mirror of
https://github.com/sheumann/hush.git
synced 2024-11-05 06:07:00 +00:00
14f5c8d764
which were otherwise cluttering the global namespace.
860 lines
24 KiB
C
860 lines
24 KiB
C
/*
|
|
* Based on shasum from http://www.netsw.org/crypto/hash/
|
|
* Majorly hacked up to use Dr Brian Gladman's sha1 code
|
|
*
|
|
* Copyright (C) 2003 Glenn L. McGrath
|
|
* Copyright (C) 2003 Erik Andersen
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include <byteswap.h>
|
|
#include <endian.h>
|
|
#include <fcntl.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include "busybox.h"
|
|
|
|
|
|
#ifdef CONFIG_SHA1SUM
|
|
/*
|
|
---------------------------------------------------------------------------
|
|
Begin Dr. Gladman's sha1 code
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
---------------------------------------------------------------------------
|
|
Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
|
|
All rights reserved.
|
|
|
|
LICENSE TERMS
|
|
|
|
The free distribution and use of this software in both source and binary
|
|
form is allowed (with or without changes) provided that:
|
|
|
|
1. distributions of this source code include the above copyright
|
|
notice, this list of conditions and the following disclaimer;
|
|
|
|
2. distributions in binary form include the above copyright
|
|
notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other associated materials;
|
|
|
|
3. the copyright holder's name is not used to endorse products
|
|
built using this software without specific written permission.
|
|
|
|
ALTERNATIVELY, provided that this notice is retained in full, this product
|
|
may be distributed under the terms of the GNU General Public License (GPL),
|
|
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
|
|
|
DISCLAIMER
|
|
|
|
This software is provided 'as is' with no explicit or implied warranties
|
|
in respect of its properties, including, but not limited to, correctness
|
|
and/or fitness for purpose.
|
|
---------------------------------------------------------------------------
|
|
Issue Date: 10/11/2002
|
|
|
|
This is a byte oriented version of SHA1 that operates on arrays of bytes
|
|
stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
|
|
*/
|
|
|
|
# define SHA1_BLOCK_SIZE 64
|
|
# define SHA1_DIGEST_SIZE 20
|
|
# define SHA1_HASH_SIZE SHA1_DIGEST_SIZE
|
|
# define SHA2_GOOD 0
|
|
# define SHA2_BAD 1
|
|
|
|
# define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
|
|
|
# if __BYTE_ORDER == __BIG_ENDIAN
|
|
# define swap_b32(x) (x)
|
|
# elif defined(bswap_32)
|
|
# define swap_b32(x) bswap_32(x)
|
|
# else
|
|
# define swap_b32(x) ((rotl32((x), 8) & 0x00ff00ff) | (rotl32((x), 24) & 0xff00ff00))
|
|
# endif /* __BYTE_ORDER */
|
|
|
|
# define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
|
|
|
|
/* reverse byte order in 32-bit words */
|
|
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
|
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
|
|
|
|
/* A normal version as set out in the FIPS. This version uses */
|
|
/* partial loop unrolling and is optimised for the Pentium 4 */
|
|
# define rnd(f,k) \
|
|
t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
|
|
e = d; d = c; c = rotl32(b, 30); b = t
|
|
|
|
/* type to hold the SHA1 context */
|
|
struct sha1_ctx_t {
|
|
uint32_t count[2];
|
|
uint32_t hash[5];
|
|
uint32_t wbuf[16];
|
|
};
|
|
|
|
static void sha1_compile(struct sha1_ctx_t *ctx)
|
|
{
|
|
uint32_t w[80], i, a, b, c, d, e, t;
|
|
|
|
/* note that words are compiled from the buffer into 32-bit */
|
|
/* words in big-endian order so an order reversal is needed */
|
|
/* here on little endian machines */
|
|
for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
|
|
w[i] = swap_b32(ctx->wbuf[i]);
|
|
|
|
for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i)
|
|
w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);
|
|
|
|
a = ctx->hash[0];
|
|
b = ctx->hash[1];
|
|
c = ctx->hash[2];
|
|
d = ctx->hash[3];
|
|
e = ctx->hash[4];
|
|
|
|
for (i = 0; i < 20; ++i) {
|
|
rnd(ch, 0x5a827999);
|
|
}
|
|
|
|
for (i = 20; i < 40; ++i) {
|
|
rnd(parity, 0x6ed9eba1);
|
|
}
|
|
|
|
for (i = 40; i < 60; ++i) {
|
|
rnd(maj, 0x8f1bbcdc);
|
|
}
|
|
|
|
for (i = 60; i < 80; ++i) {
|
|
rnd(parity, 0xca62c1d6);
|
|
}
|
|
|
|
ctx->hash[0] += a;
|
|
ctx->hash[1] += b;
|
|
ctx->hash[2] += c;
|
|
ctx->hash[3] += d;
|
|
ctx->hash[4] += e;
|
|
}
|
|
|
|
static void sha1_begin(struct sha1_ctx_t *ctx)
|
|
{
|
|
ctx->count[0] = ctx->count[1] = 0;
|
|
ctx->hash[0] = 0x67452301;
|
|
ctx->hash[1] = 0xefcdab89;
|
|
ctx->hash[2] = 0x98badcfe;
|
|
ctx->hash[3] = 0x10325476;
|
|
ctx->hash[4] = 0xc3d2e1f0;
|
|
}
|
|
|
|
/* SHA1 hash data in an array of bytes into hash buffer and call the */
|
|
/* hash_compile function as required. */
|
|
static void sha1_hash(const void *data, size_t len, void *ctx_v)
|
|
{
|
|
struct sha1_ctx_t *ctx = (struct sha1_ctx_t *) ctx_v;
|
|
uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK);
|
|
uint32_t freeb = SHA1_BLOCK_SIZE - pos;
|
|
const unsigned char *sp = data;
|
|
|
|
if ((ctx->count[0] += len) < len)
|
|
++(ctx->count[1]);
|
|
|
|
while (len >= freeb) { /* tranfer whole blocks while possