdir) {
|
|
cd->pctx.ino = dirent->inode;
|
|
fix_problem(ctx, PR_2_NO_DIRINFO, &cd->pctx);
|
|
goto abort_free_dict;
|
|
}
|
|
if (subdir->parent) {
|
|
cd->pctx.ino2 = subdir->parent;
|
|
if (fix_problem(ctx, PR_2_LINK_DIR,
|
|
&cd->pctx)) {
|
|
dirent->inode = 0;
|
|
dir_modified++;
|
|
goto next;
|
|
}
|
|
cd->pctx.ino2 = 0;
|
|
} else
|
|
subdir->parent = ino;
|
|
}
|
|
|
|
if (dups_found) {
|
|
;
|
|
} else if (dict_lookup(&de_dict, dirent)) {
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = ino;
|
|
pctx.dirent = dirent;
|
|
fix_problem(ctx, PR_2_REPORT_DUP_DIRENT, &pctx);
|
|
if (!ctx->dirs_to_hash)
|
|
ext2fs_u32_list_create(&ctx->dirs_to_hash, 50);
|
|
if (ctx->dirs_to_hash)
|
|
ext2fs_u32_list_add(ctx->dirs_to_hash, ino);
|
|
dups_found++;
|
|
} else
|
|
dict_alloc_insert(&de_dict, dirent, dirent);
|
|
|
|
ext2fs_icount_increment(ctx->inode_count, dirent->inode,
|
|
&links);
|
|
if (links > 1)
|
|
ctx->fs_links_count++;
|
|
ctx->fs_total_count++;
|
|
next:
|
|
prev = dirent;
|
|
offset += dirent->rec_len;
|
|
dot_state++;
|
|
} while (offset < fs->blocksize);
|
|
#ifdef ENABLE_HTREE
|
|
if (dx_db) {
|
|
cd->pctx.dir = cd->pctx.ino;
|
|
if ((dx_db->type == DX_DIRBLOCK_ROOT) ||
|
|
(dx_db->type == DX_DIRBLOCK_NODE))
|
|
parse_int_node(fs, db, cd, dx_dir, buf);
|
|
}
|
|
#endif /* ENABLE_HTREE */
|
|
if (offset != fs->blocksize) {
|
|
cd->pctx.num = dirent->rec_len - fs->blocksize + offset;
|
|
if (fix_problem(ctx, PR_2_FINAL_RECLEN, &cd->pctx)) {
|
|
dirent->rec_len = cd->pctx.num;
|
|
dir_modified++;
|
|
}
|
|
}
|
|
if (dir_modified) {
|
|
cd->pctx.errcode = ext2fs_write_dir_block(fs, block_nr, buf);
|
|
if (cd->pctx.errcode) {
|
|
if (!fix_problem(ctx, PR_2_WRITE_DIRBLOCK,
|
|
&cd->pctx))
|
|
goto abort_free_dict;
|
|
}
|
|
ext2fs_mark_changed(fs);
|
|
}
|
|
dict_free_nodes(&de_dict);
|
|
return 0;
|
|
abort_free_dict:
|
|
dict_free_nodes(&de_dict);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return DIRENT_ABORT;
|
|
}
|
|
|
|
/*
|
|
* This function is called to deallocate a block, and is an interator
|
|
* functioned called by deallocate inode via ext2fs_iterate_block().
|
|
*/
|
|
static int deallocate_inode_block(ext2_filsys fs, blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt FSCK_ATTR((unused)),
|
|
blk_t ref_block FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
e2fsck_t ctx = (e2fsck_t) priv_data;
|
|
|
|
if (HOLE_BLKADDR(*block_nr))
|
|
return 0;
|
|
if ((*block_nr < fs->super->s_first_data_block) ||
|
|
(*block_nr >= fs->super->s_blocks_count))
|
|
return 0;
|
|
ext2fs_unmark_block_bitmap(ctx->block_found_map, *block_nr);
|
|
ext2fs_block_alloc_stats(fs, *block_nr, -1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This fuction deallocates an inode
|
|
*/
|
|
static void deallocate_inode(e2fsck_t ctx, ext2_ino_t ino, char* block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct ext2_inode inode;
|
|
struct problem_context pctx;
|
|
__u32 count;
|
|
|
|
ext2fs_icount_store(ctx->inode_link_info, ino, 0);
|
|
e2fsck_read_inode(ctx, ino, &inode, "deallocate_inode");
|
|
inode.i_links_count = 0;
|
|
inode.i_dtime = time(NULL);
|
|
e2fsck_write_inode(ctx, ino, &inode, "deallocate_inode");
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = ino;
|
|
|
|
/*
|
|
* Fix up the bitmaps...
|
|
*/
|
|
e2fsck_read_bitmaps(ctx);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_used_map, ino);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_dir_map, ino);
|
|
if (ctx->inode_bad_map)
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_bad_map, ino);
|
|
ext2fs_inode_alloc_stats2(fs, ino, -1, LINUX_S_ISDIR(inode.i_mode));
|
|
|
|
if (inode.i_file_acl &&
|
|
(fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_EXT_ATTR)) {
|
|
pctx.errcode = ext2fs_adjust_ea_refcount(fs, inode.i_file_acl,
|
|
block_buf, -1, &count);
|
|
if (pctx.errcode == EXT2_ET_BAD_EA_BLOCK_NUM) {
|
|
pctx.errcode = 0;
|
|
count = 1;
|
|
}
|
|
if (pctx.errcode) {
|
|
pctx.blk = inode.i_file_acl;
|
|
fix_problem(ctx, PR_2_ADJ_EA_REFCOUNT, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
if (count == 0) {
|
|
ext2fs_unmark_block_bitmap(ctx->block_found_map,
|
|
inode.i_file_acl);
|
|
ext2fs_block_alloc_stats(fs, inode.i_file_acl, -1);
|
|
}
|
|
inode.i_file_acl = 0;
|
|
}
|
|
|
|
if (!ext2fs_inode_has_valid_blocks(&inode))
|
|
return;
|
|
|
|
if (LINUX_S_ISREG(inode.i_mode) &&
|
|
(inode.i_size_high || inode.i_size & 0x80000000UL))
|
|
ctx->large_files--;
|
|
|
|
pctx.errcode = ext2fs_block_iterate2(fs, ino, 0, block_buf,
|
|
deallocate_inode_block, ctx);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_2_DEALLOC_INODE, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This fuction clears the htree flag on an inode
|
|
*/
|
|
static void clear_htree(e2fsck_t ctx, ext2_ino_t ino)
|
|
{
|
|
struct ext2_inode inode;
|
|
|
|
e2fsck_read_inode(ctx, ino, &inode, "clear_htree");
|
|
inode.i_flags = inode.i_flags & ~EXT2_INDEX_FL;
|
|
e2fsck_write_inode(ctx, ino, &inode, "clear_htree");
|
|
if (ctx->dirs_to_hash)
|
|
ext2fs_u32_list_add(ctx->dirs_to_hash, ino);
|
|
}
|
|
|
|
|
|
static int e2fsck_process_bad_inode(e2fsck_t ctx, ext2_ino_t dir,
|
|
ext2_ino_t ino, char *buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct ext2_inode inode;
|
|
int inode_modified = 0;
|
|
int not_fixed = 0;
|
|
unsigned char *frag, *fsize;
|
|
struct problem_context pctx;
|
|
int problem = 0;
|
|
|
|
e2fsck_read_inode(ctx, ino, &inode, "process_bad_inode");
|
|
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = ino;
|
|
pctx.dir = dir;
|
|
pctx.inode = &inode;
|
|
|
|
if (inode.i_file_acl &&
|
|
!(fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_EXT_ATTR) &&
|
|
fix_problem(ctx, PR_2_FILE_ACL_ZERO, &pctx)) {
|
|
inode.i_file_acl = 0;
|
|
#if BB_BIG_ENDIAN
|
|
/*
|
|
* This is a special kludge to deal with long symlinks
|
|
* on big endian systems. i_blocks had already been
|
|
* decremented earlier in pass 1, but since i_file_acl
|
|
* hadn't yet been cleared, ext2fs_read_inode()
|
|
* assumed that the file was short symlink and would
|
|
* not have byte swapped i_block[0]. Hence, we have
|
|
* to byte-swap it here.
|
|
*/
|
|
if (LINUX_S_ISLNK(inode.i_mode) &&
|
|
(fs->flags & EXT2_FLAG_SWAP_BYTES) &&
|
|
(inode.i_blocks == fs->blocksize >> 9))
|
|
inode.i_block[0] = ext2fs_swab32(inode.i_block[0]);
|
|
#endif
|
|
inode_modified++;
|
|
} else
|
|
not_fixed++;
|
|
|
|
if (!LINUX_S_ISDIR(inode.i_mode) && !LINUX_S_ISREG(inode.i_mode) &&
|
|
!LINUX_S_ISCHR(inode.i_mode) && !LINUX_S_ISBLK(inode.i_mode) &&
|
|
!LINUX_S_ISLNK(inode.i_mode) && !LINUX_S_ISFIFO(inode.i_mode) &&
|
|
!(LINUX_S_ISSOCK(inode.i_mode)))
|
|
problem = PR_2_BAD_MODE;
|
|
else if (LINUX_S_ISCHR(inode.i_mode)
|
|
&& !e2fsck_pass1_check_device_inode(fs, &inode))
|
|
problem = PR_2_BAD_CHAR_DEV;
|
|
else if (LINUX_S_ISBLK(inode.i_mode)
|
|
&& !e2fsck_pass1_check_device_inode(fs, &inode))
|
|
problem = PR_2_BAD_BLOCK_DEV;
|
|
else if (LINUX_S_ISFIFO(inode.i_mode)
|
|
&& !e2fsck_pass1_check_device_inode(fs, &inode))
|
|
problem = PR_2_BAD_FIFO;
|
|
else if (LINUX_S_ISSOCK(inode.i_mode)
|
|
&& !e2fsck_pass1_check_device_inode(fs, &inode))
|
|
problem = PR_2_BAD_SOCKET;
|
|
else if (LINUX_S_ISLNK(inode.i_mode)
|
|
&& !e2fsck_pass1_check_symlink(fs, &inode, buf)) {
|
|
problem = PR_2_INVALID_SYMLINK;
|
|
}
|
|
|
|
if (problem) {
|
|
if (fix_problem(ctx, problem, &pctx)) {
|
|
deallocate_inode(ctx, ino, 0);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return 0;
|
|
return 1;
|
|
} else
|
|
not_fixed++;
|
|
problem = 0;
|
|
}
|
|
|
|
if (inode.i_faddr) {
|
|
if (fix_problem(ctx, PR_2_FADDR_ZERO, &pctx)) {
|
|
inode.i_faddr = 0;
|
|
inode_modified++;
|
|
} else
|
|
not_fixed++;
|
|
}
|
|
|
|
switch (fs->super->s_creator_os) {
|
|
case EXT2_OS_LINUX:
|
|
frag = &inode.osd2.linux2.l_i_frag;
|
|
fsize = &inode.osd2.linux2.l_i_fsize;
|
|
break;
|
|
case EXT2_OS_HURD:
|
|
frag = &inode.osd2.hurd2.h_i_frag;
|
|
fsize = &inode.osd2.hurd2.h_i_fsize;
|
|
break;
|
|
case EXT2_OS_MASIX:
|
|
frag = &inode.osd2.masix2.m_i_frag;
|
|
fsize = &inode.osd2.masix2.m_i_fsize;
|
|
break;
|
|
default:
|
|
frag = fsize = 0;
|
|
}
|
|
if (frag && *frag) {
|
|
pctx.num = *frag;
|
|
if (fix_problem(ctx, PR_2_FRAG_ZERO, &pctx)) {
|
|
*frag = 0;
|
|
inode_modified++;
|
|
} else
|
|
not_fixed++;
|
|
pctx.num = 0;
|
|
}
|
|
if (fsize && *fsize) {
|
|
pctx.num = *fsize;
|
|
if (fix_problem(ctx, PR_2_FSIZE_ZERO, &pctx)) {
|
|
*fsize = 0;
|
|
inode_modified++;
|
|
} else
|
|
not_fixed++;
|
|
pctx.num = 0;
|
|
}
|
|
|
|
if (inode.i_file_acl &&
|
|
((inode.i_file_acl < fs->super->s_first_data_block) ||
|
|
(inode.i_file_acl >= fs->super->s_blocks_count))) {
|
|
if (fix_problem(ctx, PR_2_FILE_ACL_BAD, &pctx)) {
|
|
inode.i_file_acl = 0;
|
|
inode_modified++;
|
|
} else
|
|
not_fixed++;
|
|
}
|
|
if (inode.i_dir_acl &&
|
|
LINUX_S_ISDIR(inode.i_mode)) {
|
|
if (fix_problem(ctx, PR_2_DIR_ACL_ZERO, &pctx)) {
|
|
inode.i_dir_acl = 0;
|
|
inode_modified++;
|
|
} else
|
|
not_fixed++;
|
|
}
|
|
|
|
if (inode_modified)
|
|
e2fsck_write_inode(ctx, ino, &inode, "process_bad_inode");
|
|
if (!not_fixed)
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_bad_map, ino);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* allocate_dir_block --- this function allocates a new directory
|
|
* block for a particular inode; this is done if a directory has
|
|
* a "hole" in it, or if a directory has a illegal block number
|
|
* that was zeroed out and now needs to be replaced.
|
|
*/
|
|
static int allocate_dir_block(e2fsck_t ctx, struct ext2_db_entry *db,
|
|
struct problem_context *pctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
blk_t blk;
|
|
char *block;
|
|
struct ext2_inode inode;
|
|
|
|
if (fix_problem(ctx, PR_2_DIRECTORY_HOLE, pctx) == 0)
|
|
return 1;
|
|
|
|
/*
|
|
* Read the inode and block bitmaps in; we'll be messing with
|
|
* them.
|
|
*/
|
|
e2fsck_read_bitmaps(ctx);
|
|
|
|
/*
|
|
* First, find a free block
|
|
*/
|
|
pctx->errcode = ext2fs_new_block(fs, 0, ctx->block_found_map, &blk);
|
|
if (pctx->errcode) {
|
|
pctx->str = "ext2fs_new_block";
|
|
fix_problem(ctx, PR_2_ALLOC_DIRBOCK, pctx);
|
|
return 1;
|
|
}
|
|
ext2fs_mark_block_bitmap(ctx->block_found_map, blk);
|
|
ext2fs_mark_block_bitmap(fs->block_map, blk);
|
|
ext2fs_mark_bb_dirty(fs);
|
|
|
|
/*
|
|
* Now let's create the actual data block for the inode
|
|
*/
|
|
if (db->blockcnt)
|
|
pctx->errcode = ext2fs_new_dir_block(fs, 0, 0, &block);
|
|
else
|
|
pctx->errcode = ext2fs_new_dir_block(fs, db->ino,
|
|
EXT2_ROOT_INO, &block);
|
|
|
|
if (pctx->errcode) {
|
|
pctx->str = "ext2fs_new_dir_block";
|
|
fix_problem(ctx, PR_2_ALLOC_DIRBOCK, pctx);
|
|
return 1;
|
|
}
|
|
|
|
pctx->errcode = ext2fs_write_dir_block(fs, blk, block);
|
|
ext2fs_free_mem(&block);
|
|
if (pctx->errcode) {
|
|
pctx->str = "ext2fs_write_dir_block";
|
|
fix_problem(ctx, PR_2_ALLOC_DIRBOCK, pctx);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Update the inode block count
|
|
*/
|
|
e2fsck_read_inode(ctx, db->ino, &inode, "allocate_dir_block");
|
|
inode.i_blocks += fs->blocksize / 512;
|
|
if (inode.i_size < (db->blockcnt+1) * fs->blocksize)
|
|
inode.i_size = (db->blockcnt+1) * fs->blocksize;
|
|
e2fsck_write_inode(ctx, db->ino, &inode, "allocate_dir_block");
|
|
|
|
/*
|
|
* Finally, update the block pointers for the inode
|
|
*/
|
|
db->blk = blk;
|
|
pctx->errcode = ext2fs_block_iterate2(fs, db->ino, BLOCK_FLAG_HOLE,
|
|
0, update_dir_block, db);
|
|
if (pctx->errcode) {
|
|
pctx->str = "ext2fs_block_iterate";
|
|
fix_problem(ctx, PR_2_ALLOC_DIRBOCK, pctx);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is a helper function for allocate_dir_block().
|
|
*/
|
|
static int update_dir_block(ext2_filsys fs FSCK_ATTR((unused)),
|
|
blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk_t ref_block FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct ext2_db_entry *db;
|
|
|
|
db = (struct ext2_db_entry *) priv_data;
|
|
if (db->blockcnt == (int) blockcnt) {
|
|
*block_nr = db->blk;
|
|
return BLOCK_CHANGED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pass3.c -- pass #3 of e2fsck: Check for directory connectivity
|
|
*
|
|
* Pass #3 assures that all directories are connected to the
|
|
* filesystem tree, using the following algorithm:
|
|
*
|
|
* First, the root directory is checked to make sure it exists; if
|
|
* not, e2fsck will offer to create a new one. It is then marked as
|
|
* "done".
|
|
*
|
|
* Then, pass3 interates over all directory inodes; for each directory
|
|
* it attempts to trace up the filesystem tree, using dirinfo.parent
|
|
* until it reaches a directory which has been marked "done". If it
|
|
* cannot do so, then the directory must be disconnected, and e2fsck
|
|
* will offer to reconnect it to /lost+found. While it is chasing
|
|
* parent pointers up the filesystem tree, if pass3 sees a directory
|
|
* twice, then it has detected a filesystem loop, and it will again
|
|
* offer to reconnect the directory to /lost+found in to break the
|
|
* filesystem loop.
|
|
*
|
|
* Pass 3 also contains the subroutine, e2fsck_reconnect_file() to
|
|
* reconnect inodes to /lost+found; this subroutine is also used by
|
|
* pass 4. e2fsck_reconnect_file() calls get_lost_and_found(), which
|
|
* is responsible for creating /lost+found if it does not exist.
|
|
*
|
|
* Pass 3 frees the following data structures:
|
|
* - The dirinfo directory information cache.
|
|
*/
|
|
|
|
static void check_root(e2fsck_t ctx);
|
|
static int check_directory(e2fsck_t ctx, struct dir_info *dir,
|
|
struct problem_context *pctx);
|
|
static void fix_dotdot(e2fsck_t ctx, struct dir_info *dir, ext2_ino_t parent);
|
|
|
|
static ext2fs_inode_bitmap inode_loop_detect;
|
|
static ext2fs_inode_bitmap inode_done_map;
|
|
|
|
static void e2fsck_pass3(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
int i;
|
|
struct problem_context pctx;
|
|
struct dir_info *dir;
|
|
unsigned long maxdirs, count;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
/* Pass 3 */
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_3_PASS_HEADER, &pctx);
|
|
|
|
/*
|
|
* Allocate some bitmaps to do loop detection.
|
|
*/
|
|
pctx.errcode = ext2fs_allocate_inode_bitmap(fs, _("inode done bitmap"),
|
|
&inode_done_map);
|
|
if (pctx.errcode) {
|
|
pctx.num = 2;
|
|
fix_problem(ctx, PR_3_ALLOCATE_IBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
goto abort_exit;
|
|
}
|
|
check_root(ctx);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
goto abort_exit;
|
|
|
|
ext2fs_mark_inode_bitmap(inode_done_map, EXT2_ROOT_INO);
|
|
|
|
maxdirs = e2fsck_get_num_dirinfo(ctx);
|
|
count = 1;
|
|
|
|
if (ctx->progress)
|
|
if ((ctx->progress)(ctx, 3, 0, maxdirs))
|
|
goto abort_exit;
|
|
|
|
for (i=0; (dir = e2fsck_dir_info_iter(ctx, &i)) != 0;) {
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
goto abort_exit;
|
|
if (ctx->progress && (ctx->progress)(ctx, 3, count++, maxdirs))
|
|
goto abort_exit;
|
|
if (ext2fs_test_inode_bitmap(ctx->inode_dir_map, dir->ino))
|
|
if (check_directory(ctx, dir, &pctx))
|
|
goto abort_exit;
|
|
}
|
|
|
|
/*
|
|
* Force the creation of /lost+found if not present
|
|
*/
|
|
if ((ctx->flags & E2F_OPT_READONLY) == 0)
|
|
e2fsck_get_lost_and_found(ctx, 1);
|
|
|
|
/*
|
|
* If there are any directories that need to be indexed or
|
|
* optimized, do it here.
|
|
*/
|
|
e2fsck_rehash_directories(ctx);
|
|
|
|
abort_exit:
|
|
e2fsck_free_dir_info(ctx);
|
|
ext2fs_free_inode_bitmap(inode_loop_detect);
|
|
inode_loop_detect = 0;
|
|
ext2fs_free_inode_bitmap(inode_done_map);
|
|
inode_done_map = 0;
|
|
}
|
|
|
|
/*
|
|
* This makes sure the root inode is present; if not, we ask if the
|
|
* user wants us to create it. Not creating it is a fatal error.
|
|
*/
|
|
static void check_root(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
blk_t blk;
|
|
struct ext2_inode inode;
|
|
char * block;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (ext2fs_test_inode_bitmap(ctx->inode_used_map, EXT2_ROOT_INO)) {
|
|
/*
|
|
* If the root inode is not a directory, die here. The
|
|
* user must have answered 'no' in pass1 when we
|
|
* offered to clear it.
|
|
*/
|
|
if (!(ext2fs_test_inode_bitmap(ctx->inode_dir_map,
|
|
EXT2_ROOT_INO))) {
|
|
fix_problem(ctx, PR_3_ROOT_NOT_DIR_ABORT, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!fix_problem(ctx, PR_3_NO_ROOT_INODE, &pctx)) {
|
|
fix_problem(ctx, PR_3_NO_ROOT_INODE_ABORT, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
e2fsck_read_bitmaps(ctx);
|
|
|
|
/*
|
|
* First, find a free block
|
|
*/
|
|
pctx.errcode = ext2fs_new_block(fs, 0, ctx->block_found_map, &blk);
|
|
if (pctx.errcode) {
|
|
pctx.str = "ext2fs_new_block";
|
|
fix_problem(ctx, PR_3_CREATE_ROOT_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
ext2fs_mark_block_bitmap(ctx->block_found_map, blk);
|
|
ext2fs_mark_block_bitmap(fs->block_map, blk);
|
|
ext2fs_mark_bb_dirty(fs);
|
|
|
|
/*
|
|
* Now let's create the actual data block for the inode
|
|
*/
|
|
pctx.errcode = ext2fs_new_dir_block(fs, EXT2_ROOT_INO, EXT2_ROOT_INO,
|
|
&block);
|
|
if (pctx.errcode) {
|
|
pctx.str = "ext2fs_new_dir_block";
|
|
fix_problem(ctx, PR_3_CREATE_ROOT_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
pctx.errcode = ext2fs_write_dir_block(fs, blk, block);
|
|
if (pctx.errcode) {
|
|
pctx.str = "ext2fs_write_dir_block";
|
|
fix_problem(ctx, PR_3_CREATE_ROOT_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
ext2fs_free_mem(&block);
|
|
|
|
/*
|
|
* Set up the inode structure
|
|
*/
|
|
memset(&inode, 0, sizeof(inode));
|
|
inode.i_mode = 040755;
|
|
inode.i_size = fs->blocksize;
|
|
inode.i_atime = inode.i_ctime = inode.i_mtime = time(NULL);
|
|
inode.i_links_count = 2;
|
|
inode.i_blocks = fs->blocksize / 512;
|
|
inode.i_block[0] = blk;
|
|
|
|
/*
|
|
* Write out the inode.
|
|
*/
|
|
pctx.errcode = ext2fs_write_new_inode(fs, EXT2_ROOT_INO, &inode);
|
|
if (pctx.errcode) {
|
|
pctx.str = "ext2fs_write_inode";
|
|
fix_problem(ctx, PR_3_CREATE_ROOT_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous bookkeeping...
|
|
*/
|
|
e2fsck_add_dir_info(ctx, EXT2_ROOT_INO, EXT2_ROOT_INO);
|
|
ext2fs_icount_store(ctx->inode_count, EXT2_ROOT_INO, 2);
|
|
ext2fs_icount_store(ctx->inode_link_info, EXT2_ROOT_INO, 2);
|
|
|
|
ext2fs_mark_inode_bitmap(ctx->inode_used_map, EXT2_ROOT_INO);
|
|
ext2fs_mark_inode_bitmap(ctx->inode_dir_map, EXT2_ROOT_INO);
|
|
ext2fs_mark_inode_bitmap(fs->inode_map, EXT2_ROOT_INO);
|
|
ext2fs_mark_ib_dirty(fs);
|
|
}
|
|
|
|
/*
|
|
* This subroutine is responsible for making sure that a particular
|
|
* directory is connected to the root; if it isn't we trace it up as
|
|
* far as we can go, and then offer to connect the resulting parent to
|
|
* the lost+found. We have to do loop detection; if we ever discover
|
|
* a loop, we treat that as a disconnected directory and offer to
|
|
* reparent it to lost+found.
|
|
*
|
|
* However, loop detection is expensive, because for very large
|
|
* filesystems, the inode_loop_detect bitmap is huge, and clearing it
|
|
* is non-trivial. Loops in filesystems are also a rare error case,
|
|
* and we shouldn't optimize for error cases. So we try two passes of
|
|
* the algorithm. The first time, we ignore loop detection and merely
|
|
* increment a counter; if the counter exceeds some extreme threshold,
|
|
* then we try again with the loop detection bitmap enabled.
|
|
*/
|
|
static int check_directory(e2fsck_t ctx, struct dir_info *dir,
|
|
struct problem_context *pctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct dir_info *p = dir;
|
|
int loop_pass = 0, parent_count = 0;
|
|
|
|
if (!p)
|
|
return 0;
|
|
|
|
while (1) {
|
|
/*
|
|
* Mark this inode as being "done"; by the time we
|
|
* return from this function, the inode we either be
|
|
* verified as being connected to the directory tree,
|
|
* or we will have offered to reconnect this to
|
|
* lost+found.
|
|
*
|
|
* If it was marked done already, then we've reached a
|
|
* parent we've already checked.
|
|
*/
|
|
if (ext2fs_mark_inode_bitmap(inode_done_map, p->ino))
|
|
break;
|
|
|
|
/*
|
|
* If this directory doesn't have a parent, or we've
|
|
* seen the parent once already, then offer to
|
|
* reparent it to lost+found
|
|
*/
|
|
if (!p->parent ||
|
|
(loop_pass &&
|
|
(ext2fs_test_inode_bitmap(inode_loop_detect,
|
|
p->parent)))) {
|
|
pctx->ino = p->ino;
|
|
if (fix_problem(ctx, PR_3_UNCONNECTED_DIR, pctx)) {
|
|
if (e2fsck_reconnect_file(ctx, pctx->ino))
|
|
ext2fs_unmark_valid(fs);
|
|
else {
|
|
p = e2fsck_get_dir_info(ctx, pctx->ino);
|
|
p->parent = ctx->lost_and_found;
|
|
fix_dotdot(ctx, p, ctx->lost_and_found);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
p = e2fsck_get_dir_info(ctx, p->parent);
|
|
if (!p) {
|
|
fix_problem(ctx, PR_3_NO_DIRINFO, pctx);
|
|
return 0;
|
|
}
|
|
if (loop_pass) {
|
|
ext2fs_mark_inode_bitmap(inode_loop_detect,
|
|
p->ino);
|
|
} else if (parent_count++ > 2048) {
|
|
/*
|
|
* If we've run into a path depth that's
|
|
* greater than 2048, try again with the inode
|
|
* loop bitmap turned on and start from the
|
|
* top.
|
|
*/
|
|
loop_pass = 1;
|
|
if (inode_loop_detect)
|
|
ext2fs_clear_inode_bitmap(inode_loop_detect);
|
|
else {
|
|
pctx->errcode = ext2fs_allocate_inode_bitmap(fs, _("inode loop detection bitmap"), &inode_loop_detect);
|
|
if (pctx->errcode) {
|
|
pctx->num = 1;
|
|
fix_problem(ctx,
|
|
PR_3_ALLOCATE_IBITMAP_ERROR, pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return -1;
|
|
}
|
|
}
|
|
p = dir;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that .. and the parent directory are the same;
|
|
* offer to fix it if not.
|
|
*/
|
|
if (dir->parent != dir->dotdot) {
|
|
pctx->ino = dir->ino;
|
|
pctx->ino2 = dir->dotdot;
|
|
pctx->dir = dir->parent;
|
|
if (fix_problem(ctx, PR_3_BAD_DOT_DOT, pctx))
|
|
fix_dotdot(ctx, dir, dir->parent);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine gets the lost_and_found inode, making it a directory
|
|
* if necessary
|
|
*/
|
|
ext2_ino_t e2fsck_get_lost_and_found(e2fsck_t ctx, int fix)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t ino;
|
|
blk_t blk;
|
|
errcode_t retval;
|
|
struct ext2_inode inode;
|
|
char * block;
|
|
static const char name[] = "lost+found";
|
|
struct problem_context pctx;
|
|
struct dir_info *dirinfo;
|
|
|
|
if (ctx->lost_and_found)
|
|
return ctx->lost_and_found;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
retval = ext2fs_lookup(fs, EXT2_ROOT_INO, name,
|
|
sizeof(name)-1, 0, &ino);
|
|
if (retval && !fix)
|
|
return 0;
|
|
if (!retval) {
|
|
if (ext2fs_test_inode_bitmap(ctx->inode_dir_map, ino)) {
|
|
ctx->lost_and_found = ino;
|
|
return ino;
|
|
}
|
|
|
|
/* Lost+found isn't a directory! */
|
|
if (!fix)
|
|
return 0;
|
|
pctx.ino = ino;
|
|
if (!fix_problem(ctx, PR_3_LPF_NOTDIR, &pctx))
|
|
return 0;
|
|
|
|
/* OK, unlink the old /lost+found file. */
|
|
pctx.errcode = ext2fs_unlink(fs, EXT2_ROOT_INO, name, ino, 0);
|
|
if (pctx.errcode) {
|
|
pctx.str = "ext2fs_unlink";
|
|
fix_problem(ctx, PR_3_CREATE_LPF_ERROR, &pctx);
|
|
return 0;
|
|
}
|
|
dirinfo = e2fsck_get_dir_info(ctx, ino);
|
|
if (dirinfo)
|
|
dirinfo->parent = 0;
|
|
e2fsck_adjust_inode_count(ctx, ino, -1);
|
|
} else if (retval != EXT2_ET_FILE_NOT_FOUND) {
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, PR_3_ERR_FIND_LPF, &pctx);
|
|
}
|
|
if (!fix_problem(ctx, PR_3_NO_LF_DIR, 0))
|
|
return 0;
|
|
|
|
/*
|
|
* Read the inode and block bitmaps in; we'll be messing with
|
|
* them.
|
|
*/
|
|
e2fsck_read_bitmaps(ctx);
|
|
|
|
/*
|
|
* First, find a free block
|
|
*/
|
|
retval = ext2fs_new_block(fs, 0, ctx->block_found_map, &blk);
|
|
if (retval) {
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, PR_3_ERR_LPF_NEW_BLOCK, &pctx);
|
|
return 0;
|
|
}
|
|
ext2fs_mark_block_bitmap(ctx->block_found_map, blk);
|
|
ext2fs_block_alloc_stats(fs, blk, +1);
|
|
|
|
/*
|
|
* Next find a free inode.
|
|
*/
|
|
retval = ext2fs_new_inode(fs, EXT2_ROOT_INO, 040700,
|
|
ctx->inode_used_map, &ino);
|
|
if (retval) {
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, PR_3_ERR_LPF_NEW_INODE, &pctx);
|
|
return 0;
|
|
}
|
|
ext2fs_mark_inode_bitmap(ctx->inode_used_map, ino);
|
|
ext2fs_mark_inode_bitmap(ctx->inode_dir_map, ino);
|
|
ext2fs_inode_alloc_stats2(fs, ino, +1, 1);
|
|
|
|
/*
|
|
* Now let's create the actual data block for the inode
|
|
*/
|
|
retval = ext2fs_new_dir_block(fs, ino, EXT2_ROOT_INO, &block);
|
|
if (retval) {
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, PR_3_ERR_LPF_NEW_DIR_BLOCK, &pctx);
|
|
return 0;
|
|
}
|
|
|
|
retval = ext2fs_write_dir_block(fs, blk, block);
|
|
ext2fs_free_mem(&block);
|
|
if (retval) {
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, PR_3_ERR_LPF_WRITE_BLOCK, &pctx);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up the inode structure
|
|
*/
|
|
memset(&inode, 0, sizeof(inode));
|
|
inode.i_mode = 040700;
|
|
inode.i_size = fs->blocksize;
|
|
inode.i_atime = inode.i_ctime = inode.i_mtime = time(NULL);
|
|
inode.i_links_count = 2;
|
|
inode.i_blocks = fs->blocksize / 512;
|
|
inode.i_block[0] = blk;
|
|
|
|
/*
|
|
* Next, write out the inode.
|
|
*/
|
|
pctx.errcode = ext2fs_write_new_inode(fs, ino, &inode);
|
|
if (pctx.errcode) {
|
|
pctx.str = "ext2fs_write_inode";
|
|
fix_problem(ctx, PR_3_CREATE_LPF_ERROR, &pctx);
|
|
return 0;
|
|
}
|
|
/*
|
|
* Finally, create the directory link
|
|
*/
|
|
pctx.errcode = ext2fs_link(fs, EXT2_ROOT_INO, name, ino, EXT2_FT_DIR);
|
|
if (pctx.errcode) {
|
|
pctx.str = "ext2fs_link";
|
|
fix_problem(ctx, PR_3_CREATE_LPF_ERROR, &pctx);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous bookkeeping that needs to be kept straight.
|
|
*/
|
|
e2fsck_add_dir_info(ctx, ino, EXT2_ROOT_INO);
|
|
e2fsck_adjust_inode_count(ctx, EXT2_ROOT_INO, 1);
|
|
ext2fs_icount_store(ctx->inode_count, ino, 2);
|
|
ext2fs_icount_store(ctx->inode_link_info, ino, 2);
|
|
ctx->lost_and_found = ino;
|
|
return ino;
|
|
}
|
|
|
|
/*
|
|
* This routine will connect a file to lost+found
|
|
*/
|
|
int e2fsck_reconnect_file(e2fsck_t ctx, ext2_ino_t ino)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
char name[80];
|
|
struct problem_context pctx;
|
|
struct ext2_inode inode;
|
|
int file_type = 0;
|
|
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = ino;
|
|
|
|
if (!ctx->bad_lost_and_found && !ctx->lost_and_found) {
|
|
if (e2fsck_get_lost_and_found(ctx, 1) == 0)
|
|
ctx->bad_lost_and_found++;
|
|
}
|
|
if (ctx->bad_lost_and_found) {
|
|
fix_problem(ctx, PR_3_NO_LPF, &pctx);
|
|
return 1;
|
|
}
|
|
|
|
sprintf(name, "#%u", ino);
|
|
if (ext2fs_read_inode(fs, ino, &inode) == 0)
|
|
file_type = ext2_file_type(inode.i_mode);
|
|
retval = ext2fs_link(fs, ctx->lost_and_found, name, ino, file_type);
|
|
if (retval == EXT2_ET_DIR_NO_SPACE) {
|
|
if (!fix_problem(ctx, PR_3_EXPAND_LF_DIR, &pctx))
|
|
return 1;
|
|
retval = e2fsck_expand_directory(ctx, ctx->lost_and_found,
|
|
1, 0);
|
|
if (retval) {
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, PR_3_CANT_EXPAND_LPF, &pctx);
|
|
return 1;
|
|
}
|
|
retval = ext2fs_link(fs, ctx->lost_and_found, name,
|
|
ino, file_type);
|
|
}
|
|
if (retval) {
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, PR_3_CANT_RECONNECT, &pctx);
|
|
return 1;
|
|
}
|
|
e2fsck_adjust_inode_count(ctx, ino, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Utility routine to adjust the inode counts on an inode.
|
|
*/
|
|
errcode_t e2fsck_adjust_inode_count(e2fsck_t ctx, ext2_ino_t ino, int adj)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
struct ext2_inode inode;
|
|
|
|
if (!ino)
|
|
return 0;
|
|
|
|
retval = ext2fs_read_inode(fs, ino, &inode);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (adj == 1) {
|
|
ext2fs_icount_increment(ctx->inode_count, ino, 0);
|
|
if (inode.i_links_count == (__u16) ~0)
|
|
return 0;
|
|
ext2fs_icount_increment(ctx->inode_link_info, ino, 0);
|
|
inode.i_links_count++;
|
|
} else if (adj == -1) {
|
|
ext2fs_icount_decrement(ctx->inode_count, ino, 0);
|
|
if (inode.i_links_count == 0)
|
|
return 0;
|
|
ext2fs_icount_decrement(ctx->inode_link_info, ino, 0);
|
|
inode.i_links_count--;
|
|
}
|
|
|
|
retval = ext2fs_write_inode(fs, ino, &inode);
|
|
if (retval)
|
|
return retval;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fix parent --- this routine fixes up the parent of a directory.
|
|
*/
|
|
struct fix_dotdot_struct {
|
|
ext2_filsys fs;
|
|
ext2_ino_t parent;
|
|
int done;
|
|
e2fsck_t ctx;
|
|
};
|
|
|
|
static int fix_dotdot_proc(struct ext2_dir_entry *dirent,
|
|
int offset FSCK_ATTR((unused)),
|
|
int blocksize FSCK_ATTR((unused)),
|
|
char *buf FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct fix_dotdot_struct *fp = (struct fix_dotdot_struct *) priv_data;
|
|
errcode_t retval;
|
|
struct problem_context pctx;
|
|
|
|
if ((dirent->name_len & 0xFF) != 2)
|
|
return 0;
|
|
if (strncmp(dirent->name, "..", 2))
|
|
return 0;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
retval = e2fsck_adjust_inode_count(fp->ctx, dirent->inode, -1);
|
|
if (retval) {
|
|
pctx.errcode = retval;
|
|
fix_problem(fp->ctx, PR_3_ADJUST_INODE, &pctx);
|
|
}
|
|
retval = e2fsck_adjust_inode_count(fp->ctx, fp->parent, 1);
|
|
if (retval) {
|
|
pctx.errcode = retval;
|
|
fix_problem(fp->ctx, PR_3_ADJUST_INODE, &pctx);
|
|
}
|
|
dirent->inode = fp->parent;
|
|
|
|
fp->done++;
|
|
return DIRENT_ABORT | DIRENT_CHANGED;
|
|
}
|
|
|
|
static void fix_dotdot(e2fsck_t ctx, struct dir_info *dir, ext2_ino_t parent)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
struct fix_dotdot_struct fp;
|
|
struct problem_context pctx;
|
|
|
|
fp.fs = fs;
|
|
fp.parent = parent;
|
|
fp.done = 0;
|
|
fp.ctx = ctx;
|
|
|
|
retval = ext2fs_dir_iterate(fs, dir->ino, DIRENT_FLAG_INCLUDE_EMPTY,
|
|
0, fix_dotdot_proc, &fp);
|
|
if (retval || !fp.done) {
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = dir->ino;
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, retval ? PR_3_FIX_PARENT_ERR :
|
|
PR_3_FIX_PARENT_NOFIND, &pctx);
|
|
ext2fs_unmark_valid(fs);
|
|
}
|
|
dir->dotdot = parent;
|
|
}
|
|
|
|
/*
|
|
* These routines are responsible for expanding a /lost+found if it is
|
|
* too small.
|
|
*/
|
|
|
|
struct expand_dir_struct {
|
|
int num;
|
|
int guaranteed_size;
|
|
int newblocks;
|
|
int last_block;
|
|
errcode_t err;
|
|
e2fsck_t ctx;
|
|
};
|
|
|
|
static int expand_dir_proc(ext2_filsys fs,
|
|
blk_t *blocknr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk_t ref_block FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct expand_dir_struct *es = (struct expand_dir_struct *) priv_data;
|
|
blk_t new_blk;
|
|
static blk_t last_blk = 0;
|
|
char *block;
|
|
errcode_t retval;
|
|
e2fsck_t ctx;
|
|
|
|
ctx = es->ctx;
|
|
|
|
if (es->guaranteed_size && blockcnt >= es->guaranteed_size)
|
|
return BLOCK_ABORT;
|
|
|
|
if (blockcnt > 0)
|
|
es->last_block = blockcnt;
|
|
if (*blocknr) {
|
|
last_blk = *blocknr;
|
|
return 0;
|
|
}
|
|
retval = ext2fs_new_block(fs, last_blk, ctx->block_found_map,
|
|
&new_blk);
|
|
if (retval) {
|
|
es->err = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
if (blockcnt > 0) {
|
|
retval = ext2fs_new_dir_block(fs, 0, 0, &block);
|
|
if (retval) {
|
|
es->err = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
es->num--;
|
|
retval = ext2fs_write_dir_block(fs, new_blk, block);
|
|
} else {
|
|
retval = ext2fs_get_mem(fs->blocksize, &block);
|
|
if (retval) {
|
|
es->err = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
memset(block, 0, fs->blocksize);
|
|
retval = io_channel_write_blk(fs->io, new_blk, 1, block);
|
|
}
|
|
if (retval) {
|
|
es->err = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
ext2fs_free_mem(&block);
|
|
*blocknr = new_blk;
|
|
ext2fs_mark_block_bitmap(ctx->block_found_map, new_blk);
|
|
ext2fs_block_alloc_stats(fs, new_blk, +1);
|
|
es->newblocks++;
|
|
|
|
if (es->num == 0)
|
|
return (BLOCK_CHANGED | BLOCK_ABORT);
|
|
else
|
|
return BLOCK_CHANGED;
|
|
}
|
|
|
|
errcode_t e2fsck_expand_directory(e2fsck_t ctx, ext2_ino_t dir,
|
|
int num, int guaranteed_size)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
struct expand_dir_struct es;
|
|
struct ext2_inode inode;
|
|
|
|
if (!(fs->flags & EXT2_FLAG_RW))
|
|
return EXT2_ET_RO_FILSYS;
|
|
|
|
/*
|
|
* Read the inode and block bitmaps in; we'll be messing with
|
|
* them.
|
|
*/
|
|
e2fsck_read_bitmaps(ctx);
|
|
|
|
retval = ext2fs_check_directory(fs, dir);
|
|
if (retval)
|
|
return retval;
|
|
|
|
es.num = num;
|
|
es.guaranteed_size = guaranteed_size;
|
|
es.last_block = 0;
|
|
es.err = 0;
|
|
es.newblocks = 0;
|
|
es.ctx = ctx;
|
|
|
|
retval = ext2fs_block_iterate2(fs, dir, BLOCK_FLAG_APPEND,
|
|
0, expand_dir_proc, &es);
|
|
|
|
if (es.err)
|
|
return es.err;
|
|
|
|
/*
|
|
* Update the size and block count fields in the inode.
|
|
*/
|
|
retval = ext2fs_read_inode(fs, dir, &inode);
|
|
if (retval)
|
|
return retval;
|
|
|
|
inode.i_size = (es.last_block + 1) * fs->blocksize;
|
|
inode.i_blocks += (fs->blocksize / 512) * es.newblocks;
|
|
|
|
e2fsck_write_inode(ctx, dir, &inode, "expand_directory");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pass4.c -- pass #4 of e2fsck: Check reference counts
|
|
*
|
|
* Pass 4 frees the following data structures:
|
|
* - A bitmap of which inodes are imagic inodes. (inode_imagic_map)
|
|
*/
|
|
|
|
/*
|
|
* This routine is called when an inode is not connected to the
|
|
* directory tree.
|
|
*
|
|
* This subroutine returns 1 then the caller shouldn't bother with the
|
|
* rest of the pass 4 tests.
|
|
*/
|
|
static int disconnect_inode(e2fsck_t ctx, ext2_ino_t i)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct ext2_inode inode;
|
|
struct problem_context pctx;
|
|
|
|
e2fsck_read_inode(ctx, i, &inode, "pass4: disconnect_inode");
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = i;
|
|
pctx.inode = &inode;
|
|
|
|
/*
|
|
* Offer to delete any zero-length files that does not have
|
|
* blocks. If there is an EA block, it might have useful
|
|
* information, so we won't prompt to delete it, but let it be
|
|
* reconnected to lost+found.
|
|
*/
|
|
if (!inode.i_blocks && (LINUX_S_ISREG(inode.i_mode) ||
|
|
LINUX_S_ISDIR(inode.i_mode))) {
|
|
if (fix_problem(ctx, PR_4_ZERO_LEN_INODE, &pctx)) {
|
|
ext2fs_icount_store(ctx->inode_link_info, i, 0);
|
|
inode.i_links_count = 0;
|
|
inode.i_dtime = time(NULL);
|
|
e2fsck_write_inode(ctx, i, &inode,
|
|
"disconnect_inode");
|
|
/*
|
|
* Fix up the bitmaps...
|
|
*/
|
|
e2fsck_read_bitmaps(ctx);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_used_map, i);
|
|
ext2fs_unmark_inode_bitmap(ctx->inode_dir_map, i);
|
|
ext2fs_inode_alloc_stats2(fs, i, -1,
|
|
LINUX_S_ISDIR(inode.i_mode));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prompt to reconnect.
|
|
*/
|
|
if (fix_problem(ctx, PR_4_UNATTACHED_INODE, &pctx)) {
|
|
if (e2fsck_reconnect_file(ctx, i))
|
|
ext2fs_unmark_valid(fs);
|
|
} else {
|
|
/*
|
|
* If we don't attach the inode, then skip the
|
|
* i_links_test since there's no point in trying to
|
|
* force i_links_count to zero.
|
|
*/
|
|
ext2fs_unmark_valid(fs);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void e2fsck_pass4(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t i;
|
|
struct ext2_inode inode;
|
|
struct problem_context pctx;
|
|
__u16 link_count, link_counted;
|
|
char *buf = NULL;
|
|
int group, maxgroup;
|
|
|
|
/* Pass 4 */
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_4_PASS_HEADER, &pctx);
|
|
|
|
group = 0;
|
|
maxgroup = fs->group_desc_count;
|
|
if (ctx->progress)
|
|
if ((ctx->progress)(ctx, 4, 0, maxgroup))
|
|
return;
|
|
|
|
for (i=1; i <= fs->super->s_inodes_count; i++) {
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
if ((i % fs->super->s_inodes_per_group) == 0) {
|
|
group++;
|
|
if (ctx->progress)
|
|
if ((ctx->progress)(ctx, 4, group, maxgroup))
|
|
return;
|
|
}
|
|
if (i == EXT2_BAD_INO ||
|
|
(i > EXT2_ROOT_INO && i < EXT2_FIRST_INODE(fs->super)))
|
|
continue;
|
|
if (!(ext2fs_test_inode_bitmap(ctx->inode_used_map, i)) ||
|
|
(ctx->inode_imagic_map &&
|
|
ext2fs_test_inode_bitmap(ctx->inode_imagic_map, i)))
|
|
continue;
|
|
ext2fs_icount_fetch(ctx->inode_link_info, i, &link_count);
|
|
ext2fs_icount_fetch(ctx->inode_count, i, &link_counted);
|
|
if (link_counted == 0) {
|
|
if (!buf)
|
|
buf = e2fsck_allocate_memory(ctx,
|
|
fs->blocksize, "bad_inode buffer");
|
|
if (e2fsck_process_bad_inode(ctx, 0, i, buf))
|
|
continue;
|
|
if (disconnect_inode(ctx, i))
|
|
continue;
|
|
ext2fs_icount_fetch(ctx->inode_link_info, i,
|
|
&link_count);
|
|
ext2fs_icount_fetch(ctx->inode_count, i,
|
|
&link_counted);
|
|
}
|
|
if (link_counted != link_count) {
|
|
e2fsck_read_inode(ctx, i, &inode, "pass4");
|
|
pctx.ino = i;
|
|
pctx.inode = &inode;
|
|
if (link_count != inode.i_links_count) {
|
|
pctx.num = link_count;
|
|
fix_problem(ctx,
|
|
PR_4_INCONSISTENT_COUNT, &pctx);
|
|
}
|
|
pctx.num = link_counted;
|
|
if (fix_problem(ctx, PR_4_BAD_REF_COUNT, &pctx)) {
|
|
inode.i_links_count = link_counted;
|
|
e2fsck_write_inode(ctx, i, &inode, "pass4");
|
|
}
|
|
}
|
|
}
|
|
ext2fs_free_icount(ctx->inode_link_info); ctx->inode_link_info = 0;
|
|
ext2fs_free_icount(ctx->inode_count); ctx->inode_count = 0;
|
|
ext2fs_free_inode_bitmap(ctx->inode_imagic_map);
|
|
ctx->inode_imagic_map = 0;
|
|
ext2fs_free_mem(&buf);
|
|
}
|
|
|
|
/*
|
|
* pass5.c --- check block and inode bitmaps against on-disk bitmaps
|
|
*/
|
|
|
|
#define NO_BLK ((blk_t) -1)
|
|
|
|
static void print_bitmap_problem(e2fsck_t ctx, int problem,
|
|
struct problem_context *pctx)
|
|
{
|
|
switch (problem) {
|
|
case PR_5_BLOCK_UNUSED:
|
|
if (pctx->blk == pctx->blk2)
|
|
pctx->blk2 = 0;
|
|
else
|
|
problem = PR_5_BLOCK_RANGE_UNUSED;
|
|
break;
|
|
case PR_5_BLOCK_USED:
|
|
if (pctx->blk == pctx->blk2)
|
|
pctx->blk2 = 0;
|
|
else
|
|
problem = PR_5_BLOCK_RANGE_USED;
|
|
break;
|
|
case PR_5_INODE_UNUSED:
|
|
if (pctx->ino == pctx->ino2)
|
|
pctx->ino2 = 0;
|
|
else
|
|
problem = PR_5_INODE_RANGE_UNUSED;
|
|
break;
|
|
case PR_5_INODE_USED:
|
|
if (pctx->ino == pctx->ino2)
|
|
pctx->ino2 = 0;
|
|
else
|
|
problem = PR_5_INODE_RANGE_USED;
|
|
break;
|
|
}
|
|
fix_problem(ctx, problem, pctx);
|
|
pctx->blk = pctx->blk2 = NO_BLK;
|
|
pctx->ino = pctx->ino2 = 0;
|
|
}
|
|
|
|
static void check_block_bitmaps(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
blk_t i;
|
|
int *free_array;
|
|
int group = 0;
|
|
unsigned int blocks = 0;
|
|
unsigned int free_blocks = 0;
|
|
int group_free = 0;
|
|
int actual, bitmap;
|
|
struct problem_context pctx;
|
|
int problem, save_problem, fixit, had_problem;
|
|
errcode_t retval;
|
|
|
|
clear_problem_context(&pctx);
|
|
free_array = (int *) e2fsck_allocate_memory(ctx,
|
|
fs->group_desc_count * sizeof(int), "free block count array");
|
|
|
|
if ((fs->super->s_first_data_block <
|
|
ext2fs_get_block_bitmap_start(ctx->block_found_map)) ||
|
|
(fs->super->s_blocks_count-1 >
|
|
ext2fs_get_block_bitmap_end(ctx->block_found_map))) {
|
|
pctx.num = 1;
|
|
pctx.blk = fs->super->s_first_data_block;
|
|
pctx.blk2 = fs->super->s_blocks_count -1;
|
|
pctx.ino = ext2fs_get_block_bitmap_start(ctx->block_found_map);
|
|
pctx.ino2 = ext2fs_get_block_bitmap_end(ctx->block_found_map);
|
|
fix_problem(ctx, PR_5_BMAP_ENDPOINTS, &pctx);
|
|
|
|
ctx->flags |= E2F_FLAG_ABORT; /* fatal */
|
|
return;
|
|
}
|
|
|
|
if ((fs->super->s_first_data_block <
|
|
ext2fs_get_block_bitmap_start(fs->block_map)) ||
|
|
(fs->super->s_blocks_count-1 >
|
|
ext2fs_get_block_bitmap_end(fs->block_map))) {
|
|
pctx.num = 2;
|
|
pctx.blk = fs->super->s_first_data_block;
|
|
pctx.blk2 = fs->super->s_blocks_count -1;
|
|
pctx.ino = ext2fs_get_block_bitmap_start(fs->block_map);
|
|
pctx.ino2 = ext2fs_get_block_bitmap_end(fs->block_map);
|
|
fix_problem(ctx, PR_5_BMAP_ENDPOINTS, &pctx);
|
|
|
|
ctx->flags |= E2F_FLAG_ABORT; /* fatal */
|
|
return;
|
|
}
|
|
|
|
redo_counts:
|
|
had_problem = 0;
|
|
save_problem = 0;
|
|
pctx.blk = pctx.blk2 = NO_BLK;
|
|
for (i = fs->super->s_first_data_block;
|
|
i < fs->super->s_blocks_count;
|
|
i++) {
|
|
actual = ext2fs_fast_test_block_bitmap(ctx->block_found_map, i);
|
|
bitmap = ext2fs_fast_test_block_bitmap(fs->block_map, i);
|
|
|
|
if (actual == bitmap)
|
|
goto do_counts;
|
|
|
|
if (!actual && bitmap) {
|
|
/*
|
|
* Block not used, but marked in use in the bitmap.
|
|
*/
|
|
problem = PR_5_BLOCK_UNUSED;
|
|
} else {
|
|
/*
|
|
* Block used, but not marked in use in the bitmap.
|
|
*/
|
|
problem = PR_5_BLOCK_USED;
|
|
}
|
|
if (pctx.blk == NO_BLK) {
|
|
pctx.blk = pctx.blk2 = i;
|
|
save_problem = problem;
|
|
} else {
|
|
if ((problem == save_problem) &&
|
|
(pctx.blk2 == i-1))
|
|
pctx.blk2++;
|
|
else {
|
|
print_bitmap_problem(ctx, save_problem, &pctx);
|
|
pctx.blk = pctx.blk2 = i;
|
|
save_problem = problem;
|
|
}
|
|
}
|
|
ctx->flags |= E2F_FLAG_PROG_SUPPRESS;
|
|
had_problem++;
|
|
|
|
do_counts:
|
|
if (!bitmap) {
|
|
group_free++;
|
|
free_blocks++;
|
|
}
|
|
blocks ++;
|
|
if ((blocks == fs->super->s_blocks_per_group) ||
|
|
(i == fs->super->s_blocks_count-1)) {
|
|
free_array[group] = group_free;
|
|
group ++;
|
|
blocks = 0;
|
|
group_free = 0;
|
|
if (ctx->progress)
|
|
if ((ctx->progress)(ctx, 5, group,
|
|
fs->group_desc_count*2))
|
|
return;
|
|
}
|
|
}
|
|
if (pctx.blk != NO_BLK)
|
|
print_bitmap_problem(ctx, save_problem, &pctx);
|
|
if (had_problem)
|
|
fixit = end_problem_latch(ctx, PR_LATCH_BBITMAP);
|
|
else
|
|
fixit = -1;
|
|
ctx->flags &= ~E2F_FLAG_PROG_SUPPRESS;
|
|
|
|
if (fixit == 1) {
|
|
ext2fs_free_block_bitmap(fs->block_map);
|
|
retval = ext2fs_copy_bitmap(ctx->block_found_map,
|
|
&fs->block_map);
|
|
if (retval) {
|
|
clear_problem_context(&pctx);
|
|
fix_problem(ctx, PR_5_COPY_BBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
ext2fs_set_bitmap_padding(fs->block_map);
|
|
ext2fs_mark_bb_dirty(fs);
|
|
|
|
/* Redo the counts */
|
|
blocks = 0; free_blocks = 0; group_free = 0; group = 0;
|
|
memset(free_array, 0, fs->group_desc_count * sizeof(int));
|
|
goto redo_counts;
|
|
} else if (fixit == 0)
|
|
ext2fs_unmark_valid(fs);
|
|
|
|
for (i = 0; i < fs->group_desc_count; i++) {
|
|
if (free_array[i] != fs->group_desc[i].bg_free_blocks_count) {
|
|
pctx.group = i;
|
|
pctx.blk = fs->group_desc[i].bg_free_blocks_count;
|
|
pctx.blk2 = free_array[i];
|
|
|
|
if (fix_problem(ctx, PR_5_FREE_BLOCK_COUNT_GROUP,
|
|
&pctx)) {
|
|
fs->group_desc[i].bg_free_blocks_count =
|
|
free_array[i];
|
|
ext2fs_mark_super_dirty(fs);
|
|
} else
|
|
ext2fs_unmark_valid(fs);
|
|
}
|
|
}
|
|
if (free_blocks != fs->super->s_free_blocks_count) {
|
|
pctx.group = 0;
|
|
pctx.blk = fs->super->s_free_blocks_count;
|
|
pctx.blk2 = free_blocks;
|
|
|
|
if (fix_problem(ctx, PR_5_FREE_BLOCK_COUNT, &pctx)) {
|
|
fs->super->s_free_blocks_count = free_blocks;
|
|
ext2fs_mark_super_dirty(fs);
|
|
} else
|
|
ext2fs_unmark_valid(fs);
|
|
}
|
|
ext2fs_free_mem(&free_array);
|
|
}
|
|
|
|
static void check_inode_bitmaps(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t i;
|
|
unsigned int free_inodes = 0;
|
|
int group_free = 0;
|
|
int dirs_count = 0;
|
|
int group = 0;
|
|
unsigned int inodes = 0;
|
|
int *free_array;
|
|
int *dir_array;
|
|
int actual, bitmap;
|
|
errcode_t retval;
|
|
struct problem_context pctx;
|
|
int problem, save_problem, fixit, had_problem;
|
|
|
|
clear_problem_context(&pctx);
|
|
free_array = (int *) e2fsck_allocate_memory(ctx,
|
|
fs->group_desc_count * sizeof(int), "free inode count array");
|
|
|
|
dir_array = (int *) e2fsck_allocate_memory(ctx,
|
|
fs->group_desc_count * sizeof(int), "directory count array");
|
|
|
|
if ((1 < ext2fs_get_inode_bitmap_start(ctx->inode_used_map)) ||
|
|
(fs->super->s_inodes_count >
|
|
ext2fs_get_inode_bitmap_end(ctx->inode_used_map))) {
|
|
pctx.num = 3;
|
|
pctx.blk = 1;
|
|
pctx.blk2 = fs->super->s_inodes_count;
|
|
pctx.ino = ext2fs_get_inode_bitmap_start(ctx->inode_used_map);
|
|
pctx.ino2 = ext2fs_get_inode_bitmap_end(ctx->inode_used_map);
|
|
fix_problem(ctx, PR_5_BMAP_ENDPOINTS, &pctx);
|
|
|
|
ctx->flags |= E2F_FLAG_ABORT; /* fatal */
|
|
return;
|
|
}
|
|
if ((1 < ext2fs_get_inode_bitmap_start(fs->inode_map)) ||
|
|
(fs->super->s_inodes_count >
|
|
ext2fs_get_inode_bitmap_end(fs->inode_map))) {
|
|
pctx.num = 4;
|
|
pctx.blk = 1;
|
|
pctx.blk2 = fs->super->s_inodes_count;
|
|
pctx.ino = ext2fs_get_inode_bitmap_start(fs->inode_map);
|
|
pctx.ino2 = ext2fs_get_inode_bitmap_end(fs->inode_map);
|
|
fix_problem(ctx, PR_5_BMAP_ENDPOINTS, &pctx);
|
|
|
|
ctx->flags |= E2F_FLAG_ABORT; /* fatal */
|
|
return;
|
|
}
|
|
|
|
redo_counts:
|
|
had_problem = 0;
|
|
save_problem = 0;
|
|
pctx.ino = pctx.ino2 = 0;
|
|
for (i = 1; i <= fs->super->s_inodes_count; i++) {
|
|
actual = ext2fs_fast_test_inode_bitmap(ctx->inode_used_map, i);
|
|
bitmap = ext2fs_fast_test_inode_bitmap(fs->inode_map, i);
|
|
|
|
if (actual == bitmap)
|
|
goto do_counts;
|
|
|
|
if (!actual && bitmap) {
|
|
/*
|
|
* Inode wasn't used, but marked in bitmap
|
|
*/
|
|
problem = PR_5_INODE_UNUSED;
|
|
} else /* if (actual && !bitmap) */ {
|
|
/*
|
|
* Inode used, but not in bitmap
|
|
*/
|
|
problem = PR_5_INODE_USED;
|
|
}
|
|
if (pctx.ino == 0) {
|
|
pctx.ino = pctx.ino2 = i;
|
|
save_problem = problem;
|
|
} else {
|
|
if ((problem == save_problem) &&
|
|
(pctx.ino2 == i-1))
|
|
pctx.ino2++;
|
|
else {
|
|
print_bitmap_problem(ctx, save_problem, &pctx);
|
|
pctx.ino = pctx.ino2 = i;
|
|
save_problem = problem;
|
|
}
|
|
}
|
|
ctx->flags |= E2F_FLAG_PROG_SUPPRESS;
|
|
had_problem++;
|
|
|
|
do_counts:
|
|
if (!bitmap) {
|
|
group_free++;
|
|
free_inodes++;
|
|
} else {
|
|
if (ext2fs_test_inode_bitmap(ctx->inode_dir_map, i))
|
|
dirs_count++;
|
|
}
|
|
inodes++;
|
|
if ((inodes == fs->super->s_inodes_per_group) ||
|
|
(i == fs->super->s_inodes_count)) {
|
|
free_array[group] = group_free;
|
|
dir_array[group] = dirs_count;
|
|
group ++;
|
|
inodes = 0;
|
|
group_free = 0;
|
|
dirs_count = 0;
|
|
if (ctx->progress)
|
|
if ((ctx->progress)(ctx, 5,
|
|
group + fs->group_desc_count,
|
|
fs->group_desc_count*2))
|
|
return;
|
|
}
|
|
}
|
|
if (pctx.ino)
|
|
print_bitmap_problem(ctx, save_problem, &pctx);
|
|
|
|
if (had_problem)
|
|
fixit = end_problem_latch(ctx, PR_LATCH_IBITMAP);
|
|
else
|
|
fixit = -1;
|
|
ctx->flags &= ~E2F_FLAG_PROG_SUPPRESS;
|
|
|
|
if (fixit == 1) {
|
|
ext2fs_free_inode_bitmap(fs->inode_map);
|
|
retval = ext2fs_copy_bitmap(ctx->inode_used_map,
|
|
&fs->inode_map);
|
|
if (retval) {
|
|
clear_problem_context(&pctx);
|
|
fix_problem(ctx, PR_5_COPY_IBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
ext2fs_set_bitmap_padding(fs->inode_map);
|
|
ext2fs_mark_ib_dirty(fs);
|
|
|
|
/* redo counts */
|
|
inodes = 0; free_inodes = 0; group_free = 0;
|
|
dirs_count = 0; group = 0;
|
|
memset(free_array, 0, fs->group_desc_count * sizeof(int));
|
|
memset(dir_array, 0, fs->group_desc_count * sizeof(int));
|
|
goto redo_counts;
|
|
} else if (fixit == 0)
|
|
ext2fs_unmark_valid(fs);
|
|
|
|
for (i = 0; i < fs->group_desc_count; i++) {
|
|
if (free_array[i] != fs->group_desc[i].bg_free_inodes_count) {
|
|
pctx.group = i;
|
|
pctx.ino = fs->group_desc[i].bg_free_inodes_count;
|
|
pctx.ino2 = free_array[i];
|
|
if (fix_problem(ctx, PR_5_FREE_INODE_COUNT_GROUP,
|
|
&pctx)) {
|
|
fs->group_desc[i].bg_free_inodes_count =
|
|
free_array[i];
|
|
ext2fs_mark_super_dirty(fs);
|
|
} else
|
|
ext2fs_unmark_valid(fs);
|
|
}
|
|
if (dir_array[i] != fs->group_desc[i].bg_used_dirs_count) {
|
|
pctx.group = i;
|
|
pctx.ino = fs->group_desc[i].bg_used_dirs_count;
|
|
pctx.ino2 = dir_array[i];
|
|
|
|
if (fix_problem(ctx, PR_5_FREE_DIR_COUNT_GROUP,
|
|
&pctx)) {
|
|
fs->group_desc[i].bg_used_dirs_count =
|
|
dir_array[i];
|
|
ext2fs_mark_super_dirty(fs);
|
|
} else
|
|
ext2fs_unmark_valid(fs);
|
|
}
|
|
}
|
|
if (free_inodes != fs->super->s_free_inodes_count) {
|
|
pctx.group = -1;
|
|
pctx.ino = fs->super->s_free_inodes_count;
|
|
pctx.ino2 = free_inodes;
|
|
|
|
if (fix_problem(ctx, PR_5_FREE_INODE_COUNT, &pctx)) {
|
|
fs->super->s_free_inodes_count = free_inodes;
|
|
ext2fs_mark_super_dirty(fs);
|
|
} else
|
|
ext2fs_unmark_valid(fs);
|
|
}
|
|
ext2fs_free_mem(&free_array);
|
|
ext2fs_free_mem(&dir_array);
|
|
}
|
|
|
|
static void check_inode_end(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t end, save_inodes_count, i;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
end = EXT2_INODES_PER_GROUP(fs->super) * fs->group_desc_count;
|
|
pctx.errcode = ext2fs_fudge_inode_bitmap_end(fs->inode_map, end,
|
|
&save_inodes_count);
|
|
if (pctx.errcode) {
|
|
pctx.num = 1;
|
|
fix_problem(ctx, PR_5_FUDGE_BITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT; /* fatal */
|
|
return;
|
|
}
|
|
if (save_inodes_count == end)
|
|
return;
|
|
|
|
for (i = save_inodes_count + 1; i <= end; i++) {
|
|
if (!ext2fs_test_inode_bitmap(fs->inode_map, i)) {
|
|
if (fix_problem(ctx, PR_5_INODE_BMAP_PADDING, &pctx)) {
|
|
for (i = save_inodes_count + 1; i <= end; i++)
|
|
ext2fs_mark_inode_bitmap(fs->inode_map,
|
|
i);
|
|
ext2fs_mark_ib_dirty(fs);
|
|
} else
|
|
ext2fs_unmark_valid(fs);
|
|
break;
|
|
}
|
|
}
|
|
|
|
pctx.errcode = ext2fs_fudge_inode_bitmap_end(fs->inode_map,
|
|
save_inodes_count, 0);
|
|
if (pctx.errcode) {
|
|
pctx.num = 2;
|
|
fix_problem(ctx, PR_5_FUDGE_BITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT; /* fatal */
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void check_block_end(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
blk_t end, save_blocks_count, i;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
end = fs->block_map->start +
|
|
(EXT2_BLOCKS_PER_GROUP(fs->super) * fs->group_desc_count) - 1;
|
|
pctx.errcode = ext2fs_fudge_block_bitmap_end(fs->block_map, end,
|
|
&save_blocks_count);
|
|
if (pctx.errcode) {
|
|
pctx.num = 3;
|
|
fix_problem(ctx, PR_5_FUDGE_BITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT; /* fatal */
|
|
return;
|
|
}
|
|
if (save_blocks_count == end)
|
|
return;
|
|
|
|
for (i = save_blocks_count + 1; i <= end; i++) {
|
|
if (!ext2fs_test_block_bitmap(fs->block_map, i)) {
|
|
if (fix_problem(ctx, PR_5_BLOCK_BMAP_PADDING, &pctx)) {
|
|
for (i = save_blocks_count + 1; i <= end; i++)
|
|
ext2fs_mark_block_bitmap(fs->block_map,
|
|
i);
|
|
ext2fs_mark_bb_dirty(fs);
|
|
} else
|
|
ext2fs_unmark_valid(fs);
|
|
break;
|
|
}
|
|
}
|
|
|
|
pctx.errcode = ext2fs_fudge_block_bitmap_end(fs->block_map,
|
|
save_blocks_count, 0);
|
|
if (pctx.errcode) {
|
|
pctx.num = 4;
|
|
fix_problem(ctx, PR_5_FUDGE_BITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT; /* fatal */
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void e2fsck_pass5(e2fsck_t ctx)
|
|
{
|
|
struct problem_context pctx;
|
|
|
|
/* Pass 5 */
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_5_PASS_HEADER, &pctx);
|
|
|
|
if (ctx->progress)
|
|
if ((ctx->progress)(ctx, 5, 0, ctx->fs->group_desc_count*2))
|
|
return;
|
|
|
|
e2fsck_read_bitmaps(ctx);
|
|
|
|
check_block_bitmaps(ctx);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
check_inode_bitmaps(ctx);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
check_inode_end(ctx);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
check_block_end(ctx);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
|
|
ext2fs_free_inode_bitmap(ctx->inode_used_map);
|
|
ctx->inode_used_map = 0;
|
|
ext2fs_free_inode_bitmap(ctx->inode_dir_map);
|
|
ctx->inode_dir_map = 0;
|
|
ext2fs_free_block_bitmap(ctx->block_found_map);
|
|
ctx->block_found_map = 0;
|
|
}
|
|
|
|
/*
|
|
* problem.c --- report filesystem problems to the user
|
|
*/
|
|
|
|
#define PR_PREEN_OK 0x000001 /* Don't need to do preenhalt */
|
|
#define PR_NO_OK 0x000002 /* If user answers no, don't make fs invalid */
|
|
#define PR_NO_DEFAULT 0x000004 /* Default to no */
|
|
#define PR_MSG_ONLY 0x000008 /* Print message only */
|
|
|
|
/* Bit positions 0x000ff0 are reserved for the PR_LATCH flags */
|
|
|
|
#define PR_FATAL 0x001000 /* Fatal error */
|
|
#define PR_AFTER_CODE 0x002000 /* After asking the first question, */
|
|
/* ask another */
|
|
#define PR_PREEN_NOMSG 0x004000 /* Don't print a message if we're preening */
|
|
#define PR_NOCOLLATE 0x008000 /* Don't collate answers for this latch */
|
|
#define PR_NO_NOMSG 0x010000 /* Don't print a message if e2fsck -n */
|
|
#define PR_PREEN_NO 0x020000 /* Use No as an answer if preening */
|
|
#define PR_PREEN_NOHDR 0x040000 /* Don't print the preen header */
|
|
|
|
|
|
#define PROMPT_NONE 0
|
|
#define PROMPT_FIX 1
|
|
#define PROMPT_CLEAR 2
|
|
#define PROMPT_RELOCATE 3
|
|
#define PROMPT_ALLOCATE 4
|
|
#define PROMPT_EXPAND 5
|
|
#define PROMPT_CONNECT 6
|
|
#define PROMPT_CREATE 7
|
|
#define PROMPT_SALVAGE 8
|
|
#define PROMPT_TRUNCATE 9
|
|
#define PROMPT_CLEAR_INODE 10
|
|
#define PROMPT_ABORT 11
|
|
#define PROMPT_SPLIT 12
|
|
#define PROMPT_CONTINUE 13
|
|
#define PROMPT_CLONE 14
|
|
#define PROMPT_DELETE 15
|
|
#define PROMPT_SUPPRESS 16
|
|
#define PROMPT_UNLINK 17
|
|
#define PROMPT_CLEAR_HTREE 18
|
|
#define PROMPT_RECREATE 19
|
|
#define PROMPT_NULL 20
|
|
|
|
struct e2fsck_problem {
|
|
problem_t e2p_code;
|
|
const char * e2p_description;
|
|
char prompt;
|
|
int flags;
|
|
problem_t second_code;
|
|
};
|
|
|
|
struct latch_descr {
|
|
int latch_code;
|
|
problem_t question;
|
|
problem_t end_message;
|
|
int flags;
|
|
};
|
|
|
|
/*
|
|
* These are the prompts which are used to ask the user if they want
|
|
* to fix a problem.
|
|
*/
|
|
static const char *const prompt[] = {
|
|
N_("(no prompt)"), /* 0 */
|
|
N_("Fix"), /* 1 */
|
|
N_("Clear"), /* 2 */
|
|
N_("Relocate"), /* 3 */
|
|
N_("Allocate"), /* 4 */
|
|
N_("Expand"), /* 5 */
|
|
N_("Connect to /lost+found"), /* 6 */
|
|
N_("Create"), /* 7 */
|
|
N_("Salvage"), /* 8 */
|
|
N_("Truncate"), /* 9 */
|
|
N_("Clear inode"), /* 10 */
|
|
N_("Abort"), /* 11 */
|
|
N_("Split"), /* 12 */
|
|
N_("Continue"), /* 13 */
|
|
N_("Clone multiply-claimed blocks"), /* 14 */
|
|
N_("Delete file"), /* 15 */
|
|
N_("Suppress messages"),/* 16 */
|
|
N_("Unlink"), /* 17 */
|
|
N_("Clear HTree index"),/* 18 */
|
|
N_("Recreate"), /* 19 */
|
|
"", /* 20 */
|
|
};
|
|
|
|
/*
|
|
* These messages are printed when we are preen mode and we will be
|
|
* automatically fixing the problem.
|
|
*/
|
|
static const char *const preen_msg[] = {
|
|
N_("(NONE)"), /* 0 */
|
|
N_("FIXED"), /* 1 */
|
|
N_("CLEARED"), /* 2 */
|
|
N_("RELOCATED"), /* 3 */
|
|
N_("ALLOCATED"), /* 4 */
|
|
N_("EXPANDED"), /* 5 */
|
|
N_("RECONNECTED"), /* 6 */
|
|
N_("CREATED"), /* 7 */
|
|
N_("SALVAGED"), /* 8 */
|
|
N_("TRUNCATED"), /* 9 */
|
|
N_("INODE CLEARED"), /* 10 */
|
|
N_("ABORTED"), /* 11 */
|
|
N_("SPLIT"), /* 12 */
|
|
N_("CONTINUING"), /* 13 */
|
|
N_("MULTIPLY-CLAIMED BLOCKS CLONED"), /* 14 */
|
|
N_("FILE DELETED"), /* 15 */
|
|
N_("SUPPRESSED"), /* 16 */
|
|
N_("UNLINKED"), /* 17 */
|
|
N_("HTREE INDEX CLEARED"),/* 18 */
|
|
N_("WILL RECREATE"), /* 19 */
|
|
"", /* 20 */
|
|
};
|
|
|
|
static const struct e2fsck_problem problem_table[] = {
|
|
|
|
/* Pre-Pass 1 errors */
|
|
|
|
/* Block bitmap not in group */
|
|
{ PR_0_BB_NOT_GROUP, N_("@b @B for @g %g is not in @g. (@b %b)\n"),
|
|
PROMPT_RELOCATE, PR_LATCH_RELOC },
|
|
|
|
/* Inode bitmap not in group */
|
|
{ PR_0_IB_NOT_GROUP, N_("@i @B for @g %g is not in @g. (@b %b)\n"),
|
|
PROMPT_RELOCATE, PR_LATCH_RELOC },
|
|
|
|
/* Inode table not in group */
|
|
{ PR_0_ITABLE_NOT_GROUP,
|
|
N_("@i table for @g %g is not in @g. (@b %b)\n"
|
|
"WARNING: SEVERE DATA LOSS POSSIBLE.\n"),
|
|
PROMPT_RELOCATE, PR_LATCH_RELOC },
|
|
|
|
/* Superblock corrupt */
|
|
{ PR_0_SB_CORRUPT,
|
|
N_("\nThe @S could not be read or does not describe a correct ext2\n"
|
|
"@f. If the @v is valid and it really contains an ext2\n"
|
|
"@f (and not swap or ufs or something else), then the @S\n"
|
|
"is corrupt, and you might try running e2fsck with an alternate @S:\n"
|
|
" e2fsck -b %S <@v>\n\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Filesystem size is wrong */
|
|
{ PR_0_FS_SIZE_WRONG,
|
|
N_("The @f size (according to the @S) is %b @bs\n"
|
|
"The physical size of the @v is %c @bs\n"
|
|
"Either the @S or the partition table is likely to be corrupt!\n"),
|
|
PROMPT_ABORT, 0 },
|
|
|
|
/* Fragments not supported */
|
|
{ PR_0_NO_FRAGMENTS,
|
|
N_("@S @b_size = %b, fragsize = %c.\n"
|
|
"This version of e2fsck does not support fragment sizes different\n"
|
|
"from the @b size.\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Bad blocks_per_group */
|
|
{ PR_0_BLOCKS_PER_GROUP,
|
|
N_("@S @bs_per_group = %b, should have been %c\n"),
|
|
PROMPT_NONE, PR_AFTER_CODE, PR_0_SB_CORRUPT },
|
|
|
|
/* Bad first_data_block */
|
|
{ PR_0_FIRST_DATA_BLOCK,
|
|
N_("@S first_data_@b = %b, should have been %c\n"),
|
|
PROMPT_NONE, PR_AFTER_CODE, PR_0_SB_CORRUPT },
|
|
|
|
/* Adding UUID to filesystem */
|
|
{ PR_0_ADD_UUID,
|
|
N_("@f did not have a UUID; generating one.\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Relocate hint */
|
|
{ PR_0_RELOCATE_HINT,
|
|
N_("Note: if several inode or block bitmap blocks or part\n"
|
|
"of the inode table require relocation, you may wish to try\n"
|
|
"running e2fsck with the '-b %S' option first. The problem\n"
|
|
"may lie only with the primary block group descriptors, and\n"
|
|
"the backup block group descriptors may be OK.\n\n"),
|
|
PROMPT_NONE, PR_PREEN_OK | PR_NOCOLLATE },
|
|
|
|
/* Miscellaneous superblock corruption */
|
|
{ PR_0_MISC_CORRUPT_SUPER,
|
|
N_("Corruption found in @S. (%s = %N).\n"),
|
|
PROMPT_NONE, PR_AFTER_CODE, PR_0_SB_CORRUPT },
|
|
|
|
/* Error determing physical device size of filesystem */
|
|
{ PR_0_GETSIZE_ERROR,
|
|
N_("Error determining size of the physical @v: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Inode count in superblock is incorrect */
|
|
{ PR_0_INODE_COUNT_WRONG,
|
|
N_("@i count in @S is %i, @s %j.\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
{ PR_0_HURD_CLEAR_FILETYPE,
|
|
N_("The Hurd does not support the filetype feature.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Journal inode is invalid */
|
|
{ PR_0_JOURNAL_BAD_INODE,
|
|
N_("@S has an @n ext3 @j (@i %i).\n"),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* The external journal has (unsupported) multiple filesystems */
|
|
{ PR_0_JOURNAL_UNSUPP_MULTIFS,
|
|
N_("External @j has multiple @f users (unsupported).\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Can't find external journal */
|
|
{ PR_0_CANT_FIND_JOURNAL,
|
|
N_("Can't find external @j\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* External journal has bad superblock */
|
|
{ PR_0_EXT_JOURNAL_BAD_SUPER,
|
|
N_("External @j has bad @S\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Superblock has a bad journal UUID */
|
|
{ PR_0_JOURNAL_BAD_UUID,
|
|
N_("External @j does not support this @f\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Journal has an unknown superblock type */
|
|
{ PR_0_JOURNAL_UNSUPP_SUPER,
|
|
N_("Ext3 @j @S is unknown type %N (unsupported).\n"
|
|
"It is likely that your copy of e2fsck is old and/or doesn't "
|
|
"support this @j format.\n"
|
|
"It is also possible the @j @S is corrupt.\n"),
|
|
PROMPT_ABORT, PR_NO_OK | PR_AFTER_CODE, PR_0_JOURNAL_BAD_SUPER },
|
|
|
|
/* Journal superblock is corrupt */
|
|
{ PR_0_JOURNAL_BAD_SUPER,
|
|
N_("Ext3 @j @S is corrupt.\n"),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Superblock flag should be cleared */
|
|
{ PR_0_JOURNAL_HAS_JOURNAL,
|
|
N_("@S doesn't have has_@j flag, but has ext3 @j %s.\n"),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* Superblock flag is incorrect */
|
|
{ PR_0_JOURNAL_RECOVER_SET,
|
|
N_("@S has ext3 needs_recovery flag set, but no @j.\n"),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* Journal has data, but recovery flag is clear */
|
|
{ PR_0_JOURNAL_RECOVERY_CLEAR,
|
|
N_("ext3 recovery flag is clear, but @j has data.\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Ask if we should clear the journal */
|
|
{ PR_0_JOURNAL_RESET_JOURNAL,
|
|
N_("Clear @j"),
|
|
PROMPT_NULL, PR_PREEN_NOMSG },
|
|
|
|
/* Ask if we should run the journal anyway */
|
|
{ PR_0_JOURNAL_RUN,
|
|
N_("Run @j anyway"),
|
|
PROMPT_NULL, 0 },
|
|
|
|
/* Run the journal by default */
|
|
{ PR_0_JOURNAL_RUN_DEFAULT,
|
|
N_("Recovery flag not set in backup @S, so running @j anyway.\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Clearing orphan inode */
|
|
{ PR_0_ORPHAN_CLEAR_INODE,
|
|
N_("%s @o @i %i (uid=%Iu, gid=%Ig, mode=%Im, size=%Is)\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Illegal block found in orphaned inode */
|
|
{ PR_0_ORPHAN_ILLEGAL_BLOCK_NUM,
|
|
N_("@I @b #%B (%b) found in @o @i %i.\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Already cleared block found in orphaned inode */
|
|
{ PR_0_ORPHAN_ALREADY_CLEARED_BLOCK,
|
|
N_("Already cleared @b #%B (%b) found in @o @i %i.\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Illegal orphan inode in superblock */
|
|
{ PR_0_ORPHAN_ILLEGAL_HEAD_INODE,
|
|
N_("@I @o @i %i in @S.\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Illegal inode in orphaned inode list */
|
|
{ PR_0_ORPHAN_ILLEGAL_INODE,
|
|
N_("@I @i %i in @o @i list.\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Filesystem revision is 0, but feature flags are set */
|
|
{ PR_0_FS_REV_LEVEL,
|
|
N_("@f has feature flag(s) set, but is a revision 0 @f. "),
|
|
PROMPT_FIX, PR_PREEN_OK | PR_NO_OK },
|
|
|
|
/* Journal superblock has an unknown read-only feature flag set */
|
|
{ PR_0_JOURNAL_UNSUPP_ROCOMPAT,
|
|
N_("Ext3 @j @S has an unknown read-only feature flag set.\n"),
|
|
PROMPT_ABORT, 0 },
|
|
|
|
/* Journal superblock has an unknown incompatible feature flag set */
|
|
{ PR_0_JOURNAL_UNSUPP_INCOMPAT,
|
|
N_("Ext3 @j @S has an unknown incompatible feature flag set.\n"),
|
|
PROMPT_ABORT, 0 },
|
|
|
|
/* Journal has unsupported version number */
|
|
{ PR_0_JOURNAL_UNSUPP_VERSION,
|
|
N_("@j version not supported by this e2fsck.\n"),
|
|
PROMPT_ABORT, 0 },
|
|
|
|
/* Moving journal to hidden file */
|
|
{ PR_0_MOVE_JOURNAL,
|
|
N_("Moving @j from /%s to hidden @i.\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error moving journal to hidden file */
|
|
{ PR_0_ERR_MOVE_JOURNAL,
|
|
N_("Error moving @j: %m\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Clearing V2 journal superblock */
|
|
{ PR_0_CLEAR_V2_JOURNAL,
|
|
N_("Found @n V2 @j @S fields (from V1 @j).\n"
|
|
"Clearing fields beyond the V1 @j @S...\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Backup journal inode blocks */
|
|
{ PR_0_BACKUP_JNL,
|
|
N_("Backing up @j @i @b information.\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Reserved blocks w/o resize_inode */
|
|
{ PR_0_NONZERO_RESERVED_GDT_BLOCKS,
|
|
N_("@f does not have resize_@i enabled, but s_reserved_gdt_@bs\n"
|
|
"is %N; @s zero. "),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Resize_inode not enabled, but resize inode is non-zero */
|
|
{ PR_0_CLEAR_RESIZE_INODE,
|
|
N_("Resize_@i not enabled, but the resize @i is non-zero. "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Resize inode invalid */
|
|
{ PR_0_RESIZE_INODE_INVALID,
|
|
N_("Resize @i not valid. "),
|
|
PROMPT_RECREATE, 0 },
|
|
|
|
/* Pass 1 errors */
|
|
|
|
/* Pass 1: Checking inodes, blocks, and sizes */
|
|
{ PR_1_PASS_HEADER,
|
|
N_("Pass 1: Checking @is, @bs, and sizes\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Root directory is not an inode */
|
|
{ PR_1_ROOT_NO_DIR, N_("@r is not a @d. "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Root directory has dtime set */
|
|
{ PR_1_ROOT_DTIME,
|
|
N_("@r has dtime set (probably due to old mke2fs). "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Reserved inode has bad mode */
|
|
{ PR_1_RESERVED_BAD_MODE,
|
|
N_("Reserved @i %i (%Q) has @n mode. "),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* Deleted inode has zero dtime */
|
|
{ PR_1_ZERO_DTIME,
|
|
N_("@D @i %i has zero dtime. "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Inode in use, but dtime set */
|
|
{ PR_1_SET_DTIME,
|
|
N_("@i %i is in use, but has dtime set. "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Zero-length directory */
|
|
{ PR_1_ZERO_LENGTH_DIR,
|
|
N_("@i %i is a @z @d. "),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* Block bitmap conflicts with some other fs block */
|
|
{ PR_1_BB_CONFLICT,
|
|
N_("@g %g's @b @B at %b @C.\n"),
|
|
PROMPT_RELOCATE, 0 },
|
|
|
|
/* Inode bitmap conflicts with some other fs block */
|
|
{ PR_1_IB_CONFLICT,
|
|
N_("@g %g's @i @B at %b @C.\n"),
|
|
PROMPT_RELOCATE, 0 },
|
|
|
|
/* Inode table conflicts with some other fs block */
|
|
{ PR_1_ITABLE_CONFLICT,
|
|
N_("@g %g's @i table at %b @C.\n"),
|
|
PROMPT_RELOCATE, 0 },
|
|
|
|
/* Block bitmap is on a bad block */
|
|
{ PR_1_BB_BAD_BLOCK,
|
|
N_("@g %g's @b @B (%b) is bad. "),
|
|
PROMPT_RELOCATE, 0 },
|
|
|
|
/* Inode bitmap is on a bad block */
|
|
{ PR_1_IB_BAD_BLOCK,
|
|
N_("@g %g's @i @B (%b) is bad. "),
|
|
PROMPT_RELOCATE, 0 },
|
|
|
|
/* Inode has incorrect i_size */
|
|
{ PR_1_BAD_I_SIZE,
|
|
N_("@i %i, i_size is %Is, @s %N. "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Inode has incorrect i_blocks */
|
|
{ PR_1_BAD_I_BLOCKS,
|
|
N_("@i %i, i_@bs is %Ib, @s %N. "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Illegal blocknumber in inode */
|
|
{ PR_1_ILLEGAL_BLOCK_NUM,
|
|
N_("@I @b #%B (%b) in @i %i. "),
|
|
PROMPT_CLEAR, PR_LATCH_BLOCK },
|
|
|
|
/* Block number overlaps fs metadata */
|
|
{ PR_1_BLOCK_OVERLAPS_METADATA,
|
|
N_("@b #%B (%b) overlaps @f metadata in @i %i. "),
|
|
PROMPT_CLEAR, PR_LATCH_BLOCK },
|
|
|
|
/* Inode has illegal blocks (latch question) */
|
|
{ PR_1_INODE_BLOCK_LATCH,
|
|
N_("@i %i has illegal @b(s). "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Too many bad blocks in inode */
|
|
{ PR_1_TOO_MANY_BAD_BLOCKS,
|
|
N_("Too many illegal @bs in @i %i.\n"),
|
|
PROMPT_CLEAR_INODE, PR_NO_OK },
|
|
|
|
/* Illegal block number in bad block inode */
|
|
{ PR_1_BB_ILLEGAL_BLOCK_NUM,
|
|
N_("@I @b #%B (%b) in bad @b @i. "),
|
|
PROMPT_CLEAR, PR_LATCH_BBLOCK },
|
|
|
|
/* Bad block inode has illegal blocks (latch question) */
|
|
{ PR_1_INODE_BBLOCK_LATCH,
|
|
N_("Bad @b @i has illegal @b(s). "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Duplicate or bad blocks in use! */
|
|
{ PR_1_DUP_BLOCKS_PREENSTOP,
|
|
N_("Duplicate or bad @b in use!\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Bad block used as bad block indirect block */
|
|
{ PR_1_BBINODE_BAD_METABLOCK,
|
|
N_("Bad @b %b used as bad @b @i indirect @b. "),
|
|
PROMPT_CLEAR, PR_LATCH_BBLOCK },
|
|
|
|
/* Inconsistency can't be fixed prompt */
|
|
{ PR_1_BBINODE_BAD_METABLOCK_PROMPT,
|
|
N_("\nThe bad @b @i has probably been corrupted. You probably\n"
|
|
"should stop now and run ""e2fsck -c"" to scan for bad blocks\n"
|
|
"in the @f.\n"),
|
|
PROMPT_CONTINUE, PR_PREEN_NOMSG },
|
|
|
|
/* Bad primary block */
|
|
{ PR_1_BAD_PRIMARY_BLOCK,
|
|
N_("\nIf the @b is really bad, the @f cannot be fixed.\n"),
|
|
PROMPT_NONE, PR_AFTER_CODE, PR_1_BAD_PRIMARY_BLOCK_PROMPT },
|
|
|
|
/* Bad primary block prompt */
|
|
{ PR_1_BAD_PRIMARY_BLOCK_PROMPT,
|
|
N_("You can remove this @b from the bad @b list and hope\n"
|
|
"that the @b is really OK. But there are no guarantees.\n\n"),
|
|
PROMPT_CLEAR, PR_PREEN_NOMSG },
|
|
|
|
/* Bad primary superblock */
|
|
{ PR_1_BAD_PRIMARY_SUPERBLOCK,
|
|
N_("The primary @S (%b) is on the bad @b list.\n"),
|
|
PROMPT_NONE, PR_AFTER_CODE, PR_1_BAD_PRIMARY_BLOCK },
|
|
|
|
/* Bad primary block group descriptors */
|
|
{ PR_1_BAD_PRIMARY_GROUP_DESCRIPTOR,
|
|
N_("Block %b in the primary @g descriptors "
|
|
"is on the bad @b list\n"),
|
|
PROMPT_NONE, PR_AFTER_CODE, PR_1_BAD_PRIMARY_BLOCK },
|
|
|
|
/* Bad superblock in group */
|
|
{ PR_1_BAD_SUPERBLOCK,
|
|
N_("Warning: Group %g's @S (%b) is bad.\n"),
|
|
PROMPT_NONE, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Bad block group descriptors in group */
|
|
{ PR_1_BAD_GROUP_DESCRIPTORS,
|
|
N_("Warning: Group %g's copy of the @g descriptors has a bad "
|
|
"@b (%b).\n"),
|
|
PROMPT_NONE, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Block claimed for no reason */
|
|
{ PR_1_PROGERR_CLAIMED_BLOCK,
|
|
N_("Programming error? @b #%b claimed for no reason in "
|
|
"process_bad_@b.\n"),
|
|
PROMPT_NONE, PR_PREEN_OK },
|
|
|
|
/* Error allocating blocks for relocating metadata */
|
|
{ PR_1_RELOC_BLOCK_ALLOCATE,
|
|
N_("@A %N contiguous @b(s) in @b @g %g for %s: %m\n"),
|
|
PROMPT_NONE, PR_PREEN_OK },
|
|
|
|
/* Error allocating block buffer during relocation process */
|
|
{ PR_1_RELOC_MEMORY_ALLOCATE,
|
|
N_("@A @b buffer for relocating %s\n"),
|
|
PROMPT_NONE, PR_PREEN_OK },
|
|
|
|
/* Relocating metadata group information from X to Y */
|
|
{ PR_1_RELOC_FROM_TO,
|
|
N_("Relocating @g %g's %s from %b to %c...\n"),
|
|
PROMPT_NONE, PR_PREEN_OK },
|
|
|
|
/* Relocating metatdata group information to X */
|
|
{ PR_1_RELOC_TO,
|
|
N_("Relocating @g %g's %s to %c...\n"), /* xgettext:no-c-format */
|
|
PROMPT_NONE, PR_PREEN_OK },
|
|
|
|
/* Block read error during relocation process */
|
|
{ PR_1_RELOC_READ_ERR,
|
|
N_("Warning: could not read @b %b of %s: %m\n"),
|
|
PROMPT_NONE, PR_PREEN_OK },
|
|
|
|
/* Block write error during relocation process */
|
|
{ PR_1_RELOC_WRITE_ERR,
|
|
N_("Warning: could not write @b %b for %s: %m\n"),
|
|
PROMPT_NONE, PR_PREEN_OK },
|
|
|
|
/* Error allocating inode bitmap */
|
|
{ PR_1_ALLOCATE_IBITMAP_ERROR,
|
|
N_("@A @i @B (%N): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error allocating block bitmap */
|
|
{ PR_1_ALLOCATE_BBITMAP_ERROR,
|
|
N_("@A @b @B (%N): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error allocating icount structure */
|
|
{ PR_1_ALLOCATE_ICOUNT,
|
|
N_("@A icount link information: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error allocating dbcount */
|
|
{ PR_1_ALLOCATE_DBCOUNT,
|
|
N_("@A @d @b array: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error while scanning inodes */
|
|
{ PR_1_ISCAN_ERROR,
|
|
N_("Error while scanning @is (%i): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error while iterating over blocks */
|
|
{ PR_1_BLOCK_ITERATE,
|
|
N_("Error while iterating over @bs in @i %i: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error while storing inode count information */
|
|
{ PR_1_ICOUNT_STORE,
|
|
N_("Error storing @i count information (@i=%i, count=%N): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error while storing directory block information */
|
|
{ PR_1_ADD_DBLOCK,
|
|
N_("Error storing @d @b information "
|
|
"(@i=%i, @b=%b, num=%N): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error while reading inode (for clearing) */
|
|
{ PR_1_READ_INODE,
|
|
N_("Error reading @i %i: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Suppress messages prompt */
|
|
{ PR_1_SUPPRESS_MESSAGES, "", PROMPT_SUPPRESS, PR_NO_OK },
|
|
|
|
/* Imagic flag set on an inode when filesystem doesn't support it */
|
|
{ PR_1_SET_IMAGIC,
|
|
N_("@i %i has imagic flag set. "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Immutable flag set on a device or socket inode */
|
|
{ PR_1_SET_IMMUTABLE,
|
|
N_("Special (@v/socket/fifo/symlink) file (@i %i) has immutable\n"
|
|
"or append-only flag set. "),
|
|
PROMPT_CLEAR, PR_PREEN_OK | PR_PREEN_NO | PR_NO_OK },
|
|
|
|
/* Compression flag set on an inode when filesystem doesn't support it */
|
|
{ PR_1_COMPR_SET,
|
|
N_("@i %i has @cion flag set on @f without @cion support. "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Non-zero size for device, fifo or socket inode */
|
|
{ PR_1_SET_NONZSIZE,
|
|
N_("Special (@v/socket/fifo) @i %i has non-zero size. "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Filesystem revision is 0, but feature flags are set */
|
|
{ PR_1_FS_REV_LEVEL,
|
|
N_("@f has feature flag(s) set, but is a revision 0 @f. "),
|
|
PROMPT_FIX, PR_PREEN_OK | PR_NO_OK },
|
|
|
|
/* Journal inode is not in use, but contains data */
|
|
{ PR_1_JOURNAL_INODE_NOT_CLEAR,
|
|
N_("@j @i is not in use, but contains data. "),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* Journal has bad mode */
|
|
{ PR_1_JOURNAL_BAD_MODE,
|
|
N_("@j is not regular file. "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Deal with inodes that were part of orphan linked list */
|
|
{ PR_1_LOW_DTIME,
|
|
N_("@i %i was part of the @o @i list. "),
|
|
PROMPT_FIX, PR_LATCH_LOW_DTIME, 0 },
|
|
|
|
/* Deal with inodes that were part of corrupted orphan linked
|
|
list (latch question) */
|
|
{ PR_1_ORPHAN_LIST_REFUGEES,
|
|
N_("@is that were part of a corrupted orphan linked list found. "),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Error allocating refcount structure */
|
|
{ PR_1_ALLOCATE_REFCOUNT,
|
|
N_("@A refcount structure (%N): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error reading extended attribute block */
|
|
{ PR_1_READ_EA_BLOCK,
|
|
N_("Error reading @a @b %b for @i %i. "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Invalid extended attribute block */
|
|
{ PR_1_BAD_EA_BLOCK,
|
|
N_("@i %i has a bad @a @b %b. "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Error reading Extended Attribute block while fixing refcount */
|
|
{ PR_1_EXTATTR_READ_ABORT,
|
|
N_("Error reading @a @b %b (%m). "),
|
|
PROMPT_ABORT, 0 },
|
|
|
|
/* Extended attribute reference count incorrect */
|
|
{ PR_1_EXTATTR_REFCOUNT,
|
|
N_("@a @b %b has reference count %B, @s %N. "),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Error writing Extended Attribute block while fixing refcount */
|
|
{ PR_1_EXTATTR_WRITE,
|
|
N_("Error writing @a @b %b (%m). "),
|
|
PROMPT_ABORT, 0 },
|
|
|
|
/* Multiple EA blocks not supported */
|
|
{ PR_1_EA_MULTI_BLOCK,
|
|
N_("@a @b %b has h_@bs > 1. "),
|
|
PROMPT_CLEAR, 0},
|
|
|
|
/* Error allocating EA region allocation structure */
|
|
{ PR_1_EA_ALLOC_REGION,
|
|
N_("@A @a @b %b. "),
|
|
PROMPT_ABORT, 0},
|
|
|
|
/* Error EA allocation collision */
|
|
{ PR_1_EA_ALLOC_COLLISION,
|
|
N_("@a @b %b is corrupt (allocation collision). "),
|
|
PROMPT_CLEAR, 0},
|
|
|
|
/* Bad extended attribute name */
|
|
{ PR_1_EA_BAD_NAME,
|
|
N_("@a @b %b is corrupt (@n name). "),
|
|
PROMPT_CLEAR, 0},
|
|
|
|
/* Bad extended attribute value */
|
|
{ PR_1_EA_BAD_VALUE,
|
|
N_("@a @b %b is corrupt (@n value). "),
|
|
PROMPT_CLEAR, 0},
|
|
|
|
/* Inode too big (latch question) */
|
|
{ PR_1_INODE_TOOBIG,
|
|
N_("@i %i is too big. "), PROMPT_TRUNCATE, 0 },
|
|
|
|
/* Directory too big */
|
|
{ PR_1_TOOBIG_DIR,
|
|
N_("@b #%B (%b) causes @d to be too big. "),
|
|
PROMPT_CLEAR, PR_LATCH_TOOBIG },
|
|
|
|
/* Regular file too big */
|
|
{ PR_1_TOOBIG_REG,
|
|
N_("@b #%B (%b) causes file to be too big. "),
|
|
PROMPT_CLEAR, PR_LATCH_TOOBIG },
|
|
|
|
/* Symlink too big */
|
|
{ PR_1_TOOBIG_SYMLINK,
|
|
N_("@b #%B (%b) causes symlink to be too big. "),
|
|
PROMPT_CLEAR, PR_LATCH_TOOBIG },
|
|
|
|
/* INDEX_FL flag set on a non-HTREE filesystem */
|
|
{ PR_1_HTREE_SET,
|
|
N_("@i %i has INDEX_FL flag set on @f without htree support.\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* INDEX_FL flag set on a non-directory */
|
|
{ PR_1_HTREE_NODIR,
|
|
N_("@i %i has INDEX_FL flag set but is not a @d.\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* Invalid root node in HTREE directory */
|
|
{ PR_1_HTREE_BADROOT,
|
|
N_("@h %i has an @n root node.\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* Unsupported hash version in HTREE directory */
|
|
{ PR_1_HTREE_HASHV,
|
|
N_("@h %i has an unsupported hash version (%N)\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* Incompatible flag in HTREE root node */
|
|
{ PR_1_HTREE_INCOMPAT,
|
|
N_("@h %i uses an incompatible htree root node flag.\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* HTREE too deep */
|
|
{ PR_1_HTREE_DEPTH,
|
|
N_("@h %i has a tree depth (%N) which is too big\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* Bad block has indirect block that conflicts with filesystem block */
|
|
{ PR_1_BB_FS_BLOCK,
|
|
N_("Bad @b @i has an indirect @b (%b) that conflicts with\n"
|
|
"@f metadata. "),
|
|
PROMPT_CLEAR, PR_LATCH_BBLOCK },
|
|
|
|
/* Resize inode failed */
|
|
{ PR_1_RESIZE_INODE_CREATE,
|
|
N_("Resize @i (re)creation failed: %m."),
|
|
PROMPT_ABORT, 0 },
|
|
|
|
/* invalid inode->i_extra_isize */
|
|
{ PR_1_EXTRA_ISIZE,
|
|
N_("@i %i has a extra size (%IS) which is @n\n"),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* invalid ea entry->e_name_len */
|
|
{ PR_1_ATTR_NAME_LEN,
|
|
N_("@a in @i %i has a namelen (%N) which is @n\n"),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* invalid ea entry->e_value_size */
|
|
{ PR_1_ATTR_VALUE_SIZE,
|
|
N_("@a in @i %i has a value size (%N) which is @n\n"),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* invalid ea entry->e_value_offs */
|
|
{ PR_1_ATTR_VALUE_OFFSET,
|
|
N_("@a in @i %i has a value offset (%N) which is @n\n"),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* invalid ea entry->e_value_block */
|
|
{ PR_1_ATTR_VALUE_BLOCK,
|
|
N_("@a in @i %i has a value @b (%N) which is @n (must be 0)\n"),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* invalid ea entry->e_hash */
|
|
{ PR_1_ATTR_HASH,
|
|
N_("@a in @i %i has a hash (%N) which is @n (must be 0)\n"),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* Pass 1b errors */
|
|
|
|
/* Pass 1B: Rescan for duplicate/bad blocks */
|
|
{ PR_1B_PASS_HEADER,
|
|
N_("\nRunning additional passes to resolve @bs claimed by more than one @i...\n"
|
|
"Pass 1B: Rescanning for @m @bs\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Duplicate/bad block(s) header */
|
|
{ PR_1B_DUP_BLOCK_HEADER,
|
|
N_("@m @b(s) in @i %i:"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Duplicate/bad block(s) in inode */
|
|
{ PR_1B_DUP_BLOCK,
|
|
" %b",
|
|
PROMPT_NONE, PR_LATCH_DBLOCK | PR_PREEN_NOHDR },
|
|
|
|
/* Duplicate/bad block(s) end */
|
|
{ PR_1B_DUP_BLOCK_END,
|
|
"\n",
|
|
PROMPT_NONE, PR_PREEN_NOHDR },
|
|
|
|
/* Error while scanning inodes */
|
|
{ PR_1B_ISCAN_ERROR,
|
|
N_("Error while scanning inodes (%i): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error allocating inode bitmap */
|
|
{ PR_1B_ALLOCATE_IBITMAP_ERROR,
|
|
N_("@A @i @B (@i_dup_map): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error while iterating over blocks */
|
|
{ PR_1B_BLOCK_ITERATE,
|
|
N_("Error while iterating over @bs in @i %i (%s): %m\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error adjusting EA refcount */
|
|
{ PR_1B_ADJ_EA_REFCOUNT,
|
|
N_("Error adjusting refcount for @a @b %b (@i %i): %m\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
|
|
/* Pass 1C: Scan directories for inodes with multiply-claimed blocks. */
|
|
{ PR_1C_PASS_HEADER,
|
|
N_("Pass 1C: Scanning directories for @is with @m @bs.\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
|
|
/* Pass 1D: Reconciling multiply-claimed blocks */
|
|
{ PR_1D_PASS_HEADER,
|
|
N_("Pass 1D: Reconciling @m @bs\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* File has duplicate blocks */
|
|
{ PR_1D_DUP_FILE,
|
|
N_("File %Q (@i #%i, mod time %IM)\n"
|
|
" has %B @m @b(s), shared with %N file(s):\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* List of files sharing duplicate blocks */
|
|
{ PR_1D_DUP_FILE_LIST,
|
|
N_("\t%Q (@i #%i, mod time %IM)\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* File sharing blocks with filesystem metadata */
|
|
{ PR_1D_SHARE_METADATA,
|
|
N_("\t<@f metadata>\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Report of how many duplicate/bad inodes */
|
|
{ PR_1D_NUM_DUP_INODES,
|
|
N_("(There are %N @is containing @m @bs.)\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Duplicated blocks already reassigned or cloned. */
|
|
{ PR_1D_DUP_BLOCKS_DEALT,
|
|
N_("@m @bs already reassigned or cloned.\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Clone duplicate/bad blocks? */
|
|
{ PR_1D_CLONE_QUESTION,
|
|
"", PROMPT_CLONE, PR_NO_OK },
|
|
|
|
/* Delete file? */
|
|
{ PR_1D_DELETE_QUESTION,
|
|
"", PROMPT_DELETE, 0 },
|
|
|
|
/* Couldn't clone file (error) */
|
|
{ PR_1D_CLONE_ERROR,
|
|
N_("Couldn't clone file: %m\n"), PROMPT_NONE, 0 },
|
|
|
|
/* Pass 2 errors */
|
|
|
|
/* Pass 2: Checking directory structure */
|
|
{ PR_2_PASS_HEADER,
|
|
N_("Pass 2: Checking @d structure\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Bad inode number for '.' */
|
|
{ PR_2_BAD_INODE_DOT,
|
|
N_("@n @i number for '.' in @d @i %i.\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Directory entry has bad inode number */
|
|
{ PR_2_BAD_INO,
|
|
N_("@E has @n @i #: %Di.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Directory entry has deleted or unused inode */
|
|
{ PR_2_UNUSED_INODE,
|
|
N_("@E has @D/unused @i %Di. "),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* Directry entry is link to '.' */
|
|
{ PR_2_LINK_DOT,
|
|
N_("@E @L to '.' "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Directory entry points to inode now located in a bad block */
|
|
{ PR_2_BB_INODE,
|
|
N_("@E points to @i (%Di) located in a bad @b.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Directory entry contains a link to a directory */
|
|
{ PR_2_LINK_DIR,
|
|
N_("@E @L to @d %P (%Di).\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Directory entry contains a link to the root directry */
|
|
{ PR_2_LINK_ROOT,
|
|
N_("@E @L to the @r.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Directory entry has illegal characters in its name */
|
|
{ PR_2_BAD_NAME,
|
|
N_("@E has illegal characters in its name.\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Missing '.' in directory inode */
|
|
{ PR_2_MISSING_DOT,
|
|
N_("Missing '.' in @d @i %i.\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Missing '..' in directory inode */
|
|
{ PR_2_MISSING_DOT_DOT,
|
|
N_("Missing '..' in @d @i %i.\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* First entry in directory inode doesn't contain '.' */
|
|
{ PR_2_1ST_NOT_DOT,
|
|
N_("First @e '%Dn' (@i=%Di) in @d @i %i (%p) @s '.'\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Second entry in directory inode doesn't contain '..' */
|
|
{ PR_2_2ND_NOT_DOT_DOT,
|
|
N_("Second @e '%Dn' (@i=%Di) in @d @i %i @s '..'\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* i_faddr should be zero */
|
|
{ PR_2_FADDR_ZERO,
|
|
N_("i_faddr @F %IF, @s zero.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* i_file_acl should be zero */
|
|
{ PR_2_FILE_ACL_ZERO,
|
|
N_("i_file_acl @F %If, @s zero.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* i_dir_acl should be zero */
|
|
{ PR_2_DIR_ACL_ZERO,
|
|
N_("i_dir_acl @F %Id, @s zero.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* i_frag should be zero */
|
|
{ PR_2_FRAG_ZERO,
|
|
N_("i_frag @F %N, @s zero.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* i_fsize should be zero */
|
|
{ PR_2_FSIZE_ZERO,
|
|
N_("i_fsize @F %N, @s zero.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* inode has bad mode */
|
|
{ PR_2_BAD_MODE,
|
|
N_("@i %i (%Q) has @n mode (%Im).\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* directory corrupted */
|
|
{ PR_2_DIR_CORRUPTED,
|
|
N_("@d @i %i, @b %B, offset %N: @d corrupted\n"),
|
|
PROMPT_SALVAGE, 0 },
|
|
|
|
/* filename too long */
|
|
{ PR_2_FILENAME_LONG,
|
|
N_("@d @i %i, @b %B, offset %N: filename too long\n"),
|
|
PROMPT_TRUNCATE, 0 },
|
|
|
|
/* Directory inode has a missing block (hole) */
|
|
{ PR_2_DIRECTORY_HOLE,
|
|
N_("@d @i %i has an unallocated @b #%B. "),
|
|
PROMPT_ALLOCATE, 0 },
|
|
|
|
/* '.' is not NULL terminated */
|
|
{ PR_2_DOT_NULL_TERM,
|
|
N_("'.' @d @e in @d @i %i is not NULL terminated\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* '..' is not NULL terminated */
|
|
{ PR_2_DOT_DOT_NULL_TERM,
|
|
N_("'..' @d @e in @d @i %i is not NULL terminated\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Illegal character device inode */
|
|
{ PR_2_BAD_CHAR_DEV,
|
|
N_("@i %i (%Q) is an @I character @v.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Illegal block device inode */
|
|
{ PR_2_BAD_BLOCK_DEV,
|
|
N_("@i %i (%Q) is an @I @b @v.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Duplicate '.' entry */
|
|
{ PR_2_DUP_DOT,
|
|
N_("@E is duplicate '.' @e.\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Duplicate '..' entry */
|
|
{ PR_2_DUP_DOT_DOT,
|
|
N_("@E is duplicate '..' @e.\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Internal error: couldn't find dir_info */
|
|
{ PR_2_NO_DIRINFO,
|
|
N_("Internal error: cannot find dir_info for %i.\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Final rec_len is wrong */
|
|
{ PR_2_FINAL_RECLEN,
|
|
N_("@E has rec_len of %Dr, @s %N.\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Error allocating icount structure */
|
|
{ PR_2_ALLOCATE_ICOUNT,
|
|
N_("@A icount structure: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error iterating over directory blocks */
|
|
{ PR_2_DBLIST_ITERATE,
|
|
N_("Error iterating over @d @bs: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error reading directory block */
|
|
{ PR_2_READ_DIRBLOCK,
|
|
N_("Error reading @d @b %b (@i %i): %m\n"),
|
|
PROMPT_CONTINUE, 0 },
|
|
|
|
/* Error writing directory block */
|
|
{ PR_2_WRITE_DIRBLOCK,
|
|
N_("Error writing @d @b %b (@i %i): %m\n"),
|
|
PROMPT_CONTINUE, 0 },
|
|
|
|
/* Error allocating new directory block */
|
|
{ PR_2_ALLOC_DIRBOCK,
|
|
N_("@A new @d @b for @i %i (%s): %m\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error deallocating inode */
|
|
{ PR_2_DEALLOC_INODE,
|
|
N_("Error deallocating @i %i: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Directory entry for '.' is big. Split? */
|
|
{ PR_2_SPLIT_DOT,
|
|
N_("@d @e for '.' is big. "),
|
|
PROMPT_SPLIT, PR_NO_OK },
|
|
|
|
/* Illegal FIFO inode */
|
|
{ PR_2_BAD_FIFO,
|
|
N_("@i %i (%Q) is an @I FIFO.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Illegal socket inode */
|
|
{ PR_2_BAD_SOCKET,
|
|
N_("@i %i (%Q) is an @I socket.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Directory filetype not set */
|
|
{ PR_2_SET_FILETYPE,
|
|
N_("Setting filetype for @E to %N.\n"),
|
|
PROMPT_NONE, PR_PREEN_OK | PR_NO_OK | PR_NO_NOMSG },
|
|
|
|
/* Directory filetype incorrect */
|
|
{ PR_2_BAD_FILETYPE,
|
|
N_("@E has an incorrect filetype (was %Dt, @s %N).\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Directory filetype set on filesystem */
|
|
{ PR_2_CLEAR_FILETYPE,
|
|
N_("@E has filetype set.\n"),
|
|
PROMPT_CLEAR, PR_PREEN_OK },
|
|
|
|
/* Directory filename is null */
|
|
{ PR_2_NULL_NAME,
|
|
N_("@E has a @z name.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Invalid symlink */
|
|
{ PR_2_INVALID_SYMLINK,
|
|
N_("Symlink %Q (@i #%i) is @n.\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* i_file_acl (extended attribute block) is bad */
|
|
{ PR_2_FILE_ACL_BAD,
|
|
N_("@a @b @F @n (%If).\n"),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Filesystem contains large files, but has no such flag in sb */
|
|
{ PR_2_FEATURE_LARGE_FILES,
|
|
N_("@f contains large files, but lacks LARGE_FILE flag in @S.\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Node in HTREE directory not referenced */
|
|
{ PR_2_HTREE_NOTREF,
|
|
N_("@p @h %d: node (%B) not referenced\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Node in HTREE directory referenced twice */
|
|
{ PR_2_HTREE_DUPREF,
|
|
N_("@p @h %d: node (%B) referenced twice\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Node in HTREE directory has bad min hash */
|
|
{ PR_2_HTREE_MIN_HASH,
|
|
N_("@p @h %d: node (%B) has bad min hash\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Node in HTREE directory has bad max hash */
|
|
{ PR_2_HTREE_MAX_HASH,
|
|
N_("@p @h %d: node (%B) has bad max hash\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Clear invalid HTREE directory */
|
|
{ PR_2_HTREE_CLEAR,
|
|
N_("@n @h %d (%q). "), PROMPT_CLEAR, 0 },
|
|
|
|
/* Bad block in htree interior node */
|
|
{ PR_2_HTREE_BADBLK,
|
|
N_("@p @h %d (%q): bad @b number %b.\n"),
|
|
PROMPT_CLEAR_HTREE, 0 },
|
|
|
|
/* Error adjusting EA refcount */
|
|
{ PR_2_ADJ_EA_REFCOUNT,
|
|
N_("Error adjusting refcount for @a @b %b (@i %i): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Invalid HTREE root node */
|
|
{ PR_2_HTREE_BAD_ROOT,
|
|
N_("@p @h %d: root node is @n\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* Invalid HTREE limit */
|
|
{ PR_2_HTREE_BAD_LIMIT,
|
|
N_("@p @h %d: node (%B) has @n limit (%N)\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* Invalid HTREE count */
|
|
{ PR_2_HTREE_BAD_COUNT,
|
|
N_("@p @h %d: node (%B) has @n count (%N)\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* HTREE interior node has out-of-order hashes in table */
|
|
{ PR_2_HTREE_HASH_ORDER,
|
|
N_("@p @h %d: node (%B) has an unordered hash table\n"),
|
|
PROMPT_CLEAR_HTREE, PR_PREEN_OK },
|
|
|
|
/* Node in HTREE directory has invalid depth */
|
|
{ PR_2_HTREE_BAD_DEPTH,
|
|
N_("@p @h %d: node (%B) has @n depth\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Duplicate directory entry found */
|
|
{ PR_2_DUPLICATE_DIRENT,
|
|
N_("Duplicate @E found. "),
|
|
PROMPT_CLEAR, 0 },
|
|
|
|
/* Non-unique filename found */
|
|
{ PR_2_NON_UNIQUE_FILE, /* xgettext: no-c-format */
|
|
N_("@E has a non-unique filename.\nRename to %s"),
|
|
PROMPT_NULL, 0 },
|
|
|
|
/* Duplicate directory entry found */
|
|
{ PR_2_REPORT_DUP_DIRENT,
|
|
N_("Duplicate @e '%Dn' found.\n\tMarking %p (%i) to be rebuilt.\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Pass 3 errors */
|
|
|
|
/* Pass 3: Checking directory connectivity */
|
|
{ PR_3_PASS_HEADER,
|
|
N_("Pass 3: Checking @d connectivity\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Root inode not allocated */
|
|
{ PR_3_NO_ROOT_INODE,
|
|
N_("@r not allocated. "),
|
|
PROMPT_ALLOCATE, 0 },
|
|
|
|
/* No room in lost+found */
|
|
{ PR_3_EXPAND_LF_DIR,
|
|
N_("No room in @l @d. "),
|
|
PROMPT_EXPAND, 0 },
|
|
|
|
/* Unconnected directory inode */
|
|
{ PR_3_UNCONNECTED_DIR,
|
|
N_("Unconnected @d @i %i (%p)\n"),
|
|
PROMPT_CONNECT, 0 },
|
|
|
|
/* /lost+found not found */
|
|
{ PR_3_NO_LF_DIR,
|
|
N_("/@l not found. "),
|
|
PROMPT_CREATE, PR_PREEN_OK },
|
|
|
|
/* .. entry is incorrect */
|
|
{ PR_3_BAD_DOT_DOT,
|
|
N_("'..' in %Q (%i) is %P (%j), @s %q (%d).\n"),
|
|
PROMPT_FIX, 0 },
|
|
|
|
/* Bad or non-existent /lost+found. Cannot reconnect */
|
|
{ PR_3_NO_LPF,
|
|
N_("Bad or non-existent /@l. Cannot reconnect.\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Could not expand /lost+found */
|
|
{ PR_3_CANT_EXPAND_LPF,
|
|
N_("Could not expand /@l: %m\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Could not reconnect inode */
|
|
{ PR_3_CANT_RECONNECT,
|
|
N_("Could not reconnect %i: %m\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error while trying to find /lost+found */
|
|
{ PR_3_ERR_FIND_LPF,
|
|
N_("Error while trying to find /@l: %m\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error in ext2fs_new_block while creating /lost+found */
|
|
{ PR_3_ERR_LPF_NEW_BLOCK,
|
|
N_("ext2fs_new_@b: %m while trying to create /@l @d\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error in ext2fs_new_inode while creating /lost+found */
|
|
{ PR_3_ERR_LPF_NEW_INODE,
|
|
N_("ext2fs_new_@i: %m while trying to create /@l @d\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error in ext2fs_new_dir_block while creating /lost+found */
|
|
{ PR_3_ERR_LPF_NEW_DIR_BLOCK,
|
|
N_("ext2fs_new_dir_@b: %m while creating new @d @b\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error while writing directory block for /lost+found */
|
|
{ PR_3_ERR_LPF_WRITE_BLOCK,
|
|
N_("ext2fs_write_dir_@b: %m while writing the @d @b for /@l\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error while adjusting inode count */
|
|
{ PR_3_ADJUST_INODE,
|
|
N_("Error while adjusting @i count on @i %i\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Couldn't fix parent directory -- error */
|
|
{ PR_3_FIX_PARENT_ERR,
|
|
N_("Couldn't fix parent of @i %i: %m\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Couldn't fix parent directory -- couldn't find it */
|
|
{ PR_3_FIX_PARENT_NOFIND,
|
|
N_("Couldn't fix parent of @i %i: Couldn't find parent @d @e\n\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error allocating inode bitmap */
|
|
{ PR_3_ALLOCATE_IBITMAP_ERROR,
|
|
N_("@A @i @B (%N): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error creating root directory */
|
|
{ PR_3_CREATE_ROOT_ERROR,
|
|
N_("Error creating root @d (%s): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error creating lost and found directory */
|
|
{ PR_3_CREATE_LPF_ERROR,
|
|
N_("Error creating /@l @d (%s): %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Root inode is not directory; aborting */
|
|
{ PR_3_ROOT_NOT_DIR_ABORT,
|
|
N_("@r is not a @d; aborting.\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Cannot proceed without a root inode. */
|
|
{ PR_3_NO_ROOT_INODE_ABORT,
|
|
N_("can't proceed without a @r.\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Internal error: couldn't find dir_info */
|
|
{ PR_3_NO_DIRINFO,
|
|
N_("Internal error: cannot find dir_info for %i.\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Lost+found not a directory */
|
|
{ PR_3_LPF_NOTDIR,
|
|
N_("/@l is not a @d (ino=%i)\n"),
|
|
PROMPT_UNLINK, 0 },
|
|
|
|
/* Pass 3A Directory Optimization */
|
|
|
|
/* Pass 3A: Optimizing directories */
|
|
{ PR_3A_PASS_HEADER,
|
|
N_("Pass 3A: Optimizing directories\n"),
|
|
PROMPT_NONE, PR_PREEN_NOMSG },
|
|
|
|
/* Error iterating over directories */
|
|
{ PR_3A_OPTIMIZE_ITER,
|
|
N_("Failed to create dirs_to_hash iterator: %m"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Error rehash directory */
|
|
{ PR_3A_OPTIMIZE_DIR_ERR,
|
|
N_("Failed to optimize directory %q (%d): %m"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Rehashing dir header */
|
|
{ PR_3A_OPTIMIZE_DIR_HEADER,
|
|
N_("Optimizing directories: "),
|
|
PROMPT_NONE, PR_MSG_ONLY },
|
|
|
|
/* Rehashing directory %d */
|
|
{ PR_3A_OPTIMIZE_DIR,
|
|
" %d",
|
|
PROMPT_NONE, PR_LATCH_OPTIMIZE_DIR | PR_PREEN_NOHDR},
|
|
|
|
/* Rehashing dir end */
|
|
{ PR_3A_OPTIMIZE_DIR_END,
|
|
"\n",
|
|
PROMPT_NONE, PR_PREEN_NOHDR },
|
|
|
|
/* Pass 4 errors */
|
|
|
|
/* Pass 4: Checking reference counts */
|
|
{ PR_4_PASS_HEADER,
|
|
N_("Pass 4: Checking reference counts\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Unattached zero-length inode */
|
|
{ PR_4_ZERO_LEN_INODE,
|
|
N_("@u @z @i %i. "),
|
|
PROMPT_CLEAR, PR_PREEN_OK|PR_NO_OK },
|
|
|
|
/* Unattached inode */
|
|
{ PR_4_UNATTACHED_INODE,
|
|
N_("@u @i %i\n"),
|
|
PROMPT_CONNECT, 0 },
|
|
|
|
/* Inode ref count wrong */
|
|
{ PR_4_BAD_REF_COUNT,
|
|
N_("@i %i ref count is %Il, @s %N. "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
{ PR_4_INCONSISTENT_COUNT,
|
|
N_("WARNING: PROGRAMMING BUG IN E2FSCK!\n"
|
|
"\tOR SOME BONEHEAD (YOU) IS CHECKING A MOUNTED (LIVE) FILESYSTEM.\n"
|
|
"@i_link_info[%i] is %N, @i.i_links_count is %Il. "
|
|
"They @s the same!\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Pass 5 errors */
|
|
|
|
/* Pass 5: Checking group summary information */
|
|
{ PR_5_PASS_HEADER,
|
|
N_("Pass 5: Checking @g summary information\n"),
|
|
PROMPT_NONE, 0 },
|
|
|
|
/* Padding at end of inode bitmap is not set. */
|
|
{ PR_5_INODE_BMAP_PADDING,
|
|
N_("Padding at end of @i @B is not set. "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Padding at end of block bitmap is not set. */
|
|
{ PR_5_BLOCK_BMAP_PADDING,
|
|
N_("Padding at end of @b @B is not set. "),
|
|
PROMPT_FIX, PR_PREEN_OK },
|
|
|
|
/* Block bitmap differences header */
|
|
{ PR_5_BLOCK_BITMAP_HEADER,
|
|
N_("@b @B differences: "),
|
|
PROMPT_NONE, PR_PREEN_OK | PR_PREEN_NOMSG},
|
|
|
|
/* Block not used, but marked in bitmap */
|
|
{ PR_5_BLOCK_UNUSED,
|
|
" -%b",
|
|
PROMPT_NONE, PR_LATCH_BBITMAP | PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Block used, but not marked used in bitmap */
|
|
{ PR_5_BLOCK_USED,
|
|
" +%b",
|
|
PROMPT_NONE, PR_LATCH_BBITMAP | PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Block bitmap differences end */
|
|
{ PR_5_BLOCK_BITMAP_END,
|
|
"\n",
|
|
PROMPT_FIX, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Inode bitmap differences header */
|
|
{ PR_5_INODE_BITMAP_HEADER,
|
|
N_("@i @B differences: "),
|
|
PROMPT_NONE, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Inode not used, but marked in bitmap */
|
|
{ PR_5_INODE_UNUSED,
|
|
" -%i",
|
|
PROMPT_NONE, PR_LATCH_IBITMAP | PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Inode used, but not marked used in bitmap */
|
|
{ PR_5_INODE_USED,
|
|
" +%i",
|
|
PROMPT_NONE, PR_LATCH_IBITMAP | PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Inode bitmap differences end */
|
|
{ PR_5_INODE_BITMAP_END,
|
|
"\n",
|
|
PROMPT_FIX, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Free inodes count for group wrong */
|
|
{ PR_5_FREE_INODE_COUNT_GROUP,
|
|
N_("Free @is count wrong for @g #%g (%i, counted=%j).\n"),
|
|
PROMPT_FIX, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Directories count for group wrong */
|
|
{ PR_5_FREE_DIR_COUNT_GROUP,
|
|
N_("Directories count wrong for @g #%g (%i, counted=%j).\n"),
|
|
PROMPT_FIX, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Free inodes count wrong */
|
|
{ PR_5_FREE_INODE_COUNT,
|
|
N_("Free @is count wrong (%i, counted=%j).\n"),
|
|
PROMPT_FIX, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Free blocks count for group wrong */
|
|
{ PR_5_FREE_BLOCK_COUNT_GROUP,
|
|
N_("Free @bs count wrong for @g #%g (%b, counted=%c).\n"),
|
|
PROMPT_FIX, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Free blocks count wrong */
|
|
{ PR_5_FREE_BLOCK_COUNT,
|
|
N_("Free @bs count wrong (%b, counted=%c).\n"),
|
|
PROMPT_FIX, PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Programming error: bitmap endpoints don't match */
|
|
{ PR_5_BMAP_ENDPOINTS,
|
|
N_("PROGRAMMING ERROR: @f (#%N) @B endpoints (%b, %c) don't "
|
|
"match calculated @B endpoints (%i, %j)\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Internal error: fudging end of bitmap */
|
|
{ PR_5_FUDGE_BITMAP_ERROR,
|
|
N_("Internal error: fudging end of bitmap (%N)\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error copying in replacement inode bitmap */
|
|
{ PR_5_COPY_IBITMAP_ERROR,
|
|
N_("Error copying in replacement @i @B: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Error copying in replacement block bitmap */
|
|
{ PR_5_COPY_BBITMAP_ERROR,
|
|
N_("Error copying in replacement @b @B: %m\n"),
|
|
PROMPT_NONE, PR_FATAL },
|
|
|
|
/* Block range not used, but marked in bitmap */
|
|
{ PR_5_BLOCK_RANGE_UNUSED,
|
|
" -(%b--%c)",
|
|
PROMPT_NONE, PR_LATCH_BBITMAP | PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Block range used, but not marked used in bitmap */
|
|
{ PR_5_BLOCK_RANGE_USED,
|
|
" +(%b--%c)",
|
|
PROMPT_NONE, PR_LATCH_BBITMAP | PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Inode range not used, but marked in bitmap */
|
|
{ PR_5_INODE_RANGE_UNUSED,
|
|
" -(%i--%j)",
|
|
PROMPT_NONE, PR_LATCH_IBITMAP | PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
/* Inode range used, but not marked used in bitmap */
|
|
{ PR_5_INODE_RANGE_USED,
|
|
" +(%i--%j)",
|
|
PROMPT_NONE, PR_LATCH_IBITMAP | PR_PREEN_OK | PR_PREEN_NOMSG },
|
|
|
|
{ 0 }
|
|
};
|
|
|
|
/*
|
|
* This is the latch flags register. It allows several problems to be
|
|
* "latched" together. This means that the user has to answer but one
|
|
* question for the set of problems, and all of the associated
|
|
* problems will be either fixed or not fixed.
|
|
*/
|
|
static struct latch_descr pr_latch_info[] = {
|
|
{ PR_LATCH_BLOCK, PR_1_INODE_BLOCK_LATCH, 0 },
|
|
{ PR_LATCH_BBLOCK, PR_1_INODE_BBLOCK_LATCH, 0 },
|
|
{ PR_LATCH_IBITMAP, PR_5_INODE_BITMAP_HEADER, PR_5_INODE_BITMAP_END },
|
|
{ PR_LATCH_BBITMAP, PR_5_BLOCK_BITMAP_HEADER, PR_5_BLOCK_BITMAP_END },
|
|
{ PR_LATCH_RELOC, PR_0_RELOCATE_HINT, 0 },
|
|
{ PR_LATCH_DBLOCK, PR_1B_DUP_BLOCK_HEADER, PR_1B_DUP_BLOCK_END },
|
|
{ PR_LATCH_LOW_DTIME, PR_1_ORPHAN_LIST_REFUGEES, 0 },
|
|
{ PR_LATCH_TOOBIG, PR_1_INODE_TOOBIG, 0 },
|
|
{ PR_LATCH_OPTIMIZE_DIR, PR_3A_OPTIMIZE_DIR_HEADER, PR_3A_OPTIMIZE_DIR_END },
|
|
{ -1, 0, 0 },
|
|
};
|
|
|
|
static const struct e2fsck_problem *find_problem(problem_t code)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; problem_table[i].e2p_code; i++) {
|
|
if (problem_table[i].e2p_code == code)
|
|
return &problem_table[i];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct latch_descr *find_latch(int code)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; pr_latch_info[i].latch_code >= 0; i++) {
|
|
if (pr_latch_info[i].latch_code == code)
|
|
return &pr_latch_info[i];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int end_problem_latch(e2fsck_t ctx, int mask)
|
|
{
|
|
struct latch_descr *ldesc;
|
|
struct problem_context pctx;
|
|
int answer = -1;
|
|
|
|
ldesc = find_latch(mask);
|
|
if (ldesc->end_message && (ldesc->flags & PRL_LATCHED)) {
|
|
clear_problem_context(&pctx);
|
|
answer = fix_problem(ctx, ldesc->end_message, &pctx);
|
|
}
|
|
ldesc->flags &= ~(PRL_VARIABLE);
|
|
return answer;
|
|
}
|
|
|
|
int set_latch_flags(int mask, int setflags, int clearflags)
|
|
{
|
|
struct latch_descr *ldesc;
|
|
|
|
ldesc = find_latch(mask);
|
|
if (!ldesc)
|
|
return -1;
|
|
ldesc->flags |= setflags;
|
|
ldesc->flags &= ~clearflags;
|
|
return 0;
|
|
}
|
|
|
|
void clear_problem_context(struct problem_context *ctx)
|
|
{
|
|
memset(ctx, 0, sizeof(struct problem_context));
|
|
ctx->blkcount = -1;
|
|
ctx->group = -1;
|
|
}
|
|
|
|
int fix_problem(e2fsck_t ctx, problem_t code, struct problem_context *pctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
const struct e2fsck_problem *ptr;
|
|
struct latch_descr *ldesc = NULL;
|
|
const char *message;
|
|
int def_yn, answer, ans;
|
|
int print_answer = 0;
|
|
int suppress = 0;
|
|
|
|
ptr = find_problem(code);
|
|
if (!ptr) {
|
|
printf(_("Unhandled error code (0x%x)!\n"), code);
|
|
return 0;
|
|
}
|
|
def_yn = 1;
|
|
if ((ptr->flags & PR_NO_DEFAULT) ||
|
|
((ptr->flags & PR_PREEN_NO) && (ctx->options & E2F_OPT_PREEN)) ||
|
|
(ctx->options & E2F_OPT_NO))
|
|
def_yn= 0;
|
|
|
|
/*
|
|
* Do special latch processing. This is where we ask the
|
|
* latch question, if it exists
|
|
*/
|
|
if (ptr->flags & PR_LATCH_MASK) {
|
|
ldesc = find_latch(ptr->flags & PR_LATCH_MASK);
|
|
if (ldesc->question && !(ldesc->flags & PRL_LATCHED)) {
|
|
ans = fix_problem(ctx, ldesc->question, pctx);
|
|
if (ans == 1)
|
|
ldesc->flags |= PRL_YES;
|
|
if (ans == 0)
|
|
ldesc->flags |= PRL_NO;
|
|
ldesc->flags |= PRL_LATCHED;
|
|
}
|
|
if (ldesc->flags & PRL_SUPPRESS)
|
|
suppress++;
|
|
}
|
|
if ((ptr->flags & PR_PREEN_NOMSG) &&
|
|
(ctx->options & E2F_OPT_PREEN))
|
|
suppress++;
|
|
if ((ptr->flags & PR_NO_NOMSG) &&
|
|
(ctx->options & E2F_OPT_NO))
|
|
suppress++;
|
|
if (!suppress) {
|
|
message = ptr->e2p_description;
|
|
if ((ctx->options & E2F_OPT_PREEN) &&
|
|
!(ptr->flags & PR_PREEN_NOHDR)) {
|
|
printf("%s: ", ctx->device_name ?
|
|
ctx->device_name : ctx->filesystem_name);
|
|
}
|
|
if (*message)
|
|
print_e2fsck_message(ctx, _(message), pctx, 1);
|
|
}
|
|
if (!(ptr->flags & PR_PREEN_OK) && (ptr->prompt != PROMPT_NONE))
|
|
preenhalt(ctx);
|
|
|
|
if (ptr->flags & PR_FATAL)
|
|
bb_error_msg_and_die(0);
|
|
|
|
if (ptr->prompt == PROMPT_NONE) {
|
|
if (ptr->flags & PR_NOCOLLATE)
|
|
answer = -1;
|
|
else
|
|
answer = def_yn;
|
|
} else {
|
|
if (ctx->options & E2F_OPT_PREEN) {
|
|
answer = def_yn;
|
|
if (!(ptr->flags & PR_PREEN_NOMSG))
|
|
print_answer = 1;
|
|
} else if ((ptr->flags & PR_LATCH_MASK) &&
|
|
(ldesc->flags & (PRL_YES | PRL_NO))) {
|
|
if (!suppress)
|
|
print_answer = 1;
|
|
if (ldesc->flags & PRL_YES)
|
|
answer = 1;
|
|
else
|
|
answer = 0;
|
|
} else
|
|
answer = ask(ctx, _(prompt[(int) ptr->prompt]), def_yn);
|
|
if (!answer && !(ptr->flags & PR_NO_OK))
|
|
ext2fs_unmark_valid(fs);
|
|
|
|
if (print_answer)
|
|
printf("%s.\n", answer ?
|
|
_(preen_msg[(int) ptr->prompt]) : _("IGNORED"));
|
|
}
|
|
|
|
if ((ptr->prompt == PROMPT_ABORT) && answer)
|
|
bb_error_msg_and_die(0);
|
|
|
|
if (ptr->flags & PR_AFTER_CODE)
|
|
answer = fix_problem(ctx, ptr->second_code, pctx);
|
|
|
|
return answer;
|
|
}
|
|
|
|
/*
|
|
* linux/fs/recovery.c
|
|
*
|
|
* Written by Stephen C. Tweedie <sct@redhat.com>, 1999
|
|
*/
|
|
|
|
/*
|
|
* Maintain information about the progress of the recovery job, so that
|
|
* the different passes can carry information between them.
|
|
*/
|
|
struct recovery_info
|
|
{
|
|
tid_t start_transaction;
|
|
tid_t end_transaction;
|
|
|
|
int nr_replays;
|
|
int nr_revokes;
|
|
int nr_revoke_hits;
|
|
};
|
|
|
|
enum passtype {PASS_SCAN, PASS_REVOKE, PASS_REPLAY};
|
|
static int do_one_pass(journal_t *journal,
|
|
struct recovery_info *info, enum passtype pass);
|
|
static int scan_revoke_records(journal_t *, struct buffer_head *,
|
|
tid_t, struct recovery_info *);
|
|
|
|
/*
|
|
* Read a block from the journal
|
|
*/
|
|
|
|
static int jread(struct buffer_head **bhp, journal_t *journal,
|
|
unsigned int offset)
|
|
{
|
|
int err;
|
|
unsigned long blocknr;
|
|
struct buffer_head *bh;
|
|
|
|
*bhp = NULL;
|
|
|
|
err = journal_bmap(journal, offset, &blocknr);
|
|
|
|
if (err) {
|
|
printf("JBD: bad block at offset %u\n", offset);
|
|
return err;
|
|
}
|
|
|
|
bh = getblk(journal->j_dev, blocknr, journal->j_blocksize);
|
|
if (!bh)
|
|
return -ENOMEM;
|
|
|
|
if (!buffer_uptodate(bh)) {
|
|
/* If this is a brand new buffer, start readahead.
|
|
Otherwise, we assume we are already reading it. */
|
|
if (!buffer_req(bh))
|
|
do_readahead(journal, offset);
|
|
wait_on_buffer(bh);
|
|
}
|
|
|
|
if (!buffer_uptodate(bh)) {
|
|
printf("JBD: Failed to read block at offset %u\n", offset);
|
|
brelse(bh);
|
|
return -EIO;
|
|
}
|
|
|
|
*bhp = bh;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Count the number of in-use tags in a journal descriptor block.
|
|
*/
|
|
|
|
static int count_tags(struct buffer_head *bh, int size)
|
|
{
|
|
char * tagp;
|
|
journal_block_tag_t * tag;
|
|
int nr = 0;
|
|
|
|
tagp = &bh->b_data[sizeof(journal_header_t)];
|
|
|
|
while ((tagp - bh->b_data + sizeof(journal_block_tag_t)) <= size) {
|
|
tag = (journal_block_tag_t *) tagp;
|
|
|
|
nr++;
|
|
tagp += sizeof(journal_block_tag_t);
|
|
if (!(tag->t_flags & htonl(JFS_FLAG_SAME_UUID)))
|
|
tagp += 16;
|
|
|
|
if (tag->t_flags & htonl(JFS_FLAG_LAST_TAG))
|
|
break;
|
|
}
|
|
|
|
return nr;
|
|
}
|
|
|
|
|
|
/* Make sure we wrap around the log correctly! */
|
|
#define wrap(journal, var) \
|
|
do { \
|
|
if (var >= (journal)->j_last) \
|
|
var -= ((journal)->j_last - (journal)->j_first); \
|
|
} while (0)
|
|
|
|
/**
|
|
* int journal_recover(journal_t *journal) - recovers a on-disk journal
|
|
* @journal: the journal to recover
|
|
*
|
|
* The primary function for recovering the log contents when mounting a
|
|
* journaled device.
|
|
*
|
|
* Recovery is done in three passes. In the first pass, we look for the
|
|
* end of the log. In the second, we assemble the list of revoke
|
|
* blocks. In the third and final pass, we replay any un-revoked blocks
|
|
* in the log.
|
|
*/
|
|
int journal_recover(journal_t *journal)
|
|
{
|
|
int err;
|
|
journal_superblock_t * sb;
|
|
|
|
struct recovery_info info;
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
sb = journal->j_superblock;
|
|
|
|
/*
|
|
* The journal superblock's s_start field (the current log head)
|
|
* is always zero if, and only if, the journal was cleanly
|
|
* unmounted.
|
|
*/
|
|
|
|
if (!sb->s_start) {
|
|
journal->j_transaction_sequence = ntohl(sb->s_sequence) + 1;
|
|
return 0;
|
|
}
|
|
|
|
err = do_one_pass(journal, &info, PASS_SCAN);
|
|
if (!err)
|
|
err = do_one_pass(journal, &info, PASS_REVOKE);
|
|
if (!err)
|
|
err = do_one_pass(journal, &info, PASS_REPLAY);
|
|
|
|
/* Restart the log at the next transaction ID, thus invalidating
|
|
* any existing commit records in the log. */
|
|
journal->j_transaction_sequence = ++info.end_transaction;
|
|
|
|
journal_clear_revoke(journal);
|
|
sync_blockdev(journal->j_fs_dev);
|
|
return err;
|
|
}
|
|
|
|
static int do_one_pass(journal_t *journal,
|
|
struct recovery_info *info, enum passtype pass)
|
|
{
|
|
unsigned int first_commit_ID, next_commit_ID;
|
|
unsigned long next_log_block;
|
|
int err, success = 0;
|
|
journal_superblock_t * sb;
|
|
journal_header_t * tmp;
|
|
struct buffer_head * bh;
|
|
unsigned int sequence;
|
|
int blocktype;
|
|
|
|
/* Precompute the maximum metadata descriptors in a descriptor block */
|
|
int MAX_BLOCKS_PER_DESC;
|
|
MAX_BLOCKS_PER_DESC = ((journal->j_blocksize-sizeof(journal_header_t))
|
|
/ sizeof(journal_block_tag_t));
|
|
|
|
/*
|
|
* First thing is to establish what we expect to find in the log
|
|
* (in terms of transaction IDs), and where (in terms of log
|
|
* block offsets): query the superblock.
|
|
*/
|
|
|
|
sb = journal->j_superblock;
|
|
next_commit_ID = ntohl(sb->s_sequence);
|
|
next_log_block = ntohl(sb->s_start);
|
|
|
|
first_commit_ID = next_commit_ID;
|
|
if (pass == PASS_SCAN)
|
|
info->start_transaction = first_commit_ID;
|
|
|
|
/*
|
|
* Now we walk through the log, transaction by transaction,
|
|
* making sure that each transaction has a commit block in the
|
|
* expected place. Each complete transaction gets replayed back
|
|
* into the main filesystem.
|
|
*/
|
|
|
|
while (1) {
|
|
int flags;
|
|
char * tagp;
|
|
journal_block_tag_t * tag;
|
|
struct buffer_head * obh;
|
|
struct buffer_head * nbh;
|
|
|
|
/* If we already know where to stop the log traversal,
|
|
* check right now that we haven't gone past the end of
|
|
* the log. */
|
|
|
|
if (pass != PASS_SCAN)
|
|
if (tid_geq(next_commit_ID, info->end_transaction))
|
|
break;
|
|
|
|
/* Skip over each chunk of the transaction looking
|
|
* either the next descriptor block or the final commit
|
|
* record. */
|
|
|
|
err = jread(&bh, journal, next_log_block);
|
|
if (err)
|
|
goto failed;
|
|
|
|
next_log_block++;
|
|
wrap(journal, next_log_block);
|
|
|
|
/* What kind of buffer is it?
|
|
*
|
|
* If it is a descriptor block, check that it has the
|
|
* expected sequence number. Otherwise, we're all done
|
|
* here. */
|
|
|
|
tmp = (journal_header_t *)bh->b_data;
|
|
|
|
if (tmp->h_magic != htonl(JFS_MAGIC_NUMBER)) {
|
|
brelse(bh);
|
|
break;
|
|
}
|
|
|
|
blocktype = ntohl(tmp->h_blocktype);
|
|
sequence = ntohl(tmp->h_sequence);
|
|
|
|
if (sequence != next_commit_ID) {
|
|
brelse(bh);
|
|
break;
|
|
}
|
|
|
|
/* OK, we have a valid descriptor block which matches
|
|
* all of the sequence number checks. What are we going
|
|
* to do with it? That depends on the pass... */
|
|
|
|
switch (blocktype) {
|
|
case JFS_DESCRIPTOR_BLOCK:
|
|
/* If it is a valid descriptor block, replay it
|
|
* in pass REPLAY; otherwise, just skip over the
|
|
* blocks it describes. */
|
|
if (pass != PASS_REPLAY) {
|
|
next_log_block +=
|
|
count_tags(bh, journal->j_blocksize);
|
|
wrap(journal, next_log_block);
|
|
brelse(bh);
|
|
continue;
|
|
}
|
|
|
|
/* A descriptor block: we can now write all of
|
|
* the data blocks. Yay, useful work is finally
|
|
* getting done here! */
|
|
|
|
tagp = &bh->b_data[sizeof(journal_header_t)];
|
|
while ((tagp - bh->b_data +sizeof(journal_block_tag_t))
|
|
<= journal->j_blocksize) {
|
|
unsigned long io_block;
|
|
|
|
tag = (journal_block_tag_t *) tagp;
|
|
flags = ntohl(tag->t_flags);
|
|
|
|
io_block = next_log_block++;
|
|
wrap(journal, next_log_block);
|
|
err = jread(&obh, journal, io_block);
|
|
if (err) {
|
|
/* Recover what we can, but
|
|
* report failure at the end. */
|
|
success = err;
|
|
printf("JBD: IO error %d recovering "
|
|
"block %ld in log\n",
|
|
err, io_block);
|
|
} else {
|
|
unsigned long blocknr;
|
|
|
|
blocknr = ntohl(tag->t_blocknr);
|
|
|
|
/* If the block has been
|
|
* revoked, then we're all done
|
|
* here. */
|
|
if (journal_test_revoke
|
|
(journal, blocknr,
|
|
next_commit_ID)) {
|
|
brelse(obh);
|
|
++info->nr_revoke_hits;
|
|
goto skip_write;
|
|
}
|
|
|
|
/* Find a buffer for the new
|
|
* data being restored */
|
|
nbh = getblk(journal->j_fs_dev,
|
|
blocknr,
|
|
journal->j_blocksize);
|
|
if (nbh == NULL) {
|
|
printf("JBD: Out of memory "
|
|
"during recovery.\n");
|
|
err = -ENOMEM;
|
|
brelse(bh);
|
|
brelse(obh);
|
|
goto failed;
|
|
}
|
|
|
|
lock_buffer(nbh);
|
|
memcpy(nbh->b_data, obh->b_data,
|
|
journal->j_blocksize);
|
|
if (flags & JFS_FLAG_ESCAPE) {
|
|
*((unsigned int *)bh->b_data) =
|
|
htonl(JFS_MAGIC_NUMBER);
|
|
}
|
|
|
|
mark_buffer_uptodate(nbh, 1);
|
|
mark_buffer_dirty(nbh);
|
|
++info->nr_replays;
|
|
/* ll_rw_block(WRITE, 1, &nbh); */
|
|
unlock_buffer(nbh);
|
|
brelse(obh);
|
|
brelse(nbh);
|
|
}
|
|
|
|
skip_write:
|
|
tagp += sizeof(journal_block_tag_t);
|
|
if (!(flags & JFS_FLAG_SAME_UUID))
|
|
tagp += 16;
|
|
|
|
if (flags & JFS_FLAG_LAST_TAG)
|
|
break;
|
|
}
|
|
|
|
brelse(bh);
|
|
continue;
|
|
|
|
case JFS_COMMIT_BLOCK:
|
|
/* Found an expected commit block: not much to
|
|
* do other than move on to the next sequence
|
|
* number. */
|
|
brelse(bh);
|
|
next_commit_ID++;
|
|
continue;
|
|
|
|
case JFS_REVOKE_BLOCK:
|
|
/* If we aren't in the REVOKE pass, then we can
|
|
* just skip over this block. */
|
|
if (pass != PASS_REVOKE) {
|
|
brelse(bh);
|
|
continue;
|
|
}
|
|
|
|
err = scan_revoke_records(journal, bh,
|
|
next_commit_ID, info);
|
|
brelse(bh);
|
|
if (err)
|
|
goto failed;
|
|
continue;
|
|
|
|
default:
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* We broke out of the log scan loop: either we came to the
|
|
* known end of the log or we found an unexpected block in the
|
|
* log. If the latter happened, then we know that the "current"
|
|
* transaction marks the end of the valid log.
|
|
*/
|
|
|
|
if (pass == PASS_SCAN)
|
|
info->end_transaction = next_commit_ID;
|
|
else {
|
|
/* It's really bad news if different passes end up at
|
|
* different places (but possible due to IO errors). */
|
|
if (info->end_transaction != next_commit_ID) {
|
|
printf("JBD: recovery pass %d ended at "
|
|
"transaction %u, expected %u\n",
|
|
pass, next_commit_ID, info->end_transaction);
|
|
if (!success)
|
|
success = -EIO;
|
|
}
|
|
}
|
|
|
|
return success;
|
|
|
|
failed:
|
|
return err;
|
|
}
|
|
|
|
|
|
/* Scan a revoke record, marking all blocks mentioned as revoked. */
|
|
|
|
static int scan_revoke_records(journal_t *journal, struct buffer_head *bh,
|
|
tid_t sequence, struct recovery_info *info)
|
|
{
|
|
journal_revoke_header_t *header;
|
|
int offset, max;
|
|
|
|
header = (journal_revoke_header_t *) bh->b_data;
|
|
offset = sizeof(journal_revoke_header_t);
|
|
max = ntohl(header->r_count);
|
|
|
|
while (offset < max) {
|
|
unsigned long blocknr;
|
|
int err;
|
|
|
|
blocknr = ntohl(* ((unsigned int *) (bh->b_data+offset)));
|
|
offset += 4;
|
|
err = journal_set_revoke(journal, blocknr, sequence);
|
|
if (err)
|
|
return err;
|
|
++info->nr_revokes;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* rehash.c --- rebuild hash tree directories
|
|
*
|
|
* This algorithm is designed for simplicity of implementation and to
|
|
* pack the directory as much as possible. It however requires twice
|
|
* as much memory as the size of the directory. The maximum size
|
|
* directory supported using a 4k blocksize is roughly a gigabyte, and
|
|
* so there may very well be problems with machines that don't have
|
|
* virtual memory, and obscenely large directories.
|
|
*
|
|
* An alternate algorithm which is much more disk intensive could be
|
|
* written, and probably will need to be written in the future. The
|
|
* design goals of such an algorithm are: (a) use (roughly) constant
|
|
* amounts of memory, no matter how large the directory, (b) the
|
|
* directory must be safe at all times, even if e2fsck is interrupted
|
|
* in the middle, (c) we must use minimal amounts of extra disk
|
|
* blocks. This pretty much requires an incremental approach, where
|
|
* we are reading from one part of the directory, and inserting into
|
|
* the front half. So the algorithm will have to keep track of a
|
|
* moving block boundary between the new tree and the old tree, and
|
|
* files will need to be moved from the old directory and inserted
|
|
* into the new tree. If the new directory requires space which isn't
|
|
* yet available, blocks from the beginning part of the old directory
|
|
* may need to be moved to the end of the directory to make room for
|
|
* the new tree:
|
|
*
|
|
* --------------------------------------------------------
|
|
* | new tree | | old tree |
|
|
* --------------------------------------------------------
|
|
* ^ ptr ^ptr
|
|
* tail new head old
|
|
*
|
|
* This is going to be a pain in the tuckus to implement, and will
|
|
* require a lot more disk accesses. So I'm going to skip it for now;
|
|
* it's only really going to be an issue for really, really big
|
|
* filesystems (when we reach the level of tens of millions of files
|
|
* in a single directory). It will probably be easier to simply
|
|
* require that e2fsck use VM first.
|
|
*/
|
|
|
|
struct fill_dir_struct {
|
|
char *buf;
|
|
struct ext2_inode *inode;
|
|
int err;
|
|
e2fsck_t ctx;
|
|
struct hash_entry *harray;
|
|
int max_array, num_array;
|
|
int dir_size;
|
|
int compress;
|
|
ino_t parent;
|
|
};
|
|
|
|
struct hash_entry {
|
|
ext2_dirhash_t hash;
|
|
ext2_dirhash_t minor_hash;
|
|
struct ext2_dir_entry *dir;
|
|
};
|
|
|
|
struct out_dir {
|
|
int num;
|
|
int max;
|
|
char *buf;
|
|
ext2_dirhash_t *hashes;
|
|
};
|
|
|
|
static int fill_dir_block(ext2_filsys fs,
|
|
blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk_t ref_block FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct fill_dir_struct *fd = (struct fill_dir_struct *) priv_data;
|
|
struct hash_entry *new_array, *ent;
|
|
struct ext2_dir_entry *dirent;
|
|
char *dir;
|
|
unsigned int offset, dir_offset;
|
|
|
|
if (blockcnt < 0)
|
|
return 0;
|
|
|
|
offset = blockcnt * fs->blocksize;
|
|
if (offset + fs->blocksize > fd->inode->i_size) {
|
|
fd->err = EXT2_ET_DIR_CORRUPTED;
|
|
return BLOCK_ABORT;
|
|
}
|
|
dir = (fd->buf+offset);
|
|
if (HOLE_BLKADDR(*block_nr)) {
|
|
memset(dir, 0, fs->blocksize);
|
|
dirent = (struct ext2_dir_entry *) dir;
|
|
dirent->rec_len = fs->blocksize;
|
|
} else {
|
|
fd->err = ext2fs_read_dir_block(fs, *block_nr, dir);
|
|
if (fd->err)
|
|
return BLOCK_ABORT;
|
|
}
|
|
/* While the directory block is "hot", index it. */
|
|
dir_offset = 0;
|
|
while (dir_offset < fs->blocksize) {
|
|
dirent = (struct ext2_dir_entry *) (dir + dir_offset);
|
|
if (((dir_offset + dirent->rec_len) > fs->blocksize) ||
|
|
(dirent->rec_len < 8) ||
|
|
((dirent->rec_len % 4) != 0) ||
|
|
(((dirent->name_len & 0xFF)+8) > dirent->rec_len)) {
|
|
fd->err = EXT2_ET_DIR_CORRUPTED;
|
|
return BLOCK_ABORT;
|
|
}
|
|
dir_offset += dirent->rec_len;
|
|
if (dirent->inode == 0)
|
|
continue;
|
|
if (!fd->compress && ((dirent->name_len&0xFF) == 1) &&
|
|
(dirent->name[0] == '.'))
|
|
continue;
|
|
if (!fd->compress && ((dirent->name_len&0xFF) == 2) &&
|
|
(dirent->name[0] == '.') && (dirent->name[1] == '.')) {
|
|
fd->parent = dirent->inode;
|
|
continue;
|
|
}
|
|
if (fd->num_array >= fd->max_array) {
|
|
new_array = xrealloc(fd->harray,
|
|
sizeof(struct hash_entry) * (fd->max_array+500));
|
|
fd->harray = new_array;
|
|
fd->max_array += 500;
|
|
}
|
|
ent = fd->harray + fd->num_array++;
|
|
ent->dir = dirent;
|
|
fd->dir_size += EXT2_DIR_REC_LEN(dirent->name_len & 0xFF);
|
|
if (fd->compress)
|
|
ent->hash = ent->minor_hash = 0;
|
|
else {
|
|
fd->err = ext2fs_dirhash(fs->super->s_def_hash_version,
|
|
dirent->name,
|
|
dirent->name_len & 0xFF,
|
|
fs->super->s_hash_seed,
|
|
&ent->hash, &ent->minor_hash);
|
|
if (fd->err)
|
|
return BLOCK_ABORT;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Used for sorting the hash entry */
|
|
static int name_cmp(const void *a, const void *b)
|
|
{
|
|
const struct hash_entry *he_a = (const struct hash_entry *) a;
|
|
const struct hash_entry *he_b = (const struct hash_entry *) b;
|
|
int ret;
|
|
int min_len;
|
|
|
|
min_len = he_a->dir->name_len;
|
|
if (min_len > he_b->dir->name_len)
|
|
min_len = he_b->dir->name_len;
|
|
|
|
ret = strncmp(he_a->dir->name, he_b->dir->name, min_len);
|
|
if (ret == 0) {
|
|
if (he_a->dir->name_len > he_b->dir->name_len)
|
|
ret = 1;
|
|
else if (he_a->dir->name_len < he_b->dir->name_len)
|
|
ret = -1;
|
|
else
|
|
ret = he_b->dir->inode - he_a->dir->inode;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Used for sorting the hash entry */
|
|
static int hash_cmp(const void *a, const void *b)
|
|
{
|
|
const struct hash_entry *he_a = (const struct hash_entry *) a;
|
|
const struct hash_entry *he_b = (const struct hash_entry *) b;
|
|
int ret;
|
|
|
|
if (he_a->hash > he_b->hash)
|
|
ret = 1;
|
|
else if (he_a->hash < he_b->hash)
|
|
ret = -1;
|
|
else {
|
|
if (he_a->minor_hash > he_b->minor_hash)
|
|
ret = 1;
|
|
else if (he_a->minor_hash < he_b->minor_hash)
|
|
ret = -1;
|
|
else
|
|
ret = name_cmp(a, b);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static errcode_t alloc_size_dir(ext2_filsys fs, struct out_dir *outdir,
|
|
int blocks)
|
|
{
|
|
void *new_mem;
|
|
|
|
if (outdir->max) {
|
|
new_mem = xrealloc(outdir->buf, blocks * fs->blocksize);
|
|
outdir->buf = new_mem;
|
|
new_mem = xrealloc(outdir->hashes,
|
|
blocks * sizeof(ext2_dirhash_t));
|
|
outdir->hashes = new_mem;
|
|
} else {
|
|
outdir->buf = xmalloc(blocks * fs->blocksize);
|
|
outdir->hashes = xmalloc(blocks * sizeof(ext2_dirhash_t));
|
|
outdir->num = 0;
|
|
}
|
|
outdir->max = blocks;
|
|
return 0;
|
|
}
|
|
|
|
static void free_out_dir(struct out_dir *outdir)
|
|
{
|
|
free(outdir->buf);
|
|
free(outdir->hashes);
|
|
outdir->max = 0;
|
|
outdir->num =0;
|
|
}
|
|
|
|
static errcode_t get_next_block(ext2_filsys fs, struct out_dir *outdir,
|
|
char ** ret)
|
|
{
|
|
errcode_t retval;
|
|
|
|
if (outdir->num >= outdir->max) {
|
|
retval = alloc_size_dir(fs, outdir, outdir->max + 50);
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
*ret = outdir->buf + (outdir->num++ * fs->blocksize);
|
|
memset(*ret, 0, fs->blocksize);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is used to make a unique filename. We do this by
|
|
* appending ~0, and then incrementing the number. However, we cannot
|
|
* expand the length of the filename beyond the padding available in
|
|
* the directory entry.
|
|
*/
|
|
static void mutate_name(char *str, __u16 *len)
|
|
{
|
|
int i;
|
|
__u16 l = *len & 0xFF, h = *len & 0xff00;
|
|
|
|
/*
|
|
* First check to see if it looks the name has been mutated
|
|
* already
|
|
*/
|
|
for (i = l-1; i > 0; i--) {
|
|
if (!isdigit(str[i]))
|
|
break;
|
|
}
|
|
if ((i == l-1) || (str[i] != '~')) {
|
|
if (((l-1) & 3) < 2)
|
|
l += 2;
|
|
else
|
|
l = (l+3) & ~3;
|
|
str[l-2] = '~';
|
|
str[l-1] = '0';
|
|
*len = l | h;
|
|
return;
|
|
}
|
|
for (i = l-1; i >= 0; i--) {
|
|
if (isdigit(str[i])) {
|
|
if (str[i] == '9')
|
|
str[i] = '0';
|
|
else {
|
|
str[i]++;
|
|
return;
|
|
}
|
|
continue;
|
|
}
|
|
if (i == 1) {
|
|
if (str[0] == 'z')
|
|
str[0] = 'A';
|
|
else if (str[0] == 'Z') {
|
|
str[0] = '~';
|
|
str[1] = '0';
|
|
} else
|
|
str[0]++;
|
|
} else if (i > 0) {
|
|
str[i] = '1';
|
|
str[i-1] = '~';
|
|
} else {
|
|
if (str[0] == '~')
|
|
str[0] = 'a';
|
|
else
|
|
str[0]++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int duplicate_search_and_fix(e2fsck_t ctx, ext2_filsys fs,
|
|
ext2_ino_t ino,
|
|
struct fill_dir_struct *fd)
|
|
{
|
|
struct problem_context pctx;
|
|
struct hash_entry *ent, *prev;
|
|
int i, j;
|
|
int fixed = 0;
|
|
char new_name[256];
|
|
__u16 new_len;
|
|
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = ino;
|
|
|
|
for (i=1; i < fd->num_array; i++) {
|
|
ent = fd->harray + i;
|
|
prev = ent - 1;
|
|
if (!ent->dir->inode ||
|
|
((ent->dir->name_len & 0xFF) !=
|
|
(prev->dir->name_len & 0xFF)) ||
|
|
(strncmp(ent->dir->name, prev->dir->name,
|
|
ent->dir->name_len & 0xFF)))
|
|
continue;
|
|
pctx.dirent = ent->dir;
|
|
if ((ent->dir->inode == prev->dir->inode) &&
|
|
fix_problem(ctx, PR_2_DUPLICATE_DIRENT, &pctx)) {
|
|
e2fsck_adjust_inode_count(ctx, ent->dir->inode, -1);
|
|
ent->dir->inode = 0;
|
|
fixed++;
|
|
continue;
|
|
}
|
|
memcpy(new_name, ent->dir->name, ent->dir->name_len & 0xFF);
|
|
new_len = ent->dir->name_len;
|
|
mutate_name(new_name, &new_len);
|
|
for (j=0; j < fd->num_array; j++) {
|
|
if ((i==j) ||
|
|
((ent->dir->name_len & 0xFF) !=
|
|
(fd->harray[j].dir->name_len & 0xFF)) ||
|
|
(strncmp(new_name, fd->harray[j].dir->name,
|
|
new_len & 0xFF)))
|
|
continue;
|
|
mutate_name(new_name, &new_len);
|
|
|
|
j = -1;
|
|
}
|
|
new_name[new_len & 0xFF] = 0;
|
|
pctx.str = new_name;
|
|
if (fix_problem(ctx, PR_2_NON_UNIQUE_FILE, &pctx)) {
|
|
memcpy(ent->dir->name, new_name, new_len & 0xFF);
|
|
ent->dir->name_len = new_len;
|
|
ext2fs_dirhash(fs->super->s_def_hash_version,
|
|
ent->dir->name,
|
|
ent->dir->name_len & 0xFF,
|
|
fs->super->s_hash_seed,
|
|
&ent->hash, &ent->minor_hash);
|
|
fixed++;
|
|
}
|
|
}
|
|
return fixed;
|
|
}
|
|
|
|
|
|
static errcode_t copy_dir_entries(ext2_filsys fs,
|
|
struct fill_dir_struct *fd,
|
|
struct out_dir *outdir)
|
|
{
|
|
errcode_t retval;
|
|
char *block_start;
|
|
struct hash_entry *ent;
|
|
struct ext2_dir_entry *dirent;
|
|
int i, rec_len, left;
|
|
ext2_dirhash_t prev_hash;
|
|
int offset;
|
|
|
|
outdir->max = 0;
|
|
retval = alloc_size_dir(fs, outdir,
|
|
(fd->dir_size / fs->blocksize) + 2);
|
|
if (retval)
|
|
return retval;
|
|
outdir->num = fd->compress ? 0 : 1;
|
|
offset = 0;
|
|
outdir->hashes[0] = 0;
|
|
prev_hash = 1;
|
|
if ((retval = get_next_block(fs, outdir, &block_start)))
|
|
return retval;
|
|
dirent = (struct ext2_dir_entry *) block_start;
|
|
left = fs->blocksize;
|
|
for (i=0; i < fd->num_array; i++) {
|
|
ent = fd->harray + i;
|
|
if (ent->dir->inode == 0)
|
|
continue;
|
|
rec_len = EXT2_DIR_REC_LEN(ent->dir->name_len & 0xFF);
|
|
if (rec_len > left) {
|
|
if (left)
|
|
dirent->rec_len += left;
|
|
if ((retval = get_next_block(fs, outdir,
|
|
&block_start)))
|
|
return retval;
|
|
offset = 0;
|
|
}
|
|
left = fs->blocksize - offset;
|
|
dirent = (struct ext2_dir_entry *) (block_start + offset);
|
|
if (offset == 0) {
|
|
if (ent->hash == prev_hash)
|
|
outdir->hashes[outdir->num-1] = ent->hash | 1;
|
|
else
|
|
outdir->hashes[outdir->num-1] = ent->hash;
|
|
}
|
|
dirent->inode = ent->dir->inode;
|
|
dirent->name_len = ent->dir->name_len;
|
|
dirent->rec_len = rec_len;
|
|
memcpy(dirent->name, ent->dir->name, dirent->name_len & 0xFF);
|
|
offset += rec_len;
|
|
left -= rec_len;
|
|
if (left < 12) {
|
|
dirent->rec_len += left;
|
|
offset += left;
|
|
left = 0;
|
|
}
|
|
prev_hash = ent->hash;
|
|
}
|
|
if (left)
|
|
dirent->rec_len += left;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct ext2_dx_root_info *set_root_node(ext2_filsys fs, char *buf,
|
|
ext2_ino_t ino, ext2_ino_t parent)
|
|
{
|
|
struct ext2_dir_entry *dir;
|
|
struct ext2_dx_root_info *root;
|
|
struct ext2_dx_countlimit *limits;
|
|
int filetype = 0;
|
|
|
|
if (fs->super->s_feature_incompat & EXT2_FEATURE_INCOMPAT_FILETYPE)
|
|
filetype = EXT2_FT_DIR << 8;
|
|
|
|
memset(buf, 0, fs->blocksize);
|
|
dir = (struct ext2_dir_entry *) buf;
|
|
dir->inode = ino;
|
|
dir->name[0] = '.';
|
|
dir->name_len = 1 | filetype;
|
|
dir->rec_len = 12;
|
|
dir = (struct ext2_dir_entry *) (buf + 12);
|
|
dir->inode = parent;
|
|
dir->name[0] = '.';
|
|
dir->name[1] = '.';
|
|
dir->name_len = 2 | filetype;
|
|
dir->rec_len = fs->blocksize - 12;
|
|
|
|
root = (struct ext2_dx_root_info *) (buf+24);
|
|
root->reserved_zero = 0;
|
|
root->hash_version = fs->super->s_def_hash_version;
|
|
root->info_length = 8;
|
|
root->indirect_levels = 0;
|
|
root->unused_flags = 0;
|
|
|
|
limits = (struct ext2_dx_countlimit *) (buf+32);
|
|
limits->limit = (fs->blocksize - 32) / sizeof(struct ext2_dx_entry);
|
|
limits->count = 0;
|
|
|
|
return root;
|
|
}
|
|
|
|
|
|
static struct ext2_dx_entry *set_int_node(ext2_filsys fs, char *buf)
|
|
{
|
|
struct ext2_dir_entry *dir;
|
|
struct ext2_dx_countlimit *limits;
|
|
|
|
memset(buf, 0, fs->blocksize);
|
|
dir = (struct ext2_dir_entry *) buf;
|
|
dir->inode = 0;
|
|
dir->rec_len = fs->blocksize;
|
|
|
|
limits = (struct ext2_dx_countlimit *) (buf+8);
|
|
limits->limit = (fs->blocksize - 8) / sizeof(struct ext2_dx_entry);
|
|
limits->count = 0;
|
|
|
|
return (struct ext2_dx_entry *) limits;
|
|
}
|
|
|
|
/*
|
|
* This function takes the leaf nodes which have been written in
|
|
* outdir, and populates the root node and any necessary interior nodes.
|
|
*/
|
|
static errcode_t calculate_tree(ext2_filsys fs,
|
|
struct out_dir *outdir,
|
|
ext2_ino_t ino,
|
|
ext2_ino_t parent)
|
|
{
|
|
struct ext2_dx_root_info *root_info;
|
|
struct ext2_dx_entry *root, *dx_ent = NULL;
|
|
struct ext2_dx_countlimit *root_limit, *limit;
|
|
errcode_t retval;
|
|
char * block_start;
|
|
int i, c1, c2, nblks;
|
|
int limit_offset, root_offset;
|
|
|
|
root_info = set_root_node(fs, outdir->buf, ino, parent);
|
|
root_offset = limit_offset = ((char *) root_info - outdir->buf) +
|
|
root_info->info_length;
|
|
root_limit = (struct ext2_dx_countlimit *) (outdir->buf + limit_offset);
|
|
c1 = root_limit->limit;
|
|
nblks = outdir->num;
|
|
|
|
/* Write out the pointer blocks */
|
|
if (nblks-1 <= c1) {
|
|
/* Just write out the root block, and we're done */
|
|
root = (struct ext2_dx_entry *) (outdir->buf + root_offset);
|
|
for (i=1; i < nblks; i++) {
|
|
root->block = ext2fs_cpu_to_le32(i);
|
|
if (i != 1)
|
|
root->hash =
|
|
ext2fs_cpu_to_le32(outdir->hashes[i]);
|
|
root++;
|
|
c1--;
|
|
}
|
|
} else {
|
|
c2 = 0;
|
|
limit = 0;
|
|
root_info->indirect_levels = 1;
|
|
for (i=1; i < nblks; i++) {
|
|
if (c1 == 0)
|
|
return ENOSPC;
|
|
if (c2 == 0) {
|
|
if (limit)
|
|
limit->limit = limit->count =
|
|
ext2fs_cpu_to_le16(limit->limit);
|
|
root = (struct ext2_dx_entry *)
|
|
(outdir->buf + root_offset);
|
|
root->block = ext2fs_cpu_to_le32(outdir->num);
|
|
if (i != 1)
|
|
root->hash =
|
|
ext2fs_cpu_to_le32(outdir->hashes[i]);
|
|
if ((retval = get_next_block(fs, outdir,
|
|
&block_start)))
|
|
return retval;
|
|
dx_ent = set_int_node(fs, block_start);
|
|
limit = (struct ext2_dx_countlimit *) dx_ent;
|
|
c2 = limit->limit;
|
|
root_offset += sizeof(struct ext2_dx_entry);
|
|
c1--;
|
|
}
|
|
dx_ent->block = ext2fs_cpu_to_le32(i);
|
|
if (c2 != limit->limit)
|
|
dx_ent->hash =
|
|
ext2fs_cpu_to_le32(outdir->hashes[i]);
|
|
dx_ent++;
|
|
c2--;
|
|
}
|
|
limit->count = ext2fs_cpu_to_le16(limit->limit - c2);
|
|
limit->limit = ext2fs_cpu_to_le16(limit->limit);
|
|
}
|
|
root_limit = (struct ext2_dx_countlimit *) (outdir->buf + limit_offset);
|
|
root_limit->count = ext2fs_cpu_to_le16(root_limit->limit - c1);
|
|
root_limit->limit = ext2fs_cpu_to_le16(root_limit->limit);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct write_dir_struct {
|
|
struct out_dir *outdir;
|
|
errcode_t err;
|
|
e2fsck_t ctx;
|
|
int cleared;
|
|
};
|
|
|
|
/*
|
|
* Helper function which writes out a directory block.
|
|
*/
|
|
static int write_dir_block(ext2_filsys fs,
|
|
blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk_t ref_block FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct write_dir_struct *wd = (struct write_dir_struct *) priv_data;
|
|
blk_t blk;
|
|
char *dir;
|
|
|
|
if (*block_nr == 0)
|
|
return 0;
|
|
if (blockcnt >= wd->outdir->num) {
|
|
e2fsck_read_bitmaps(wd->ctx);
|
|
blk = *block_nr;
|
|
ext2fs_unmark_block_bitmap(wd->ctx->block_found_map, blk);
|
|
ext2fs_block_alloc_stats(fs, blk, -1);
|
|
*block_nr = 0;
|
|
wd->cleared++;
|
|
return BLOCK_CHANGED;
|
|
}
|
|
if (blockcnt < 0)
|
|
return 0;
|
|
|
|
dir = wd->outdir->buf + (blockcnt * fs->blocksize);
|
|
wd->err = ext2fs_write_dir_block(fs, *block_nr, dir);
|
|
if (wd->err)
|
|
return BLOCK_ABORT;
|
|
return 0;
|
|
}
|
|
|
|
static errcode_t write_directory(e2fsck_t ctx, ext2_filsys fs,
|
|
struct out_dir *outdir,
|
|
ext2_ino_t ino, int compress)
|
|
{
|
|
struct write_dir_struct wd;
|
|
errcode_t retval;
|
|
struct ext2_inode inode;
|
|
|
|
retval = e2fsck_expand_directory(ctx, ino, -1, outdir->num);
|
|
if (retval)
|
|
return retval;
|
|
|
|
wd.outdir = outdir;
|
|
wd.err = 0;
|
|
wd.ctx = ctx;
|
|
wd.cleared = 0;
|
|
|
|
retval = ext2fs_block_iterate2(fs, ino, 0, 0,
|
|
write_dir_block, &wd);
|
|
if (retval)
|
|
return retval;
|
|
if (wd.err)
|
|
return wd.err;
|
|
|
|
e2fsck_read_inode(ctx, ino, &inode, "rehash_dir");
|
|
if (compress)
|
|
inode.i_flags &= ~EXT2_INDEX_FL;
|
|
else
|
|
inode.i_flags |= EXT2_INDEX_FL;
|
|
inode.i_size = outdir->num * fs->blocksize;
|
|
inode.i_blocks -= (fs->blocksize / 512) * wd.cleared;
|
|
e2fsck_write_inode(ctx, ino, &inode, "rehash_dir");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static errcode_t e2fsck_rehash_dir(e2fsck_t ctx, ext2_ino_t ino)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
struct ext2_inode inode;
|
|
char *dir_buf = NULL;
|
|
struct fill_dir_struct fd;
|
|
struct out_dir outdir;
|
|
|
|
outdir.max = outdir.num = 0;
|
|
outdir.buf = 0;
|
|
outdir.hashes = 0;
|
|
e2fsck_read_inode(ctx, ino, &inode, "rehash_dir");
|
|
|
|
retval = ENOMEM;
|
|
fd.harray = 0;
|
|
dir_buf = xmalloc(inode.i_size);
|
|
|
|
fd.max_array = inode.i_size / 32;
|
|
fd.num_array = 0;
|
|
fd.harray = xmalloc(fd.max_array * sizeof(struct hash_entry));
|
|
|
|
fd.ctx = ctx;
|
|
fd.buf = dir_buf;
|
|
fd.inode = &inode;
|
|
fd.err = 0;
|
|
fd.dir_size = 0;
|
|
fd.compress = 0;
|
|
if (!(fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_DIR_INDEX) ||
|
|
(inode.i_size / fs->blocksize) < 2)
|
|
fd.compress = 1;
|
|
fd.parent = 0;
|
|
|
|
/* Read in the entire directory into memory */
|
|
retval = ext2fs_block_iterate2(fs, ino, 0, 0,
|
|
fill_dir_block, &fd);
|
|
if (fd.err) {
|
|
retval = fd.err;
|
|
goto errout;
|
|
}
|
|
|
|
/* Sort the list */
|
|
resort:
|
|
if (fd.compress)
|
|
qsort(fd.harray+2, fd.num_array-2,
|
|
sizeof(struct hash_entry), name_cmp);
|
|
else
|
|
qsort(fd.harray, fd.num_array,
|
|
sizeof(struct hash_entry), hash_cmp);
|
|
|
|
/*
|
|
* Look for duplicates
|
|
*/
|
|
if (duplicate_search_and_fix(ctx, fs, ino, &fd))
|
|
goto resort;
|
|
|
|
if (ctx->options & E2F_OPT_NO) {
|
|
retval = 0;
|
|
goto errout;
|
|
}
|
|
|
|
/*
|
|
* Copy the directory entries. In a htree directory these
|
|
* will become the leaf nodes.
|
|
*/
|
|
retval = copy_dir_entries(fs, &fd, &outdir);
|
|
if (retval)
|
|
goto errout;
|
|
|
|
free(dir_buf); dir_buf = 0;
|
|
|
|
if (!fd.compress) {
|
|
/* Calculate the interior nodes */
|
|
retval = calculate_tree(fs, &outdir, ino, fd.parent);
|
|
if (retval)
|
|
goto errout;
|
|
}
|
|
|
|
retval = write_directory(ctx, fs, &outdir, ino, fd.compress);
|
|
|
|
errout:
|
|
free(dir_buf);
|
|
free(fd.harray);
|
|
|
|
free_out_dir(&outdir);
|
|
return retval;
|
|
}
|
|
|
|
void e2fsck_rehash_directories(e2fsck_t ctx)
|
|
{
|
|
struct problem_context pctx;
|
|
struct dir_info *dir;
|
|
ext2_u32_iterate iter;
|
|
ext2_ino_t ino;
|
|
errcode_t retval;
|
|
int i, cur, max, all_dirs, dir_index, first = 1;
|
|
|
|
all_dirs = ctx->options & E2F_OPT_COMPRESS_DIRS;
|
|
|
|
if (!ctx->dirs_to_hash && !all_dirs)
|
|
return;
|
|
|
|
e2fsck_get_lost_and_found(ctx, 0);
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
dir_index = ctx->fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_DIR_INDEX;
|
|
cur = 0;
|
|
if (all_dirs) {
|
|
i = 0;
|
|
max = e2fsck_get_num_dirinfo(ctx);
|
|
} else {
|
|
retval = ext2fs_u32_list_iterate_begin(ctx->dirs_to_hash,
|
|
&iter);
|
|
if (retval) {
|
|
pctx.errcode = retval;
|
|
fix_problem(ctx, PR_3A_OPTIMIZE_ITER, &pctx);
|
|
return;
|
|
}
|
|
max = ext2fs_u32_list_count(ctx->dirs_to_hash);
|
|
}
|
|
while (1) {
|
|
if (all_dirs) {
|
|
if ((dir = e2fsck_dir_info_iter(ctx, &i)) == 0)
|
|
break;
|
|
ino = dir->ino;
|
|
} else {
|
|
if (!ext2fs_u32_list_iterate(iter, &ino))
|
|
break;
|
|
}
|
|
if (ino == ctx->lost_and_found)
|
|
continue;
|
|
pctx.dir = ino;
|
|
if (first) {
|
|
fix_problem(ctx, PR_3A_PASS_HEADER, &pctx);
|
|
first = 0;
|
|
}
|
|
pctx.errcode = e2fsck_rehash_dir(ctx, ino);
|
|
if (pctx.errcode) {
|
|
end_problem_latch(ctx, PR_LATCH_OPTIMIZE_DIR);
|
|
fix_problem(ctx, PR_3A_OPTIMIZE_DIR_ERR, &pctx);
|
|
}
|
|
if (ctx->progress && !ctx->progress_fd)
|
|
e2fsck_simple_progress(ctx, "Rebuilding directory",
|
|
100.0 * (float) (++cur) / (float) max, ino);
|
|
}
|
|
end_problem_latch(ctx, PR_LATCH_OPTIMIZE_DIR);
|
|
if (!all_dirs)
|
|
ext2fs_u32_list_iterate_end(iter);
|
|
|
|
ext2fs_u32_list_free(ctx->dirs_to_hash);
|
|
ctx->dirs_to_hash = 0;
|
|
}
|
|
|
|
/*
|
|
* linux/fs/revoke.c
|
|
*
|
|
* Journal revoke routines for the generic filesystem journaling code;
|
|
* part of the ext2fs journaling system.
|
|
*
|
|
* Revoke is the mechanism used to prevent old log records for deleted
|
|
* metadata from being replayed on top of newer data using the same
|
|
* blocks. The revoke mechanism is used in two separate places:
|
|
*
|
|
* + Commit: during commit we write the entire list of the current
|
|
* transaction's revoked blocks to the journal
|
|
*
|
|
* + Recovery: during recovery we record the transaction ID of all
|
|
* revoked blocks. If there are multiple revoke records in the log
|
|
* for a single block, only the last one counts, and if there is a log
|
|
* entry for a block beyond the last revoke, then that log entry still
|
|
* gets replayed.
|
|
*
|
|
* We can get interactions between revokes and new log data within a
|
|
* single transaction:
|
|
*
|
|
* Block is revoked and then journaled:
|
|
* The desired end result is the journaling of the new block, so we
|
|
* cancel the revoke before the transaction commits.
|
|
*
|
|
* Block is journaled and then revoked:
|
|
* The revoke must take precedence over the write of the block, so we
|
|
* need either to cancel the journal entry or to write the revoke
|
|
* later in the log than the log block. In this case, we choose the
|
|
* latter: journaling a block cancels any revoke record for that block
|
|
* in the current transaction, so any revoke for that block in the
|
|
* transaction must have happened after the block was journaled and so
|
|
* the revoke must take precedence.
|
|
*
|
|
* Block is revoked and then written as data:
|
|
* The data write is allowed to succeed, but the revoke is _not_
|
|
* cancelled. We still need to prevent old log records from
|
|
* overwriting the new data. We don't even need to clear the revoke
|
|
* bit here.
|
|
*
|
|
* Revoke information on buffers is a tri-state value:
|
|
*
|
|
* RevokeValid clear: no cached revoke status, need to look it up
|
|
* RevokeValid set, Revoked clear:
|
|
* buffer has not been revoked, and cancel_revoke
|
|
* need do nothing.
|
|
* RevokeValid set, Revoked set:
|
|
* buffer has been revoked.
|
|
*/
|
|
|
|
static kmem_cache_t *revoke_record_cache;
|
|
static kmem_cache_t *revoke_table_cache;
|
|
|
|
/* Each revoke record represents one single revoked block. During
|
|
journal replay, this involves recording the transaction ID of the
|
|
last transaction to revoke this block. */
|
|
|
|
struct jbd_revoke_record_s
|
|
{
|
|
struct list_head hash;
|
|
tid_t sequence; /* Used for recovery only */
|
|
unsigned long blocknr;
|
|
};
|
|
|
|
|
|
/* The revoke table is just a simple hash table of revoke records. */
|
|
struct jbd_revoke_table_s
|
|
{
|
|
/* It is conceivable that we might want a larger hash table
|
|
* for recovery. Must be a power of two. */
|
|
int hash_size;
|
|
int hash_shift;
|
|
struct list_head *hash_table;
|
|
};
|
|
|
|
|
|
/* Utility functions to maintain the revoke table */
|
|
|
|
/* Borrowed from buffer.c: this is a tried and tested block hash function */
|
|
static int hash(journal_t *journal, unsigned long block)
|
|
{
|
|
struct jbd_revoke_table_s *table = journal->j_revoke;
|
|
int hash_shift = table->hash_shift;
|
|
|
|
return ((block << (hash_shift - 6)) ^
|
|
(block >> 13) ^
|
|
(block << (hash_shift - 12))) & (table->hash_size - 1);
|
|
}
|
|
|
|
static int insert_revoke_hash(journal_t *journal, unsigned long blocknr,
|
|
tid_t seq)
|
|
{
|
|
struct list_head *hash_list;
|
|
struct jbd_revoke_record_s *record;
|
|
|
|
record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
|
|
if (!record)
|
|
goto oom;
|
|
|
|
record->sequence = seq;
|
|
record->blocknr = blocknr;
|
|
hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
|
|
list_add(&record->hash, hash_list);
|
|
return 0;
|
|
|
|
oom:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Find a revoke record in the journal's hash table. */
|
|
|
|
static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
|
|
unsigned long blocknr)
|
|
{
|
|
struct list_head *hash_list;
|
|
struct jbd_revoke_record_s *record;
|
|
|
|
hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
|
|
|
|
record = (struct jbd_revoke_record_s *) hash_list->next;
|
|
while (&(record->hash) != hash_list) {
|
|
if (record->blocknr == blocknr)
|
|
return record;
|
|
record = (struct jbd_revoke_record_s *) record->hash.next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int journal_init_revoke_caches(void)
|
|
{
|
|
revoke_record_cache = do_cache_create(sizeof(struct jbd_revoke_record_s));
|
|
if (revoke_record_cache == 0)
|
|
return -ENOMEM;
|
|
|
|
revoke_table_cache = do_cache_create(sizeof(struct jbd_revoke_table_s));
|
|
if (revoke_table_cache == 0) {
|
|
do_cache_destroy(revoke_record_cache);
|
|
revoke_record_cache = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void journal_destroy_revoke_caches(void)
|
|
{
|
|
do_cache_destroy(revoke_record_cache);
|
|
revoke_record_cache = 0;
|
|
do_cache_destroy(revoke_table_cache);
|
|
revoke_table_cache = 0;
|
|
}
|
|
|
|
/* Initialise the revoke table for a given journal to a given size. */
|
|
|
|
int journal_init_revoke(journal_t *journal, int hash_size)
|
|
{
|
|
int shift, tmp;
|
|
|
|
journal->j_revoke = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
|
|
if (!journal->j_revoke)
|
|
return -ENOMEM;
|
|
|
|
/* Check that the hash_size is a power of two */
|
|
journal->j_revoke->hash_size = hash_size;
|
|
|
|
shift = 0;
|
|
tmp = hash_size;
|
|
while ((tmp >>= 1UL) != 0UL)
|
|
shift++;
|
|
journal->j_revoke->hash_shift = shift;
|
|
|
|
journal->j_revoke->hash_table = xmalloc(hash_size * sizeof(struct list_head));
|
|
|
|
for (tmp = 0; tmp < hash_size; tmp++)
|
|
INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Destoy a journal's revoke table. The table must already be empty! */
|
|
|
|
void journal_destroy_revoke(journal_t *journal)
|
|
{
|
|
struct jbd_revoke_table_s *table;
|
|
struct list_head *hash_list;
|
|
int i;
|
|
|
|
table = journal->j_revoke;
|
|
if (!table)
|
|
return;
|
|
|
|
for (i=0; i<table->hash_size; i++) {
|
|
hash_list = &table->hash_table[i];
|
|
}
|
|
|
|
free(table->hash_table);
|
|
free(table);
|
|
journal->j_revoke = NULL;
|
|
}
|
|
|
|
/*
|
|
* Revoke support for recovery.
|
|
*
|
|
* Recovery needs to be able to:
|
|
*
|
|
* record all revoke records, including the tid of the latest instance
|
|
* of each revoke in the journal
|
|
*
|
|
* check whether a given block in a given transaction should be replayed
|
|
* (ie. has not been revoked by a revoke record in that or a subsequent
|
|
* transaction)
|
|
*
|
|
* empty the revoke table after recovery.
|
|
*/
|
|
|
|
/*
|
|
* First, setting revoke records. We create a new revoke record for
|
|
* every block ever revoked in the log as we scan it for recovery, and
|
|
* we update the existing records if we find multiple revokes for a
|
|
* single block.
|
|
*/
|
|
|
|
int journal_set_revoke(journal_t *journal, unsigned long blocknr,
|
|
tid_t sequence)
|
|
{
|
|
struct jbd_revoke_record_s *record;
|
|
|
|
record = find_revoke_record(journal, blocknr);
|
|
if (record) {
|
|
/* If we have multiple occurences, only record the
|
|
* latest sequence number in the hashed record */
|
|
if (tid_gt(sequence, record->sequence))
|
|
record->sequence = sequence;
|
|
return 0;
|
|
}
|
|
return insert_revoke_hash(journal, blocknr, sequence);
|
|
}
|
|
|
|
/*
|
|
* Test revoke records. For a given block referenced in the log, has
|
|
* that block been revoked? A revoke record with a given transaction
|
|
* sequence number revokes all blocks in that transaction and earlier
|
|
* ones, but later transactions still need replayed.
|
|
*/
|
|
|
|
int journal_test_revoke(journal_t *journal, unsigned long blocknr,
|
|
tid_t sequence)
|
|
{
|
|
struct jbd_revoke_record_s *record;
|
|
|
|
record = find_revoke_record(journal, blocknr);
|
|
if (!record)
|
|
return 0;
|
|
if (tid_gt(sequence, record->sequence))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Finally, once recovery is over, we need to clear the revoke table so
|
|
* that it can be reused by the running filesystem.
|
|
*/
|
|
|
|
void journal_clear_revoke(journal_t *journal)
|
|
{
|
|
int i;
|
|
struct list_head *hash_list;
|
|
struct jbd_revoke_record_s *record;
|
|
struct jbd_revoke_table_s *revoke_var;
|
|
|
|
revoke_var = journal->j_revoke;
|
|
|
|
for (i = 0; i < revoke_var->hash_size; i++) {
|
|
hash_list = &revoke_var->hash_table[i];
|
|
while (!list_empty(hash_list)) {
|
|
record = (struct jbd_revoke_record_s*) hash_list->next;
|
|
list_del(&record->hash);
|
|
free(record);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* e2fsck.c - superblock checks
|
|
*/
|
|
|
|
#define MIN_CHECK 1
|
|
#define MAX_CHECK 2
|
|
|
|
static void check_super_value(e2fsck_t ctx, const char *descr,
|
|
unsigned long value, int flags,
|
|
unsigned long min_val, unsigned long max_val)
|
|
{
|
|
struct problem_context pctx;
|
|
|
|
if (((flags & MIN_CHECK) && (value < min_val)) ||
|
|
((flags & MAX_CHECK) && (value > max_val))) {
|
|
clear_problem_context(&pctx);
|
|
pctx.num = value;
|
|
pctx.str = descr;
|
|
fix_problem(ctx, PR_0_MISC_CORRUPT_SUPER, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT; /* never get here! */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine may get stubbed out in special compilations of the
|
|
* e2fsck code..
|
|
*/
|
|
#ifndef EXT2_SPECIAL_DEVICE_SIZE
|
|
static errcode_t e2fsck_get_device_size(e2fsck_t ctx)
|
|
{
|
|
return (ext2fs_get_device_size(ctx->filesystem_name,
|
|
EXT2_BLOCK_SIZE(ctx->fs->super),
|
|
&ctx->num_blocks));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* helper function to release an inode
|
|
*/
|
|
struct process_block_struct {
|
|
e2fsck_t ctx;
|
|
char *buf;
|
|
struct problem_context *pctx;
|
|
int truncating;
|
|
int truncate_offset;
|
|
e2_blkcnt_t truncate_block;
|
|
int truncated_blocks;
|
|
int abort;
|
|
errcode_t errcode;
|
|
};
|
|
|
|
static int release_inode_block(ext2_filsys fs, blk_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk_t ref_blk FSCK_ATTR((unused)),
|
|
int ref_offset FSCK_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct process_block_struct *pb;
|
|
e2fsck_t ctx;
|
|
struct problem_context *pctx;
|
|
blk_t blk = *block_nr;
|
|
int retval = 0;
|
|
|
|
pb = (struct process_block_struct *) priv_data;
|
|
ctx = pb->ctx;
|
|
pctx = pb->pctx;
|
|
|
|
pctx->blk = blk;
|
|
pctx->blkcount = blockcnt;
|
|
|
|
if (HOLE_BLKADDR(blk))
|
|
return 0;
|
|
|
|
if ((blk < fs->super->s_first_data_block) ||
|
|
(blk >= fs->super->s_blocks_count)) {
|
|
fix_problem(ctx, PR_0_ORPHAN_ILLEGAL_BLOCK_NUM, pctx);
|
|
return_abort:
|
|
pb->abort = 1;
|
|
return BLOCK_ABORT;
|
|
}
|
|
|
|
if (!ext2fs_test_block_bitmap(fs->block_map, blk)) {
|
|
fix_problem(ctx, PR_0_ORPHAN_ALREADY_CLEARED_BLOCK, pctx);
|
|
goto return_abort;
|
|
}
|
|
|
|
/*
|
|
* If we are deleting an orphan, then we leave the fields alone.
|
|
* If we are truncating an orphan, then update the inode fields
|
|
* and clean up any partial block data.
|
|
*/
|
|
if (pb->truncating) {
|
|
/*
|
|
* We only remove indirect blocks if they are
|
|
* completely empty.
|
|
*/
|
|
if (blockcnt < 0) {
|
|
int i, limit;
|
|
blk_t *bp;
|
|
|
|
pb->errcode = io_channel_read_blk(fs->io, blk, 1,
|
|
pb->buf);
|
|
if (pb->errcode)
|
|
goto return_abort;
|
|
|
|
limit = fs->blocksize >> 2;
|
|
for (i = 0, bp = (blk_t *) pb->buf;
|
|
i < limit; i++, bp++)
|
|
if (*bp)
|
|
return 0;
|
|
}
|
|
/*
|
|
* We don't remove direct blocks until we've reached
|
|
* the truncation block.
|
|
*/
|
|
if (blockcnt >= 0 && blockcnt < pb->truncate_block)
|
|
return 0;
|
|
/*
|
|
* If part of the last block needs truncating, we do
|
|
* it here.
|
|
*/
|
|
if ((blockcnt == pb->truncate_block) && pb->truncate_offset) {
|
|
pb->errcode = io_channel_read_blk(fs->io, blk, 1,
|
|
pb->buf);
|
|
if (pb->errcode)
|
|
goto return_abort;
|
|
memset(pb->buf + pb->truncate_offset, 0,
|
|
fs->blocksize - pb->truncate_offset);
|
|
pb->errcode = io_channel_write_blk(fs->io, blk, 1,
|
|
pb->buf);
|
|
if (pb->errcode)
|
|
goto return_abort;
|
|
}
|
|
pb->truncated_blocks++;
|
|
*block_nr = 0;
|
|
retval |= BLOCK_CHANGED;
|
|
}
|
|
|
|
ext2fs_block_alloc_stats(fs, blk, -1);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* This function releases an inode. Returns 1 if an inconsistency was
|
|
* found. If the inode has a link count, then it is being truncated and
|
|
* not deleted.
|
|
*/
|
|
static int release_inode_blocks(e2fsck_t ctx, ext2_ino_t ino,
|
|
struct ext2_inode *inode, char *block_buf,
|
|
struct problem_context *pctx)
|
|
{
|
|
struct process_block_struct pb;
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
__u32 count;
|
|
|
|
if (!ext2fs_inode_has_valid_blocks(inode))
|
|
return 0;
|
|
|
|
pb.buf = block_buf + 3 * ctx->fs->blocksize;
|
|
pb.ctx = ctx;
|
|
pb.abort = 0;
|
|
pb.errcode = 0;
|
|
pb.pctx = pctx;
|
|
if (inode->i_links_count) {
|
|
pb.truncating = 1;
|
|
pb.truncate_block = (e2_blkcnt_t)
|
|
((((long long)inode->i_size_high << 32) +
|
|
inode->i_size + fs->blocksize - 1) /
|
|
fs->blocksize);
|
|
pb.truncate_offset = inode->i_size % fs->blocksize;
|
|
} else {
|
|
pb.truncating = 0;
|
|
pb.truncate_block = 0;
|
|
pb.truncate_offset = 0;
|
|
}
|
|
pb.truncated_blocks = 0;
|
|
retval = ext2fs_block_iterate2(fs, ino, BLOCK_FLAG_DEPTH_TRAVERSE,
|
|
block_buf, release_inode_block, &pb);
|
|
if (retval) {
|
|
bb_error_msg(_("while calling ext2fs_block_iterate for inode %d"),
|
|
ino);
|
|
return 1;
|
|
}
|
|
if (pb.abort)
|
|
return 1;
|
|
|
|
/* Refresh the inode since ext2fs_block_iterate may have changed it */
|
|
e2fsck_read_inode(ctx, ino, inode, "release_inode_blocks");
|
|
|
|
if (pb.truncated_blocks)
|
|
inode->i_blocks -= pb.truncated_blocks *
|
|
(fs->blocksize / 512);
|
|
|
|
if (inode->i_file_acl) {
|
|
retval = ext2fs_adjust_ea_refcount(fs, inode->i_file_acl,
|
|
block_buf, -1, &count);
|
|
if (retval == EXT2_ET_BAD_EA_BLOCK_NUM) {
|
|
retval = 0;
|
|
count = 1;
|
|
}
|
|
if (retval) {
|
|
bb_error_msg(_("while calling ext2fs_adjust_ea_refocunt for inode %d"),
|
|
ino);
|
|
return 1;
|
|
}
|
|
if (count == 0)
|
|
ext2fs_block_alloc_stats(fs, inode->i_file_acl, -1);
|
|
inode->i_file_acl = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function releases all of the orphan inodes. It returns 1 if
|
|
* it hit some error, and 0 on success.
|
|
*/
|
|
static int release_orphan_inodes(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t ino, next_ino;
|
|
struct ext2_inode inode;
|
|
struct problem_context pctx;
|
|
char *block_buf;
|
|
|
|
if ((ino = fs->super->s_last_orphan) == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Win or lose, we won't be using the head of the orphan inode
|
|
* list again.
|
|
*/
|
|
fs->super->s_last_orphan = 0;
|
|
ext2fs_mark_super_dirty(fs);
|
|
|
|
/*
|
|
* If the filesystem contains errors, don't run the orphan
|
|
* list, since the orphan list can't be trusted; and we're
|
|
* going to be running a full e2fsck run anyway...
|
|
*/
|
|
if (fs->super->s_state & EXT2_ERROR_FS)
|
|
return 0;
|
|
|
|
if ((ino < EXT2_FIRST_INODE(fs->super)) ||
|
|
(ino > fs->super->s_inodes_count)) {
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = ino;
|
|
fix_problem(ctx, PR_0_ORPHAN_ILLEGAL_HEAD_INODE, &pctx);
|
|
return 1;
|
|
}
|
|
|
|
block_buf = (char *) e2fsck_allocate_memory(ctx, fs->blocksize * 4,
|
|
"block iterate buffer");
|
|
e2fsck_read_bitmaps(ctx);
|
|
|
|
while (ino) {
|
|
e2fsck_read_inode(ctx, ino, &inode, "release_orphan_inodes");
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = ino;
|
|
pctx.inode = &inode;
|
|
pctx.str = inode.i_links_count ? _("Truncating") :
|
|
_("Clearing");
|
|
|
|
fix_problem(ctx, PR_0_ORPHAN_CLEAR_INODE, &pctx);
|
|
|
|
next_ino = inode.i_dtime;
|
|
if (next_ino &&
|
|
((next_ino < EXT2_FIRST_INODE(fs->super)) ||
|
|
(next_ino > fs->super->s_inodes_count))) {
|
|
pctx.ino = next_ino;
|
|
fix_problem(ctx, PR_0_ORPHAN_ILLEGAL_INODE, &pctx);
|
|
goto return_abort;
|
|
}
|
|
|
|
if (release_inode_blocks(ctx, ino, &inode, block_buf, &pctx))
|
|
goto return_abort;
|
|
|
|
if (!inode.i_links_count) {
|
|
ext2fs_inode_alloc_stats2(fs, ino, -1,
|
|
LINUX_S_ISDIR(inode.i_mode));
|
|
inode.i_dtime = time(NULL);
|
|
} else {
|
|
inode.i_dtime = 0;
|
|
}
|
|
e2fsck_write_inode(ctx, ino, &inode, "delete_file");
|
|
ino = next_ino;
|
|
}
|
|
ext2fs_free_mem(&block_buf);
|
|
return 0;
|
|
return_abort:
|
|
ext2fs_free_mem(&block_buf);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check the resize inode to make sure it is sane. We check both for
|
|
* the case where on-line resizing is not enabled (in which case the
|
|
* resize inode should be cleared) as well as the case where on-line
|
|
* resizing is enabled.
|
|
*/
|
|
static void check_resize_inode(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct ext2_inode inode;
|
|
struct problem_context pctx;
|
|
int i, j, gdt_off, ind_off;
|
|
blk_t blk, pblk, expect;
|
|
__u32 *dind_buf = NULL, *ind_buf;
|
|
errcode_t retval;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
/*
|
|
* If the resize inode feature isn't set, then
|
|
* s_reserved_gdt_blocks must be zero.
|
|
*/
|
|
if (!(fs->super->s_feature_compat &
|
|
EXT2_FEATURE_COMPAT_RESIZE_INODE)) {
|
|
if (fs->super->s_reserved_gdt_blocks) {
|
|
pctx.num = fs->super->s_reserved_gdt_blocks;
|
|
if (fix_problem(ctx, PR_0_NONZERO_RESERVED_GDT_BLOCKS,
|
|
&pctx)) {
|
|
fs->super->s_reserved_gdt_blocks = 0;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Read the resize inode */
|
|
pctx.ino = EXT2_RESIZE_INO;
|
|
retval = ext2fs_read_inode(fs, EXT2_RESIZE_INO, &inode);
|
|
if (retval) {
|
|
if (fs->super->s_feature_compat &
|
|
EXT2_FEATURE_COMPAT_RESIZE_INODE)
|
|
ctx->flags |= E2F_FLAG_RESIZE_INODE;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the resize inode feature isn't set, check to make sure
|
|
* the resize inode is cleared; then we're done.
|
|
*/
|
|
if (!(fs->super->s_feature_compat &
|
|
EXT2_FEATURE_COMPAT_RESIZE_INODE)) {
|
|
for (i=0; i < EXT2_N_BLOCKS; i++) {
|
|
if (inode.i_block[i])
|
|
break;
|
|
}
|
|
if ((i < EXT2_N_BLOCKS) &&
|
|
fix_problem(ctx, PR_0_CLEAR_RESIZE_INODE, &pctx)) {
|
|
memset(&inode, 0, sizeof(inode));
|
|
e2fsck_write_inode(ctx, EXT2_RESIZE_INO, &inode,
|
|
"clear_resize");
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The resize inode feature is enabled; check to make sure the
|
|
* only block in use is the double indirect block
|
|
*/
|
|
blk = inode.i_block[EXT2_DIND_BLOCK];
|
|
for (i=0; i < EXT2_N_BLOCKS; i++) {
|
|
if (i != EXT2_DIND_BLOCK && inode.i_block[i])
|
|
break;
|
|
}
|
|
if ((i < EXT2_N_BLOCKS) || !blk || !inode.i_links_count ||
|
|
!(inode.i_mode & LINUX_S_IFREG) ||
|
|
(blk < fs->super->s_first_data_block ||
|
|
blk >= fs->super->s_blocks_count)) {
|
|
resize_inode_invalid:
|
|
if (fix_problem(ctx, PR_0_RESIZE_INODE_INVALID, &pctx)) {
|
|
memset(&inode, 0, sizeof(inode));
|
|
e2fsck_write_inode(ctx, EXT2_RESIZE_INO, &inode,
|
|
"clear_resize");
|
|
ctx->flags |= E2F_FLAG_RESIZE_INODE;
|
|
}
|
|
if (!(ctx->options & E2F_OPT_READONLY)) {
|
|
fs->super->s_state &= ~EXT2_VALID_FS;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
goto cleanup;
|
|
}
|
|
dind_buf = (__u32 *) e2fsck_allocate_memory(ctx, fs->blocksize * 2,
|
|
"resize dind buffer");
|
|
ind_buf = (__u32 *) ((char *) dind_buf + fs->blocksize);
|
|
|
|
retval = ext2fs_read_ind_block(fs, blk, dind_buf);
|
|
if (retval)
|
|
goto resize_inode_invalid;
|
|
|
|
gdt_off = fs->desc_blocks;
|
|
pblk = fs->super->s_first_data_block + 1 + fs->desc_blocks;
|
|
for (i = 0; i < fs->super->s_reserved_gdt_blocks / 4;
|
|
i++, gdt_off++, pblk++) {
|
|
gdt_off %= fs->blocksize/4;
|
|
if (dind_buf[gdt_off] != pblk)
|
|
goto resize_inode_invalid;
|
|
retval = ext2fs_read_ind_block(fs, pblk, ind_buf);
|
|
if (retval)
|
|
goto resize_inode_invalid;
|
|
ind_off = 0;
|
|
for (j = 1; j < fs->group_desc_count; j++) {
|
|
if (!ext2fs_bg_has_super(fs, j))
|
|
continue;
|
|
expect = pblk + (j * fs->super->s_blocks_per_group);
|
|
if (ind_buf[ind_off] != expect)
|
|
goto resize_inode_invalid;
|
|
ind_off++;
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
ext2fs_free_mem(&dind_buf);
|
|
}
|
|
|
|
static void check_super_block(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
blk_t first_block, last_block;
|
|
struct ext2_super_block *sb = fs->super;
|
|
struct ext2_group_desc *gd;
|
|
blk_t blocks_per_group = fs->super->s_blocks_per_group;
|
|
blk_t bpg_max;
|
|
int inodes_per_block;
|
|
int ipg_max;
|
|
int inode_size;
|
|
dgrp_t i;
|
|
blk_t should_be;
|
|
struct problem_context pctx;
|
|
__u32 free_blocks = 0, free_inodes = 0;
|
|
|
|
inodes_per_block = EXT2_INODES_PER_BLOCK(fs->super);
|
|
ipg_max = inodes_per_block * (blocks_per_group - 4);
|
|
if (ipg_max > EXT2_MAX_INODES_PER_GROUP(sb))
|
|
ipg_max = EXT2_MAX_INODES_PER_GROUP(sb);
|
|
bpg_max = 8 * EXT2_BLOCK_SIZE(sb);
|
|
if (bpg_max > EXT2_MAX_BLOCKS_PER_GROUP(sb))
|
|
bpg_max = EXT2_MAX_BLOCKS_PER_GROUP(sb);
|
|
|
|
ctx->invalid_inode_bitmap_flag = (int *) e2fsck_allocate_memory(ctx,
|
|
sizeof(int) * fs->group_desc_count, "invalid_inode_bitmap");
|
|
ctx->invalid_block_bitmap_flag = (int *) e2fsck_allocate_memory(ctx,
|
|
sizeof(int) * fs->group_desc_count, "invalid_block_bitmap");
|
|
ctx->invalid_inode_table_flag = (int *) e2fsck_allocate_memory(ctx,
|
|
sizeof(int) * fs->group_desc_count, "invalid_inode_table");
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
/*
|
|
* Verify the super block constants...
|
|
*/
|
|
check_super_value(ctx, "inodes_count", sb->s_inodes_count,
|
|
MIN_CHECK, 1, 0);
|
|
check_super_value(ctx, "blocks_count", sb->s_blocks_count,
|
|
MIN_CHECK, 1, 0);
|
|
check_super_value(ctx, "first_data_block", sb->s_first_data_block,
|
|
MAX_CHECK, 0, sb->s_blocks_count);
|
|
check_super_value(ctx, "log_block_size", sb->s_log_block_size,
|
|
MIN_CHECK | MAX_CHECK, 0,
|
|
EXT2_MAX_BLOCK_LOG_SIZE - EXT2_MIN_BLOCK_LOG_SIZE);
|
|
check_super_value(ctx, "log_frag_size", sb->s_log_frag_size,
|
|
MIN_CHECK | MAX_CHECK, 0, sb->s_log_block_size);
|
|
check_super_value(ctx, "frags_per_group", sb->s_frags_per_group,
|
|
MIN_CHECK | MAX_CHECK, sb->s_blocks_per_group,
|
|
bpg_max);
|
|
check_super_value(ctx, "blocks_per_group", sb->s_blocks_per_group,
|
|
MIN_CHECK | MAX_CHECK, 8, bpg_max);
|
|
check_super_value(ctx, "inodes_per_group", sb->s_inodes_per_group,
|
|
MIN_CHECK | MAX_CHECK, inodes_per_block, ipg_max);
|
|
check_super_value(ctx, "r_blocks_count", sb->s_r_blocks_count,
|
|
MAX_CHECK, 0, sb->s_blocks_count / 2);
|
|
check_super_value(ctx, "reserved_gdt_blocks",
|
|
sb->s_reserved_gdt_blocks, MAX_CHECK, 0,
|
|
fs->blocksize/4);
|
|
inode_size = EXT2_INODE_SIZE(sb);
|
|
check_super_value(ctx, "inode_size",
|
|
inode_size, MIN_CHECK | MAX_CHECK,
|
|
EXT2_GOOD_OLD_INODE_SIZE, fs->blocksize);
|
|
if (inode_size & (inode_size - 1)) {
|
|
pctx.num = inode_size;
|
|
pctx.str = "inode_size";
|
|
fix_problem(ctx, PR_0_MISC_CORRUPT_SUPER, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT; /* never get here! */
|
|
return;
|
|
}
|
|
|
|
if (!ctx->num_blocks) {
|
|
pctx.errcode = e2fsck_get_device_size(ctx);
|
|
if (pctx.errcode && pctx.errcode != EXT2_ET_UNIMPLEMENTED) {
|
|
fix_problem(ctx, PR_0_GETSIZE_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
if ((pctx.errcode != EXT2_ET_UNIMPLEMENTED) &&
|
|
(ctx->num_blocks < sb->s_blocks_count)) {
|
|
pctx.blk = sb->s_blocks_count;
|
|
pctx.blk2 = ctx->num_blocks;
|
|
if (fix_problem(ctx, PR_0_FS_SIZE_WRONG, &pctx)) {
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sb->s_log_block_size != (__u32) sb->s_log_frag_size) {
|
|
pctx.blk = EXT2_BLOCK_SIZE(sb);
|
|
pctx.blk2 = EXT2_FRAG_SIZE(sb);
|
|
fix_problem(ctx, PR_0_NO_FRAGMENTS, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
should_be = sb->s_frags_per_group >>
|
|
(sb->s_log_block_size - sb->s_log_frag_size);
|
|
if (sb->s_blocks_per_group != should_be) {
|
|
pctx.blk = sb->s_blocks_per_group;
|
|
pctx.blk2 = should_be;
|
|
fix_problem(ctx, PR_0_BLOCKS_PER_GROUP, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
should_be = (sb->s_log_block_size == 0) ? 1 : 0;
|
|
if (sb->s_first_data_block != should_be) {
|
|
pctx.blk = sb->s_first_data_block;
|
|
pctx.blk2 = should_be;
|
|
fix_problem(ctx, PR_0_FIRST_DATA_BLOCK, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
should_be = sb->s_inodes_per_group * fs->group_desc_count;
|
|
if (sb->s_inodes_count != should_be) {
|
|
pctx.ino = sb->s_inodes_count;
|
|
pctx.ino2 = should_be;
|
|
if (fix_problem(ctx, PR_0_INODE_COUNT_WRONG, &pctx)) {
|
|
sb->s_inodes_count = should_be;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Verify the group descriptors....
|
|
*/
|
|
first_block = sb->s_first_data_block;
|
|
last_block = first_block + blocks_per_group;
|
|
|
|
for (i = 0, gd=fs->group_desc; i < fs->group_desc_count; i++, gd++) {
|
|
pctx.group = i;
|
|
|
|
if (i == fs->group_desc_count - 1)
|
|
last_block = sb->s_blocks_count;
|
|
if ((gd->bg_block_bitmap < first_block) ||
|
|
(gd->bg_block_bitmap >= last_block)) {
|
|
pctx.blk = gd->bg_block_bitmap;
|
|
if (fix_problem(ctx, PR_0_BB_NOT_GROUP, &pctx))
|
|
gd->bg_block_bitmap = 0;
|
|
}
|
|
if (gd->bg_block_bitmap == 0) {
|
|
ctx->invalid_block_bitmap_flag[i]++;
|
|
ctx->invalid_bitmaps++;
|
|
}
|
|
if ((gd->bg_inode_bitmap < first_block) ||
|
|
(gd->bg_inode_bitmap >= last_block)) {
|
|
pctx.blk = gd->bg_inode_bitmap;
|
|
if (fix_problem(ctx, PR_0_IB_NOT_GROUP, &pctx))
|
|
gd->bg_inode_bitmap = 0;
|
|
}
|
|
if (gd->bg_inode_bitmap == 0) {
|
|
ctx->invalid_inode_bitmap_flag[i]++;
|
|
ctx->invalid_bitmaps++;
|
|
}
|
|
if ((gd->bg_inode_table < first_block) ||
|
|
((gd->bg_inode_table +
|
|
fs->inode_blocks_per_group - 1) >= last_block)) {
|
|
pctx.blk = gd->bg_inode_table;
|
|
if (fix_problem(ctx, PR_0_ITABLE_NOT_GROUP, &pctx))
|
|
gd->bg_inode_table = 0;
|
|
}
|
|
if (gd->bg_inode_table == 0) {
|
|
ctx->invalid_inode_table_flag[i]++;
|
|
ctx->invalid_bitmaps++;
|
|
}
|
|
free_blocks += gd->bg_free_blocks_count;
|
|
free_inodes += gd->bg_free_inodes_count;
|
|
first_block += sb->s_blocks_per_group;
|
|
last_block += sb->s_blocks_per_group;
|
|
|
|
if ((gd->bg_free_blocks_count > sb->s_blocks_per_group) ||
|
|
(gd->bg_free_inodes_count > sb->s_inodes_per_group) ||
|
|
(gd->bg_used_dirs_count > sb->s_inodes_per_group))
|
|
ext2fs_unmark_valid(fs);
|
|
}
|
|
|
|
/*
|
|
* Update the global counts from the block group counts. This
|
|
* is needed for an experimental patch which eliminates
|
|
* locking the entire filesystem when allocating blocks or
|
|
* inodes; if the filesystem is not unmounted cleanly, the
|
|
* global counts may not be accurate.
|
|
*/
|
|
if ((free_blocks != sb->s_free_blocks_count) ||
|
|
(free_inodes != sb->s_free_inodes_count)) {
|
|
if (ctx->options & E2F_OPT_READONLY)
|
|
ext2fs_unmark_valid(fs);
|
|
else {
|
|
sb->s_free_blocks_count = free_blocks;
|
|
sb->s_free_inodes_count = free_inodes;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
}
|
|
|
|
if ((sb->s_free_blocks_count > sb->s_blocks_count) ||
|
|
(sb->s_free_inodes_count > sb->s_inodes_count))
|
|
ext2fs_unmark_valid(fs);
|
|
|
|
|
|
/*
|
|
* If we have invalid bitmaps, set the error state of the
|
|
* filesystem.
|
|
*/
|
|
if (ctx->invalid_bitmaps && !(ctx->options & E2F_OPT_READONLY)) {
|
|
sb->s_state &= ~EXT2_VALID_FS;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
/*
|
|
* If the UUID field isn't assigned, assign it.
|
|
*/
|
|
if (!(ctx->options & E2F_OPT_READONLY) && uuid_is_null(sb->s_uuid)) {
|
|
if (fix_problem(ctx, PR_0_ADD_UUID, &pctx)) {
|
|
uuid_generate(sb->s_uuid);
|
|
ext2fs_mark_super_dirty(fs);
|
|
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
|
|
}
|
|
}
|
|
|
|
/* FIXME - HURD support?
|
|
* For the Hurd, check to see if the filetype option is set,
|
|
* since it doesn't support it.
|
|
*/
|
|
if (!(ctx->options & E2F_OPT_READONLY) &&
|
|
fs->super->s_creator_os == EXT2_OS_HURD &&
|
|
(fs->super->s_feature_incompat &
|
|
EXT2_FEATURE_INCOMPAT_FILETYPE)) {
|
|
if (fix_problem(ctx, PR_0_HURD_CLEAR_FILETYPE, &pctx)) {
|
|
fs->super->s_feature_incompat &=
|
|
~EXT2_FEATURE_INCOMPAT_FILETYPE;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we have any of the compatibility flags set, we need to have a
|
|
* revision 1 filesystem. Most kernels will not check the flags on
|
|
* a rev 0 filesystem and we may have corruption issues because of
|
|
* the incompatible changes to the filesystem.
|
|
*/
|
|
if (!(ctx->options & E2F_OPT_READONLY) &&
|
|
fs->super->s_rev_level == EXT2_GOOD_OLD_REV &&
|
|
(fs->super->s_feature_compat ||
|
|
fs->super->s_feature_ro_compat ||
|
|
fs->super->s_feature_incompat) &&
|
|
fix_problem(ctx, PR_0_FS_REV_LEVEL, &pctx)) {
|
|
ext2fs_update_dynamic_rev(fs);
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
|
|
check_resize_inode(ctx);
|
|
|
|
/*
|
|
* Clean up any orphan inodes, if present.
|
|
*/
|
|
if (!(ctx->options & E2F_OPT_READONLY) && release_orphan_inodes(ctx)) {
|
|
fs->super->s_state &= ~EXT2_VALID_FS;
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
|
|
/*
|
|
* Move the ext3 journal file, if necessary.
|
|
*/
|
|
e2fsck_move_ext3_journal(ctx);
|
|
}
|
|
|
|
/*
|
|
* swapfs.c --- byte-swap an ext2 filesystem
|
|
*/
|
|
|
|
#ifdef ENABLE_SWAPFS
|
|
|
|
struct swap_block_struct {
|
|
ext2_ino_t ino;
|
|
int isdir;
|
|
errcode_t errcode;
|
|
char *dir_buf;
|
|
struct ext2_inode *inode;
|
|
};
|
|
|
|
/*
|
|
* This is a helper function for block_iterate. We mark all of the
|
|
* indirect and direct blocks as changed, so that block_iterate will
|
|
* write them out.
|
|
*/
|
|
static int swap_block(ext2_filsys fs, blk_t *block_nr, int blockcnt,
|
|
void *priv_data)
|
|
{
|
|
errcode_t retval;
|
|
|
|
struct swap_block_struct *sb = (struct swap_block_struct *) priv_data;
|
|
|
|
if (sb->isdir && (blockcnt >= 0) && *block_nr) {
|
|
retval = ext2fs_read_dir_block(fs, *block_nr, sb->dir_buf);
|
|
if (retval) {
|
|
sb->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
retval = ext2fs_write_dir_block(fs, *block_nr, sb->dir_buf);
|
|
if (retval) {
|
|
sb->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
}
|
|
if (blockcnt >= 0) {
|
|
if (blockcnt < EXT2_NDIR_BLOCKS)
|
|
return 0;
|
|
return BLOCK_CHANGED;
|
|
}
|
|
if (blockcnt == BLOCK_COUNT_IND) {
|
|
if (*block_nr == sb->inode->i_block[EXT2_IND_BLOCK])
|
|
return 0;
|
|
return BLOCK_CHANGED;
|
|
}
|
|
if (blockcnt == BLOCK_COUNT_DIND) {
|
|
if (*block_nr == sb->inode->i_block[EXT2_DIND_BLOCK])
|
|
return 0;
|
|
return BLOCK_CHANGED;
|
|
}
|
|
if (blockcnt == BLOCK_COUNT_TIND) {
|
|
if (*block_nr == sb->inode->i_block[EXT2_TIND_BLOCK])
|
|
return 0;
|
|
return BLOCK_CHANGED;
|
|
}
|
|
return BLOCK_CHANGED;
|
|
}
|
|
|
|
/*
|
|
* This function is responsible for byte-swapping all of the indirect,
|
|
* block pointers. It is also responsible for byte-swapping directories.
|
|
*/
|
|
static void swap_inode_blocks(e2fsck_t ctx, ext2_ino_t ino, char *block_buf,
|
|
struct ext2_inode *inode)
|
|
{
|
|
errcode_t retval;
|
|
struct swap_block_struct sb;
|
|
|
|
sb.ino = ino;
|
|
sb.inode = inode;
|
|
sb.dir_buf = block_buf + ctx->fs->blocksize*3;
|
|
sb.errcode = 0;
|
|
sb.isdir = 0;
|
|
if (LINUX_S_ISDIR(inode->i_mode))
|
|
sb.isdir = 1;
|
|
|
|
retval = ext2fs_block_iterate(ctx->fs, ino, 0, block_buf,
|
|
swap_block, &sb);
|
|
if (retval) {
|
|
bb_error_msg(_("while calling ext2fs_block_iterate"));
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
if (sb.errcode) {
|
|
bb_error_msg(_("while calling iterator function"));
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void swap_inodes(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
dgrp_t group;
|
|
unsigned int i;
|
|
ext2_ino_t ino = 1;
|
|
char *buf, *block_buf;
|
|
errcode_t retval;
|
|
struct ext2_inode * inode;
|
|
|
|
e2fsck_use_inode_shortcuts(ctx, 1);
|
|
|
|
retval = ext2fs_get_mem(fs->blocksize * fs->inode_blocks_per_group,
|
|
&buf);
|
|
if (retval) {
|
|
bb_error_msg(_("while allocating inode buffer"));
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
block_buf = (char *) e2fsck_allocate_memory(ctx, fs->blocksize * 4,
|
|
"block interate buffer");
|
|
for (group = 0; group < fs->group_desc_count; group++) {
|
|
retval = io_channel_read_blk(fs->io,
|
|
fs->group_desc[group].bg_inode_table,
|
|
fs->inode_blocks_per_group, buf);
|
|
if (retval) {
|
|
bb_error_msg(_("while reading inode table (group %d)"),
|
|
group);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
inode = (struct ext2_inode *) buf;
|
|
for (i=0; i < fs->super->s_inodes_per_group;
|
|
i++, ino++, inode++) {
|
|
ctx->stashed_ino = ino;
|
|
ctx->stashed_inode = inode;
|
|
|
|
if (fs->flags & EXT2_FLAG_SWAP_BYTES_READ)
|
|
ext2fs_swap_inode(fs, inode, inode, 0);
|
|
|
|
/*
|
|
* Skip deleted files.
|
|
*/
|
|
if (inode->i_links_count == 0)
|
|
continue;
|
|
|
|
if (LINUX_S_ISDIR(inode->i_mode) ||
|
|
((inode->i_block[EXT2_IND_BLOCK] ||
|
|
inode->i_block[EXT2_DIND_BLOCK] ||
|
|
inode->i_block[EXT2_TIND_BLOCK]) &&
|
|
ext2fs_inode_has_valid_blocks(inode)))
|
|
swap_inode_blocks(ctx, ino, block_buf, inode);
|
|
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
|
|
if (fs->flags & EXT2_FLAG_SWAP_BYTES_WRITE)
|
|
ext2fs_swap_inode(fs, inode, inode, 1);
|
|
}
|
|
retval = io_channel_write_blk(fs->io,
|
|
fs->group_desc[group].bg_inode_table,
|
|
fs->inode_blocks_per_group, buf);
|
|
if (retval) {
|
|
bb_error_msg(_("while writing inode table (group %d)"),
|
|
group);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
}
|
|
ext2fs_free_mem(&buf);
|
|
ext2fs_free_mem(&block_buf);
|
|
e2fsck_use_inode_shortcuts(ctx, 0);
|
|
ext2fs_flush_icache(fs);
|
|
}
|
|
|
|
#if defined(__powerpc__) && BB_BIG_ENDIAN
|
|
/*
|
|
* On the PowerPC, the big-endian variant of the ext2 filesystem
|
|
* has its bitmaps stored as 32-bit words with bit 0 as the LSB
|
|
* of each word. Thus a bitmap with only bit 0 set would be, as
|
|
* a string of bytes, 00 00 00 01 00 ...
|
|
* To cope with this, we byte-reverse each word of a bitmap if
|
|
* we have a big-endian filesystem, that is, if we are *not*
|
|
* byte-swapping other word-sized numbers.
|
|
*/
|
|
#define EXT2_BIG_ENDIAN_BITMAPS
|
|
#endif
|
|
|
|
#ifdef EXT2_BIG_ENDIAN_BITMAPS
|
|
static void ext2fs_swap_bitmap(ext2fs_generic_bitmap bmap)
|
|
{
|
|
__u32 *p = (__u32 *) bmap->bitmap;
|
|
int n, nbytes = (bmap->end - bmap->start + 7) / 8;
|
|
|
|
for (n = nbytes / sizeof(__u32); n > 0; --n, ++p)
|
|
*p = ext2fs_swab32(*p);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef ENABLE_SWAPFS
|
|
static void swap_filesys(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
printf(_("Pass 0: Doing byte-swap of filesystem\n"));
|
|
|
|
/* Byte swap */
|
|
|
|
if (fs->super->s_mnt_count) {
|
|
fprintf(stderr, _("%s: the filesystem must be freshly "
|
|
"checked using fsck\n"
|
|
"and not mounted before trying to "
|
|
"byte-swap it.\n"), ctx->device_name);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
if (fs->flags & EXT2_FLAG_SWAP_BYTES) {
|
|
fs->flags &= ~(EXT2_FLAG_SWAP_BYTES|
|
|
EXT2_FLAG_SWAP_BYTES_WRITE);
|
|
fs->flags |= EXT2_FLAG_SWAP_BYTES_READ;
|
|
} else {
|
|
fs->flags &= ~EXT2_FLAG_SWAP_BYTES_READ;
|
|
fs->flags |= EXT2_FLAG_SWAP_BYTES_WRITE;
|
|
}
|
|
swap_inodes(ctx);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
return;
|
|
if (fs->flags & EXT2_FLAG_SWAP_BYTES_WRITE)
|
|
fs->flags |= EXT2_FLAG_SWAP_BYTES;
|
|
fs->flags &= ~(EXT2_FLAG_SWAP_BYTES_READ|
|
|
EXT2_FLAG_SWAP_BYTES_WRITE);
|
|
|
|
#ifdef EXT2_BIG_ENDIAN_BITMAPS
|
|
e2fsck_read_bitmaps(ctx);
|
|
ext2fs_swap_bitmap(fs->inode_map);
|
|
ext2fs_swap_bitmap(fs->block_map);
|
|
fs->flags |= EXT2_FLAG_BB_DIRTY | EXT2_FLAG_IB_DIRTY;
|
|
#endif
|
|
fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY;
|
|
ext2fs_flush(fs);
|
|
fs->flags |= EXT2_FLAG_MASTER_SB_ONLY;
|
|
}
|
|
#endif /* ENABLE_SWAPFS */
|
|
|
|
#endif
|
|
|
|
/*
|
|
* util.c --- miscellaneous utilities
|
|
*/
|
|
|
|
|
|
void *e2fsck_allocate_memory(e2fsck_t ctx, unsigned int size,
|
|
const char *description)
|
|
{
|
|
void *ret;
|
|
char buf[256];
|
|
|
|
ret = xzalloc(size);
|
|
return ret;
|
|
}
|
|
|
|
static char *string_copy(const char *str, int len)
|
|
{
|
|
char *ret;
|
|
|
|
if (!str)
|
|
return NULL;
|
|
if (!len)
|
|
len = strlen(str);
|
|
ret = xmalloc(len+1);
|
|
strncpy(ret, str, len);
|
|
ret[len] = 0;
|
|
return ret;
|
|
}
|
|
|
|
#ifndef HAVE_CONIO_H
|
|
static int read_a_char(void)
|
|
{
|
|
char c;
|
|
int r;
|
|
int fail = 0;
|
|
|
|
while (1) {
|
|
if (e2fsck_global_ctx &&
|
|
(e2fsck_global_ctx->flags & E2F_FLAG_CANCEL)) {
|
|
return 3;
|
|
}
|
|
r = read(0, &c, 1);
|
|
if (r == 1)
|
|
return c;
|
|
if (fail++ > 100)
|
|
break;
|
|
}
|
|
return EOF;
|
|
}
|
|
#endif
|
|
|
|
static int ask_yn(const char * string, int def)
|
|
{
|
|
int c;
|
|
const char *defstr;
|
|
static const char short_yes[] = "yY";
|
|
static const char short_no[] = "nN";
|
|
|
|
#ifdef HAVE_TERMIOS_H
|
|
struct termios termios, tmp;
|
|
|
|
tcgetattr (0, &termios);
|
|
tmp = termios;
|
|
tmp.c_lflag &= ~(ICANON | ECHO);
|
|
tmp.c_cc[VMIN] = 1;
|
|
tmp.c_cc[VTIME] = 0;
|
|
tcsetattr_stdin_TCSANOW(&tmp);
|
|
#endif
|
|
|
|
if (def == 1)
|
|
defstr = "<y>";
|
|
else if (def == 0)
|
|
defstr = "<n>";
|
|
else
|
|
defstr = " (y/n)";
|
|
printf("%s%s? ", string, defstr);
|
|
while (1) {
|
|
fflush (stdout);
|
|
if ((c = read_a_char()) == EOF)
|
|
break;
|
|
if (c == 3) {
|
|
#ifdef HAVE_TERMIOS_H
|
|
tcsetattr_stdin_TCSANOW(&termios);
|
|
#endif
|
|
if (e2fsck_global_ctx &&
|
|
e2fsck_global_ctx->flags & E2F_FLAG_SETJMP_OK) {
|
|
puts("\n");
|
|
longjmp(e2fsck_global_ctx->abort_loc, 1);
|
|
}
|
|
puts(_("cancelled!\n"));
|
|
return 0;
|
|
}
|
|
if (strchr(short_yes, (char) c)) {
|
|
def = 1;
|
|
break;
|
|
}
|
|
else if (strchr(short_no, (char) c)) {
|
|
def = 0;
|
|
break;
|
|
}
|
|
else if ((c == ' ' || c == '\n') && (def != -1))
|
|
break;
|
|
}
|
|
if (def)
|
|
puts("yes\n");
|
|
else
|
|
puts ("no\n");
|
|
#ifdef HAVE_TERMIOS_H
|
|
tcsetattr_stdin_TCSANOW(&termios);
|
|
#endif
|
|
return def;
|
|
}
|
|
|
|
int ask (e2fsck_t ctx, const char * string, int def)
|
|
{
|
|
if (ctx->options & E2F_OPT_NO) {
|
|
printf(_("%s? no\n\n"), string);
|
|
return 0;
|
|
}
|
|
if (ctx->options & E2F_OPT_YES) {
|
|
printf(_("%s? yes\n\n"), string);
|
|
return 1;
|
|
}
|
|
if (ctx->options & E2F_OPT_PREEN) {
|
|
printf("%s? %s\n\n", string, def ? _("yes") : _("no"));
|
|
return def;
|
|
}
|
|
return ask_yn(string, def);
|
|
}
|
|
|
|
void e2fsck_read_bitmaps(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
|
|
if (ctx->invalid_bitmaps) {
|
|
bb_error_msg(_("e2fsck_read_bitmaps: illegal bitmap block(s) for %s"),
|
|
ctx->device_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
|
|
ehandler_operation(_("reading inode and block bitmaps"));
|
|
retval = ext2fs_read_bitmaps(fs);
|
|
ehandler_operation(0);
|
|
if (retval) {
|
|
bb_error_msg(_("while retrying to read bitmaps for %s"),
|
|
ctx->device_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
}
|
|
|
|
static void e2fsck_write_bitmaps(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
|
|
if (ext2fs_test_bb_dirty(fs)) {
|
|
ehandler_operation(_("writing block bitmaps"));
|
|
retval = ext2fs_write_block_bitmap(fs);
|
|
ehandler_operation(0);
|
|
if (retval) {
|
|
bb_error_msg(_("while retrying to write block bitmaps for %s"),
|
|
ctx->device_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
}
|
|
|
|
if (ext2fs_test_ib_dirty(fs)) {
|
|
ehandler_operation(_("writing inode bitmaps"));
|
|
retval = ext2fs_write_inode_bitmap(fs);
|
|
ehandler_operation(0);
|
|
if (retval) {
|
|
bb_error_msg(_("while retrying to write inode bitmaps for %s"),
|
|
ctx->device_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void preenhalt(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
return;
|
|
fprintf(stderr, _("\n\n%s: UNEXPECTED INCONSISTENCY; "
|
|
"RUN fsck MANUALLY.\n\t(i.e., without -a or -p options)\n"),
|
|
ctx->device_name);
|
|
if (fs != NULL) {
|
|
fs->super->s_state |= EXT2_ERROR_FS;
|
|
ext2fs_mark_super_dirty(fs);
|
|
ext2fs_close(fs);
|
|
}
|
|
exit(EXIT_UNCORRECTED);
|
|
}
|
|
|
|
void e2fsck_read_inode(e2fsck_t ctx, unsigned long ino,
|
|
struct ext2_inode * inode, const char *proc)
|
|
{
|
|
int retval;
|
|
|
|
retval = ext2fs_read_inode(ctx->fs, ino, inode);
|
|
if (retval) {
|
|
bb_error_msg(_("while reading inode %ld in %s"), ino, proc);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
}
|
|
|
|
extern void e2fsck_write_inode_full(e2fsck_t ctx, unsigned long ino,
|
|
struct ext2_inode * inode, int bufsize,
|
|
const char *proc)
|
|
{
|
|
int retval;
|
|
|
|
retval = ext2fs_write_inode_full(ctx->fs, ino, inode, bufsize);
|
|
if (retval) {
|
|
bb_error_msg(_("while writing inode %ld in %s"), ino, proc);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
}
|
|
|
|
extern void e2fsck_write_inode(e2fsck_t ctx, unsigned long ino,
|
|
struct ext2_inode * inode, const char *proc)
|
|
{
|
|
int retval;
|
|
|
|
retval = ext2fs_write_inode(ctx->fs, ino, inode);
|
|
if (retval) {
|
|
bb_error_msg(_("while writing inode %ld in %s"), ino, proc);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
}
|
|
|
|
blk_t get_backup_sb(e2fsck_t ctx, ext2_filsys fs, const char *name,
|
|
io_manager manager)
|
|
{
|
|
struct ext2_super_block *sb;
|
|
io_channel io = NULL;
|
|
void *buf = NULL;
|
|
int blocksize;
|
|
blk_t superblock, ret_sb = 8193;
|
|
|
|
if (fs && fs->super) {
|
|
ret_sb = (fs->super->s_blocks_per_group +
|
|
fs->super->s_first_data_block);
|
|
if (ctx) {
|
|
ctx->superblock = ret_sb;
|
|
ctx->blocksize = fs->blocksize;
|
|
}
|
|
return ret_sb;
|
|
}
|
|
|
|
if (ctx) {
|
|
if (ctx->blocksize) {
|
|
ret_sb = ctx->blocksize * 8;
|
|
if (ctx->blocksize == 1024)
|
|
ret_sb++;
|
|
ctx->superblock = ret_sb;
|
|
return ret_sb;
|
|
}
|
|
ctx->superblock = ret_sb;
|
|
ctx->blocksize = 1024;
|
|
}
|
|
|
|
if (!name || !manager)
|
|
goto cleanup;
|
|
|
|
if (manager->open(name, 0, &io) != 0)
|
|
goto cleanup;
|
|
|
|
if (ext2fs_get_mem(SUPERBLOCK_SIZE, &buf))
|
|
goto cleanup;
|
|
sb = (struct ext2_super_block *) buf;
|
|
|
|
for (blocksize = EXT2_MIN_BLOCK_SIZE;
|
|
blocksize <= EXT2_MAX_BLOCK_SIZE; blocksize *= 2) {
|
|
superblock = blocksize*8;
|
|
if (blocksize == 1024)
|
|
superblock++;
|
|
io_channel_set_blksize(io, blocksize);
|
|
if (io_channel_read_blk(io, superblock,
|
|
-SUPERBLOCK_SIZE, buf))
|
|
continue;
|
|
#if BB_BIG_ENDIAN
|
|
if (sb->s_magic == ext2fs_swab16(EXT2_SUPER_MAGIC))
|
|
ext2fs_swap_super(sb);
|
|
#endif
|
|
if (sb->s_magic == EXT2_SUPER_MAGIC) {
|
|
ret_sb = superblock;
|
|
if (ctx) {
|
|
ctx->superblock = superblock;
|
|
ctx->blocksize = blocksize;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
if (io)
|
|
io_channel_close(io);
|
|
ext2fs_free_mem(&buf);
|
|
return ret_sb;
|
|
}
|
|
|
|
|
|
/*
|
|
* This function runs through the e2fsck passes and calls them all,
|
|
* returning restart, abort, or cancel as necessary...
|
|
*/
|
|
typedef void (*pass_t)(e2fsck_t ctx);
|
|
|
|
static const pass_t e2fsck_passes[] = {
|
|
e2fsck_pass1, e2fsck_pass2, e2fsck_pass3, e2fsck_pass4,
|
|
e2fsck_pass5, 0 };
|
|
|
|
#define E2F_FLAG_RUN_RETURN (E2F_FLAG_SIGNAL_MASK|E2F_FLAG_RESTART)
|
|
|
|
static int e2fsck_run(e2fsck_t ctx)
|
|
{
|
|
int i;
|
|
pass_t e2fsck_pass;
|
|
|
|
if (setjmp(ctx->abort_loc)) {
|
|
ctx->flags &= ~E2F_FLAG_SETJMP_OK;
|
|
return (ctx->flags & E2F_FLAG_RUN_RETURN);
|
|
}
|
|
ctx->flags |= E2F_FLAG_SETJMP_OK;
|
|
|
|
for (i=0; (e2fsck_pass = e2fsck_passes[i]); i++) {
|
|
if (ctx->flags & E2F_FLAG_RUN_RETURN)
|
|
break;
|
|
e2fsck_pass(ctx);
|
|
if (ctx->progress)
|
|
(void) (ctx->progress)(ctx, 0, 0, 0);
|
|
}
|
|
ctx->flags &= ~E2F_FLAG_SETJMP_OK;
|
|
|
|
if (ctx->flags & E2F_FLAG_RUN_RETURN)
|
|
return (ctx->flags & E2F_FLAG_RUN_RETURN);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* unix.c - The unix-specific code for e2fsck
|
|
*/
|
|
|
|
|
|
/* Command line options */
|
|
static int swapfs;
|
|
#ifdef ENABLE_SWAPFS
|
|
static int normalize_swapfs;
|
|
#endif
|
|
static int cflag; /* check disk */
|
|
static int show_version_only;
|
|
static int verbose;
|
|
|
|
#define P_E2(singular, plural, n) n, ((n) == 1 ? singular : plural)
|
|
|
|
static void show_stats(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
int inodes, inodes_used, blocks, blocks_used;
|
|
int dir_links;
|
|
int num_files, num_links;
|
|
int frag_percent;
|
|
|
|
dir_links = 2 * ctx->fs_directory_count - 1;
|
|
num_files = ctx->fs_total_count - dir_links;
|
|
num_links = ctx->fs_links_count - dir_links;
|
|
inodes = fs->super->s_inodes_count;
|
|
inodes_used = (fs->super->s_inodes_count -
|
|
fs->super->s_free_inodes_count);
|
|
blocks = fs->super->s_blocks_count;
|
|
blocks_used = (fs->super->s_blocks_count -
|
|
fs->super->s_free_blocks_count);
|
|
|
|
frag_percent = (10000 * ctx->fs_fragmented) / inodes_used;
|
|
frag_percent = (frag_percent + 5) / 10;
|
|
|
|
if (!verbose) {
|
|
printf("%s: %d/%d files (%0d.%d%% non-contiguous), %d/%d blocks\n",
|
|
ctx->device_name, inodes_used, inodes,
|
|
frag_percent / 10, frag_percent % 10,
|
|
blocks_used, blocks);
|
|
return;
|
|
}
|
|
printf("\n%8d inode%s used (%d%%)\n", P_E2("", "s", inodes_used),
|
|
100 * inodes_used / inodes);
|
|
printf("%8d non-contiguous inode%s (%0d.%d%%)\n",
|
|
P_E2("", "s", ctx->fs_fragmented),
|
|
frag_percent / 10, frag_percent % 10);
|
|
printf(_(" # of inodes with ind/dind/tind blocks: %d/%d/%d\n"),
|
|
ctx->fs_ind_count, ctx->fs_dind_count, ctx->fs_tind_count);
|
|
printf("%8d block%s used (%d%%)\n", P_E2("", "s", blocks_used),
|
|
(int) ((long long) 100 * blocks_used / blocks));
|
|
printf("%8d large file%s\n", P_E2("", "s", ctx->large_files));
|
|
printf("\n%8d regular file%s\n", P_E2("", "s", ctx->fs_regular_count));
|
|
printf("%8d director%s\n", P_E2("y", "ies", ctx->fs_directory_count));
|
|
printf("%8d character device file%s\n", P_E2("", "s", ctx->fs_chardev_count));
|
|
printf("%8d block device file%s\n", P_E2("", "s", ctx->fs_blockdev_count));
|
|
printf("%8d fifo%s\n", P_E2("", "s", ctx->fs_fifo_count));
|
|
printf("%8d link%s\n", P_E2("", "s", ctx->fs_links_count - dir_links));
|
|
printf("%8d symbolic link%s", P_E2("", "s", ctx->fs_symlinks_count));
|
|
printf(" (%d fast symbolic link%s)\n", P_E2("", "s", ctx->fs_fast_symlinks_count));
|
|
printf("%8d socket%s--------\n\n", P_E2("", "s", ctx->fs_sockets_count));
|
|
printf("%8d file%s\n", P_E2("", "s", ctx->fs_total_count - dir_links));
|
|
}
|
|
|
|
static void check_mount(e2fsck_t ctx)
|
|
{
|
|
errcode_t retval;
|
|
int cont;
|
|
|
|
retval = ext2fs_check_if_mounted(ctx->filesystem_name,
|
|
&ctx->mount_flags);
|
|
if (retval) {
|
|
bb_error_msg(_("while determining whether %s is mounted"),
|
|
ctx->filesystem_name);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the filesystem isn't mounted, or it's the root filesystem
|
|
* and it's mounted read-only, then everything's fine.
|
|
*/
|
|
if ((!(ctx->mount_flags & EXT2_MF_MOUNTED)) ||
|
|
((ctx->mount_flags & EXT2_MF_ISROOT) &&
|
|
(ctx->mount_flags & EXT2_MF_READONLY)))
|
|
return;
|
|
|
|
if (ctx->options & E2F_OPT_READONLY) {
|
|
printf(_("Warning! %s is mounted.\n"), ctx->filesystem_name);
|
|
return;
|
|
}
|
|
|
|
printf(_("%s is mounted. "), ctx->filesystem_name);
|
|
if (!ctx->interactive)
|
|
bb_error_msg_and_die(_("can't continue, aborting"));
|
|
printf(_("\n\n\007\007\007\007WARNING!!! "
|
|
"Running e2fsck on a mounted filesystem may cause\n"
|
|
"SEVERE filesystem damage.\007\007\007\n\n"));
|
|
cont = ask_yn(_("Do you really want to continue"), -1);
|
|
if (!cont) {
|
|
printf(_("check aborted.\n"));
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
static int is_on_batt(void)
|
|
{
|
|
FILE *f;
|
|
DIR *d;
|
|
char tmp[80], tmp2[80], fname[80];
|
|
unsigned int acflag;
|
|
struct dirent* de;
|
|
|
|
f = fopen_for_read("/proc/apm");
|
|
if (f) {
|
|
if (fscanf(f, "%s %s %s %x", tmp, tmp, tmp, &acflag) != 4)
|
|
acflag = 1;
|
|
fclose(f);
|
|
return (acflag != 1);
|
|
}
|
|
d = opendir("/proc/acpi/ac_adapter");
|
|
if (d) {
|
|
while ((de=readdir(d)) != NULL) {
|
|
if (!strncmp(".", de->d_name, 1))
|
|
continue;
|
|
snprintf(fname, 80, "/proc/acpi/ac_adapter/%s/state",
|
|
de->d_name);
|
|
f = fopen_for_read(fname);
|
|
if (!f)
|
|
continue;
|
|
if (fscanf(f, "%s %s", tmp2, tmp) != 2)
|
|
tmp[0] = 0;
|
|
fclose(f);
|
|
if (strncmp(tmp, "off-line", 8) == 0) {
|
|
closedir(d);
|
|
return 1;
|
|
}
|
|
}
|
|
closedir(d);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine checks to see if a filesystem can be skipped; if so,
|
|
* it will exit with EXIT_OK. Under some conditions it will print a
|
|
* message explaining why a check is being forced.
|
|
*/
|
|
static void check_if_skip(e2fsck_t ctx)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
const char *reason = NULL;
|
|
unsigned int reason_arg = 0;
|
|
long next_check;
|
|
int batt = is_on_batt();
|
|
time_t now = time(NULL);
|
|
|
|
if ((ctx->options & E2F_OPT_FORCE) || cflag || swapfs)
|
|
return;
|
|
|
|
if ((fs->super->s_state & EXT2_ERROR_FS) ||
|
|
!ext2fs_test_valid(fs))
|
|
reason = _(" contains a file system with errors");
|
|
else if ((fs->super->s_state & EXT2_VALID_FS) == 0)
|
|
reason = _(" was not cleanly unmounted");
|
|
else if ((fs->super->s_max_mnt_count > 0) &&
|
|
(fs->super->s_mnt_count >=
|
|
(unsigned) fs->super->s_max_mnt_count)) {
|
|
reason = _(" has been mounted %u times without being checked");
|
|
reason_arg = fs->super->s_mnt_count;
|
|
if (batt && (fs->super->s_mnt_count <
|
|
(unsigned) fs->super->s_max_mnt_count*2))
|
|
reason = 0;
|
|
} else if (fs->super->s_checkinterval &&
|
|
((now - fs->super->s_lastcheck) >=
|
|
fs->super->s_checkinterval)) {
|
|
reason = _(" has gone %u days without being checked");
|
|
reason_arg = (now - fs->super->s_lastcheck)/(3600*24);
|
|
if (batt && ((now - fs->super->s_lastcheck) <
|
|
fs->super->s_checkinterval*2))
|
|
reason = 0;
|
|
}
|
|
if (reason) {
|
|
fputs(ctx->device_name, stdout);
|
|
printf(reason, reason_arg);
|
|
fputs(_(", check forced.\n"), stdout);
|
|
return;
|
|
}
|
|
printf(_("%s: clean, %d/%d files, %d/%d blocks"), ctx->device_name,
|
|
fs->super->s_inodes_count - fs->super->s_free_inodes_count,
|
|
fs->super->s_inodes_count,
|
|
fs->super->s_blocks_count - fs->super->s_free_blocks_count,
|
|
fs->super->s_blocks_count);
|
|
next_check = 100000;
|
|
if (fs->super->s_max_mnt_count > 0) {
|
|
next_check = fs->super->s_max_mnt_count - fs->super->s_mnt_count;
|
|
if (next_check <= 0)
|
|
next_check = 1;
|
|
}
|
|
if (fs->super->s_checkinterval &&
|
|
((now - fs->super->s_lastcheck) >= fs->super->s_checkinterval))
|
|
next_check = 1;
|
|
if (next_check <= 5) {
|
|
if (next_check == 1)
|
|
fputs(_(" (check after next mount)"), stdout);
|
|
else
|
|
printf(_(" (check in %ld mounts)"), next_check);
|
|
}
|
|
bb_putchar('\n');
|
|
ext2fs_close(fs);
|
|
ctx->fs = NULL;
|
|
e2fsck_free_context(ctx);
|
|
exit(EXIT_OK);
|
|
}
|
|
|
|
/*
|
|
* For completion notice
|
|
*/
|
|
struct percent_tbl {
|
|
int max_pass;
|
|
int table[32];
|
|
};
|
|
static const struct percent_tbl e2fsck_tbl = {
|
|
5, { 0, 70, 90, 92, 95, 100 }
|
|
};
|
|
|
|
static char bar[128], spaces[128];
|
|
|
|
static float calc_percent(const struct percent_tbl *tbl, int pass, int curr,
|
|
int max)
|
|
{
|
|
float percent;
|
|
|
|
if (pass <= 0)
|
|
return 0.0;
|
|
if (pass > tbl->max_pass || max == 0)
|
|
return 100.0;
|
|
percent = ((float) curr) / ((float) max);
|
|
return ((percent * (tbl->table[pass] - tbl->table[pass-1]))
|
|
+ tbl->table[pass-1]);
|
|
}
|
|
|
|
void e2fsck_clear_progbar(e2fsck_t ctx)
|
|
{
|
|
if (!(ctx->flags & E2F_FLAG_PROG_BAR))
|
|
return;
|
|
|
|
printf("%s%s\r%s", ctx->start_meta, spaces + (sizeof(spaces) - 80),
|
|
ctx->stop_meta);
|
|
fflush(stdout);
|
|
ctx->flags &= ~E2F_FLAG_PROG_BAR;
|
|
}
|
|
|
|
int e2fsck_simple_progress(e2fsck_t ctx, const char *label, float percent,
|
|
unsigned int dpynum)
|
|
{
|
|
static const char spinner[] = "\\|/-";
|
|
int i;
|
|
unsigned int tick;
|
|
struct timeval tv;
|
|
int dpywidth;
|
|
int fixed_percent;
|
|
|
|
if (ctx->flags & E2F_FLAG_PROG_SUPPRESS)
|
|
return 0;
|
|
|
|
/*
|
|
* Calculate the new progress position. If the
|
|
* percentage hasn't changed, then we skip out right
|
|
* away.
|
|
*/
|
|
fixed_percent = (int) ((10 * percent) + 0.5);
|
|
if (ctx->progress_last_percent == fixed_percent)
|
|
return 0;
|
|
ctx->progress_last_percent = fixed_percent;
|
|
|
|
/*
|
|
* If we've already updated the spinner once within
|
|
* the last 1/8th of a second, no point doing it
|
|
* again.
|
|
*/
|
|
gettimeofday(&tv, NULL);
|
|
tick = (tv.tv_sec << 3) + (tv.tv_usec / (1000000 / 8));
|
|
if ((tick == ctx->progress_last_time) &&
|
|
(fixed_percent != 0) && (fixed_percent != 1000))
|
|
return 0;
|
|
ctx->progress_last_time = tick;
|
|
|
|
/*
|
|
* Advance the spinner, and note that the progress bar
|
|
* will be on the screen
|
|
*/
|
|
ctx->progress_pos = (ctx->progress_pos+1) & 3;
|
|
ctx->flags |= E2F_FLAG_PROG_BAR;
|
|
|
|
dpywidth = 66 - strlen(label);
|
|
dpywidth = 8 * (dpywidth / 8);
|
|
if (dpynum)
|
|
dpywidth -= 8;
|
|
|
|
i = ((percent * dpywidth) + 50) / 100;
|
|
printf("%s%s: |%s%s", ctx->start_meta, label,
|
|
bar + (sizeof(bar) - (i+1)),
|
|
spaces + (sizeof(spaces) - (dpywidth - i + 1)));
|
|
if (fixed_percent == 1000)
|
|
bb_putchar('|');
|
|
else
|
|
bb_putchar(spinner[ctx->progress_pos & 3]);
|
|
printf(" %4.1f%% ", percent);
|
|
if (dpynum)
|
|
printf("%u\r", dpynum);
|
|
else
|
|
fputs(" \r", stdout);
|
|
fputs(ctx->stop_meta, stdout);
|
|
|
|
if (fixed_percent == 1000)
|
|
e2fsck_clear_progbar(ctx);
|
|
fflush(stdout);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int e2fsck_update_progress(e2fsck_t ctx, int pass,
|
|
unsigned long cur, unsigned long max)
|
|
{
|
|
char buf[80];
|
|
float percent;
|
|
|
|
if (pass == 0)
|
|
return 0;
|
|
|
|
if (ctx->progress_fd) {
|
|
sprintf(buf, "%d %lu %lu\n", pass, cur, max);
|
|
xwrite_str(ctx->progress_fd, buf);
|
|
} else {
|
|
percent = calc_percent(&e2fsck_tbl, pass, cur, max);
|
|
e2fsck_simple_progress(ctx, ctx->device_name,
|
|
percent, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void reserve_stdio_fds(void)
|
|
{
|
|
int fd;
|
|
|
|
while (1) {
|
|
fd = open(bb_dev_null, O_RDWR);
|
|
if (fd > 2)
|
|
break;
|
|
if (fd < 0) {
|
|
fprintf(stderr, _("ERROR: Cannot open "
|
|
"/dev/null (%s)\n"),
|
|
strerror(errno));
|
|
break;
|
|
}
|
|
}
|
|
close(fd);
|
|
}
|
|
|
|
static void signal_progress_on(int sig FSCK_ATTR((unused)))
|
|
{
|
|
e2fsck_t ctx = e2fsck_global_ctx;
|
|
|
|
if (!ctx)
|
|
return;
|
|
|
|
ctx->progress = e2fsck_update_progress;
|
|
ctx->progress_fd = 0;
|
|
}
|
|
|
|
static void signal_progress_off(int sig FSCK_ATTR((unused)))
|
|
{
|
|
e2fsck_t ctx = e2fsck_global_ctx;
|
|
|
|
if (!ctx)
|
|
return;
|
|
|
|
e2fsck_clear_progbar(ctx);
|
|
ctx->progress = 0;
|
|
}
|
|
|
|
static void signal_cancel(int sig FSCK_ATTR((unused)))
|
|
{
|
|
e2fsck_t ctx = e2fsck_global_ctx;
|
|
|
|
if (!ctx)
|
|
exit(FSCK_CANCELED);
|
|
|
|
ctx->flags |= E2F_FLAG_CANCEL;
|
|
}
|
|
|
|
static void parse_extended_opts(e2fsck_t ctx, const char *opts)
|
|
{
|
|
char *buf, *token, *next, *p, *arg;
|
|
int ea_ver;
|
|
int extended_usage = 0;
|
|
|
|
buf = string_copy(opts, 0);
|
|
for (token = buf; token && *token; token = next) {
|
|
p = strchr(token, ',');
|
|
next = 0;
|
|
if (p) {
|
|
*p = 0;
|
|
next = p+1;
|
|
}
|
|
arg = strchr(token, '=');
|
|
if (arg) {
|
|
*arg = 0;
|
|
arg++;
|
|
}
|
|
if (strcmp(token, "ea_ver") == 0) {
|
|
if (!arg) {
|
|
extended_usage++;
|
|
continue;
|
|
}
|
|
ea_ver = strtoul(arg, &p, 0);
|
|
if (*p ||
|
|
((ea_ver != 1) && (ea_ver != 2))) {
|
|
fprintf(stderr,
|
|
_("Invalid EA version.\n"));
|
|
extended_usage++;
|
|
continue;
|
|
}
|
|
ctx->ext_attr_ver = ea_ver;
|
|
} else {
|
|
fprintf(stderr, _("Unknown extended option: %s\n"),
|
|
token);
|
|
extended_usage++;
|
|
}
|
|
}
|
|
if (extended_usage) {
|
|
bb_error_msg_and_die(
|
|
"Extended options are separated by commas, "
|
|
"and may take an argument which\n"
|
|
"is set off by an equals ('=') sign. "
|
|
"Valid extended options are:\n"
|
|
"\tea_ver=<ea_version (1 or 2)>\n\n");
|
|
}
|
|
}
|
|
|
|
|
|
static errcode_t PRS(int argc, char **argv, e2fsck_t *ret_ctx)
|
|
{
|
|
int flush = 0;
|
|
int c, fd;
|
|
e2fsck_t ctx;
|
|
errcode_t retval;
|
|
struct sigaction sa;
|
|
char *extended_opts = NULL;
|
|
|
|
retval = e2fsck_allocate_context(&ctx);
|
|
if (retval)
|
|
return retval;
|
|
|
|
*ret_ctx = ctx;
|
|
|
|
setvbuf(stdout, NULL, _IONBF, BUFSIZ);
|
|
setvbuf(stderr, NULL, _IONBF, BUFSIZ);
|
|
if (isatty(0) && isatty(1)) {
|
|
ctx->interactive = 1;
|
|
} else {
|
|
ctx->start_meta[0] = '\001';
|
|
ctx->stop_meta[0] = '\002';
|
|
}
|
|
memset(bar, '=', sizeof(bar)-1);
|
|
memset(spaces, ' ', sizeof(spaces)-1);
|
|
blkid_get_cache(&ctx->blkid, NULL);
|
|
|
|
if (argc && *argv)
|
|
ctx->program_name = *argv;
|
|
else
|
|
ctx->program_name = "e2fsck";
|
|
while ((c = getopt (argc, argv, "panyrcC:B:dE:fvtFVM:b:I:j:P:l:L:N:SsDk")) != EOF)
|
|
switch (c) {
|
|
case 'C':
|
|
ctx->progress = e2fsck_update_progress;
|
|
ctx->progress_fd = atoi(optarg);
|
|
if (!ctx->progress_fd)
|
|
break;
|
|
/* Validate the file descriptor to avoid disasters */
|
|
fd = dup(ctx->progress_fd);
|
|
if (fd < 0) {
|
|
fprintf(stderr,
|
|
_("Error validating file descriptor %d: %s\n"),
|
|
ctx->progress_fd,
|
|
error_message(errno));
|
|
bb_error_msg_and_die(_("Invalid completion information file descriptor"));
|
|
} else
|
|
close(fd);
|
|
break;
|
|
case 'D':
|
|
ctx->options |= E2F_OPT_COMPRESS_DIRS;
|
|
break;
|
|
case 'E':
|
|
extended_opts = optarg;
|
|
break;
|
|
case 'p':
|
|
case 'a':
|
|
if (ctx->options & (E2F_OPT_YES|E2F_OPT_NO)) {
|
|
conflict_opt:
|
|
bb_error_msg_and_die(_("only one the options -p/-a, -n or -y may be specified"));
|
|
}
|
|
ctx->options |= E2F_OPT_PREEN;
|
|
break;
|
|
case 'n':
|
|
if (ctx->options & (E2F_OPT_YES|E2F_OPT_PREEN))
|
|
goto conflict_opt;
|
|
ctx->options |= E2F_OPT_NO;
|
|
break;
|
|
case 'y':
|
|
if (ctx->options & (E2F_OPT_PREEN|E2F_OPT_NO))
|
|
goto conflict_opt;
|
|
ctx->options |= E2F_OPT_YES;
|
|
break;
|
|
case 't':
|
|
/* FIXME - This needs to go away in a future path - will change binary */
|
|
fprintf(stderr, _("The -t option is not "
|
|
"supported on this version of e2fsck.\n"));
|
|
break;
|
|
case 'c':
|
|
if (cflag++)
|
|
ctx->options |= E2F_OPT_WRITECHECK;
|
|
ctx->options |= E2F_OPT_CHECKBLOCKS;
|
|
break;
|
|
case 'r':
|
|
/* What we do by default, anyway! */
|
|
break;
|
|
case 'b':
|
|
ctx->use_superblock = atoi(optarg);
|
|
ctx->flags |= E2F_FLAG_SB_SPECIFIED;
|
|
break;
|
|
case 'B':
|
|
ctx->blocksize = atoi(optarg);
|
|
break;
|
|
case 'I':
|
|
ctx->inode_buffer_blocks = atoi(optarg);
|
|
break;
|
|
case 'j':
|
|
ctx->journal_name = string_copy(optarg, 0);
|
|
break;
|
|
case 'P':
|
|
ctx->process_inode_size = atoi(optarg);
|
|
break;
|
|
case 'd':
|
|
ctx->options |= E2F_OPT_DEBUG;
|
|
break;
|
|
case 'f':
|
|
ctx->options |= E2F_OPT_FORCE;
|
|
break;
|
|
case 'F':
|
|
flush = 1;
|
|
break;
|
|
case 'v':
|
|
verbose = 1;
|
|
break;
|
|
case 'V':
|
|
show_version_only = 1;
|
|
break;
|
|
case 'N':
|
|
ctx->device_name = optarg;
|
|
break;
|
|
#ifdef ENABLE_SWAPFS
|
|
case 's':
|
|
normalize_swapfs = 1;
|
|
case 'S':
|
|
swapfs = 1;
|
|
break;
|
|
#else
|
|
case 's':
|
|
case 'S':
|
|
fprintf(stderr, _("Byte-swapping filesystems "
|
|
"not compiled in this version "
|
|
"of e2fsck\n"));
|
|
exit(1);
|
|
#endif
|
|
default:
|
|
bb_show_usage();
|
|
}
|
|
if (show_version_only)
|
|
return 0;
|
|
if (optind != argc - 1)
|
|
bb_show_usage();
|
|
if ((ctx->options & E2F_OPT_NO) &&
|
|
!cflag && !swapfs && !(ctx->options & E2F_OPT_COMPRESS_DIRS))
|
|
ctx->options |= E2F_OPT_READONLY;
|
|
ctx->io_options = strchr(argv[optind], '?');
|
|
if (ctx->io_options)
|
|
*ctx->io_options++ = 0;
|
|
ctx->filesystem_name = blkid_get_devname(ctx->blkid, argv[optind], 0);
|
|
if (!ctx->filesystem_name) {
|
|
bb_error_msg(_("Unable to resolve '%s'"), argv[optind]);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
if (extended_opts)
|
|
parse_extended_opts(ctx, extended_opts);
|
|
|
|
if (flush) {
|
|
fd = open(ctx->filesystem_name, O_RDONLY, 0);
|
|
if (fd < 0) {
|
|
bb_error_msg(_("while opening %s for flushing"),
|
|
ctx->filesystem_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
if ((retval = ext2fs_sync_device(fd, 1))) {
|
|
bb_error_msg(_("while trying to flush %s"),
|
|
ctx->filesystem_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
close(fd);
|
|
}
|
|
#ifdef ENABLE_SWAPFS
|
|
if (swapfs && cflag) {
|
|
fprintf(stderr, _("Incompatible options not "
|
|
"allowed when byte-swapping.\n"));
|
|
exit(EXIT_USAGE);
|
|
}
|
|
#endif
|
|
/*
|
|
* Set up signal action
|
|
*/
|
|
memset(&sa, 0, sizeof(struct sigaction));
|
|
sa.sa_handler = signal_cancel;
|
|
sigaction(SIGINT, &sa, 0);
|
|
sigaction(SIGTERM, &sa, 0);
|
|
#ifdef SA_RESTART
|
|
sa.sa_flags = SA_RESTART;
|
|
#endif
|
|
e2fsck_global_ctx = ctx;
|
|
sa.sa_handler = signal_progress_on;
|
|
sigaction(SIGUSR1, &sa, 0);
|
|
sa.sa_handler = signal_progress_off;
|
|
sigaction(SIGUSR2, &sa, 0);
|
|
|
|
/* Update our PATH to include /sbin if we need to run badblocks */
|
|
if (cflag)
|
|
e2fs_set_sbin_path();
|
|
return 0;
|
|
}
|
|
|
|
static const char my_ver_string[] = E2FSPROGS_VERSION;
|
|
static const char my_ver_date[] = E2FSPROGS_DATE;
|
|
|
|
int e2fsck_main (int argc, char **argv);
|
|
int e2fsck_main (int argc, char **argv)
|
|
{
|
|
errcode_t retval;
|
|
int exit_value = EXIT_OK;
|
|
ext2_filsys fs = 0;
|
|
io_manager io_ptr;
|
|
struct ext2_super_block *sb;
|
|
const char *lib_ver_date;
|
|
int my_ver, lib_ver;
|
|
e2fsck_t ctx;
|
|
struct problem_context pctx;
|
|
int flags, run_result;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
my_ver = ext2fs_parse_version_string(my_ver_string);
|
|
lib_ver = ext2fs_get_library_version(0, &lib_ver_date);
|
|
if (my_ver > lib_ver) {
|
|
fprintf( stderr, _("Error: ext2fs library version "
|
|
"out of date!\n"));
|
|
show_version_only++;
|
|
}
|
|
|
|
retval = PRS(argc, argv, &ctx);
|
|
if (retval) {
|
|
bb_error_msg(_("while trying to initialize program"));
|
|
exit(EXIT_ERROR);
|
|
}
|
|
reserve_stdio_fds();
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN) || show_version_only)
|
|
fprintf(stderr, "e2fsck %s (%s)\n", my_ver_string,
|
|
my_ver_date);
|
|
|
|
if (show_version_only) {
|
|
fprintf(stderr, _("\tUsing %s, %s\n"),
|
|
error_message(EXT2_ET_BASE), lib_ver_date);
|
|
exit(EXIT_OK);
|
|
}
|
|
|
|
check_mount(ctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN) &&
|
|
!(ctx->options & E2F_OPT_NO) &&
|
|
!(ctx->options & E2F_OPT_YES)) {
|
|
if (!ctx->interactive)
|
|
bb_error_msg_and_die(_("need terminal for interactive repairs"));
|
|
}
|
|
ctx->superblock = ctx->use_superblock;
|
|
restart:
|
|
#ifdef CONFIG_TESTIO_DEBUG
|
|
io_ptr = test_io_manager;
|
|
test_io_backing_manager = unix_io_manager;
|
|
#else
|
|
io_ptr = unix_io_manager;
|
|
#endif
|
|
flags = 0;
|
|
if ((ctx->options & E2F_OPT_READONLY) == 0)
|
|
flags |= EXT2_FLAG_RW;
|
|
|
|
if (ctx->superblock && ctx->blocksize) {
|
|
retval = ext2fs_open2(ctx->filesystem_name, ctx->io_options,
|
|
flags, ctx->superblock, ctx->blocksize,
|
|
io_ptr, &fs);
|
|
} else if (ctx->superblock) {
|
|
int blocksize;
|
|
for (blocksize = EXT2_MIN_BLOCK_SIZE;
|
|
blocksize <= EXT2_MAX_BLOCK_SIZE; blocksize *= 2) {
|
|
retval = ext2fs_open2(ctx->filesystem_name,
|
|
ctx->io_options, flags,
|
|
ctx->superblock, blocksize,
|
|
io_ptr, &fs);
|
|
if (!retval)
|
|
break;
|
|
}
|
|
} else
|
|
retval = ext2fs_open2(ctx->filesystem_name, ctx->io_options,
|
|
flags, 0, 0, io_ptr, &fs);
|
|
if (!ctx->superblock && !(ctx->options & E2F_OPT_PREEN) &&
|
|
!(ctx->flags & E2F_FLAG_SB_SPECIFIED) &&
|
|
((retval == EXT2_ET_BAD_MAGIC) ||
|
|
((retval == 0) && ext2fs_check_desc(fs)))) {
|
|
if (!fs || (fs->group_desc_count > 1)) {
|
|
printf(_("%s trying backup blocks...\n"),
|
|
retval ? _("Couldn't find ext2 superblock,") :
|
|
_("Group descriptors look bad..."));
|
|
get_backup_sb(ctx, fs, ctx->filesystem_name, io_ptr);
|
|
if (fs)
|
|
ext2fs_close(fs);
|
|
goto restart;
|
|
}
|
|
}
|
|
if (retval) {
|
|
bb_error_msg(_("while trying to open %s"),
|
|
ctx->filesystem_name);
|
|
if (retval == EXT2_ET_REV_TOO_HIGH) {
|
|
printf(_("The filesystem revision is apparently "
|
|
"too high for this version of e2fsck.\n"
|
|
"(Or the filesystem superblock "
|
|
"is corrupt)\n\n"));
|
|
fix_problem(ctx, PR_0_SB_CORRUPT, &pctx);
|
|
} else if (retval == EXT2_ET_SHORT_READ)
|
|
printf(_("Could this be a zero-length partition?\n"));
|
|
else if ((retval == EPERM) || (retval == EACCES))
|
|
printf(_("You must have %s access to the "
|
|
"filesystem or be root\n"),
|
|
(ctx->options & E2F_OPT_READONLY) ?
|
|
"r/o" : "r/w");
|
|
else if (retval == ENXIO)
|
|
printf(_("Possibly non-existent or swap device?\n"));
|
|
#ifdef EROFS
|
|
else if (retval == EROFS)
|
|
printf(_("Disk write-protected; use the -n option "
|
|
"to do a read-only\n"
|
|
"check of the device.\n"));
|
|
#endif
|
|
else
|
|
fix_problem(ctx, PR_0_SB_CORRUPT, &pctx);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
ctx->fs = fs;
|
|
fs->priv_data = ctx;
|
|
sb = fs->super;
|
|
if (sb->s_rev_level > E2FSCK_CURRENT_REV) {
|
|
bb_error_msg(_("while trying to open %s"),
|
|
ctx->filesystem_name);
|
|
get_newer:
|
|
bb_error_msg_and_die(_("Get a newer version of e2fsck!"));
|
|
}
|
|
|
|
/*
|
|
* Set the device name, which is used whenever we print error
|
|
* or informational messages to the user.
|
|
*/
|
|
if (ctx->device_name == 0 &&
|
|
(sb->s_volume_name[0] != 0)) {
|
|
ctx->device_name = string_copy(sb->s_volume_name,
|
|
sizeof(sb->s_volume_name));
|
|
}
|
|
if (ctx->device_name == 0)
|
|
ctx->device_name = ctx->filesystem_name;
|
|
|
|
/*
|
|
* Make sure the ext3 superblock fields are consistent.
|
|
*/
|
|
retval = e2fsck_check_ext3_journal(ctx);
|
|
if (retval) {
|
|
bb_error_msg(_("while checking ext3 journal for %s"),
|
|
ctx->device_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
|
|
/*
|
|
* Check to see if we need to do ext3-style recovery. If so,
|
|
* do it, and then restart the fsck.
|
|
*/
|
|
if (sb->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER) {
|
|
if (ctx->options & E2F_OPT_READONLY) {
|
|
printf(_("Warning: skipping journal recovery "
|
|
"because doing a read-only filesystem "
|
|
"check.\n"));
|
|
io_channel_flush(ctx->fs->io);
|
|
} else {
|
|
if (ctx->flags & E2F_FLAG_RESTARTED) {
|
|
/*
|
|
* Whoops, we attempted to run the
|
|
* journal twice. This should never
|
|
* happen, unless the hardware or
|
|
* device driver is being bogus.
|
|
*/
|
|
bb_error_msg(_("can't set superblock flags on %s"), ctx->device_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
retval = e2fsck_run_ext3_journal(ctx);
|
|
if (retval) {
|
|
bb_error_msg(_("while recovering ext3 journal of %s"),
|
|
ctx->device_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
ext2fs_close(ctx->fs);
|
|
ctx->fs = 0;
|
|
ctx->flags |= E2F_FLAG_RESTARTED;
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for compatibility with the feature sets. We need to
|
|
* be more stringent than ext2fs_open().
|
|
*/
|
|
if ((sb->s_feature_compat & ~EXT2_LIB_FEATURE_COMPAT_SUPP) ||
|
|
(sb->s_feature_incompat & ~EXT2_LIB_FEATURE_INCOMPAT_SUPP)) {
|
|
bb_error_msg("(%s)", ctx->device_name);
|
|
goto get_newer;
|
|
}
|
|
if (sb->s_feature_ro_compat & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) {
|
|
bb_error_msg("(%s)", ctx->device_name);
|
|
goto get_newer;
|
|
}
|
|
#ifdef ENABLE_COMPRESSION
|
|
/* FIXME - do we support this at all? */
|
|
if (sb->s_feature_incompat & EXT2_FEATURE_INCOMPAT_COMPRESSION)
|
|
bb_error_msg(_("warning: compression support is experimental"));
|
|
#endif
|
|
#ifndef ENABLE_HTREE
|
|
if (sb->s_feature_compat & EXT2_FEATURE_COMPAT_DIR_INDEX) {
|
|
bb_error_msg(_("E2fsck not compiled with HTREE support,\n\t"
|
|
"but filesystem %s has HTREE directories."),
|
|
ctx->device_name);
|
|
goto get_newer;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If the user specified a specific superblock, presumably the
|
|
* master superblock has been trashed. So we mark the
|
|
* superblock as dirty, so it can be written out.
|
|
*/
|
|
if (ctx->superblock &&
|
|
!(ctx->options & E2F_OPT_READONLY))
|
|
ext2fs_mark_super_dirty(fs);
|
|
|
|
/*
|
|
* We only update the master superblock because (a) paranoia;
|
|
* we don't want to corrupt the backup superblocks, and (b) we
|
|
* don't need to update the mount count and last checked
|
|
* fields in the backup superblock (the kernel doesn't
|
|
* update the backup superblocks anyway).
|
|
*/
|
|
fs->flags |= EXT2_FLAG_MASTER_SB_ONLY;
|
|
|
|
ehandler_init(fs->io);
|
|
|
|
if (ctx->superblock)
|
|
set_latch_flags(PR_LATCH_RELOC, PRL_LATCHED, 0);
|
|
ext2fs_mark_valid(fs);
|
|
check_super_block(ctx);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
bb_error_msg_and_die(0);
|
|
check_if_skip(ctx);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
bb_error_msg_and_die(0);
|
|
#ifdef ENABLE_SWAPFS
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
#define NATIVE_FLAG EXT2_FLAG_SWAP_BYTES
|
|
#else
|
|
#define NATIVE_FLAG 0
|
|
#endif
|
|
|
|
|
|
if (normalize_swapfs) {
|
|
if ((fs->flags & EXT2_FLAG_SWAP_BYTES) == NATIVE_FLAG) {
|
|
fprintf(stderr, _("%s: Filesystem byte order "
|
|
"already normalized.\n"), ctx->device_name);
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
}
|
|
if (swapfs) {
|
|
swap_filesys(ctx);
|
|
if (ctx->flags & E2F_FLAG_SIGNAL_MASK)
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Mark the system as valid, 'til proven otherwise
|
|
*/
|
|
ext2fs_mark_valid(fs);
|
|
|
|
retval = ext2fs_read_bb_inode(fs, &fs->badblocks);
|
|
if (retval) {
|
|
bb_error_msg(_("while reading bad blocks inode"));
|
|
preenhalt(ctx);
|
|
printf(_("This doesn't bode well,"
|
|
" but we'll try to go on...\n"));
|
|
}
|
|
|
|
run_result = e2fsck_run(ctx);
|
|
e2fsck_clear_progbar(ctx);
|
|
if (run_result == E2F_FLAG_RESTART) {
|
|
printf(_("Restarting e2fsck from the beginning...\n"));
|
|
retval = e2fsck_reset_context(ctx);
|
|
if (retval) {
|
|
bb_error_msg(_("while resetting context"));
|
|
bb_error_msg_and_die(0);
|
|
}
|
|
ext2fs_close(fs);
|
|
goto restart;
|
|
}
|
|
if (run_result & E2F_FLAG_CANCEL) {
|
|
printf(_("%s: e2fsck canceled.\n"), ctx->device_name ?
|
|
ctx->device_name : ctx->filesystem_name);
|
|
exit_value |= FSCK_CANCELED;
|
|
}
|
|
if (run_result & E2F_FLAG_ABORT)
|
|
bb_error_msg_and_die(_("aborted"));
|
|
|
|
/* Cleanup */
|
|
if (ext2fs_test_changed(fs)) {
|
|
exit_value |= EXIT_NONDESTRUCT;
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
printf(_("\n%s: ***** FILE SYSTEM WAS MODIFIED *****\n"),
|
|
ctx->device_name);
|
|
if (ctx->mount_flags & EXT2_MF_ISROOT) {
|
|
printf(_("%s: ***** REBOOT LINUX *****\n"),
|
|
ctx->device_name);
|
|
exit_value |= EXIT_DESTRUCT;
|
|
}
|
|
}
|
|
if (!ext2fs_test_valid(fs)) {
|
|
printf(_("\n%s: ********** WARNING: Filesystem still has "
|
|
"errors **********\n\n"), ctx->device_name);
|
|
exit_value |= EXIT_UNCORRECTED;
|
|
exit_value &= ~EXIT_NONDESTRUCT;
|
|
}
|
|
if (exit_value & FSCK_CANCELED)
|
|
exit_value &= ~EXIT_NONDESTRUCT;
|
|
else {
|
|
show_stats(ctx);
|
|
if (!(ctx->options & E2F_OPT_READONLY)) {
|
|
if (ext2fs_test_valid(fs)) {
|
|
if (!(sb->s_state & EXT2_VALID_FS))
|
|
exit_value |= EXIT_NONDESTRUCT;
|
|
sb->s_state = EXT2_VALID_FS;
|
|
} else
|
|
sb->s_state &= ~EXT2_VALID_FS;
|
|
sb->s_mnt_count = 0;
|
|
sb->s_lastcheck = time(NULL);
|
|
ext2fs_mark_super_dirty(fs);
|
|
}
|
|
}
|
|
|
|
e2fsck_write_bitmaps(ctx);
|
|
|
|
ext2fs_close(fs);
|
|
ctx->fs = NULL;
|
|
free(ctx->filesystem_name);
|
|
free(ctx->journal_name);
|
|
e2fsck_free_context(ctx);
|
|
|
|
return exit_value;
|
|
}
|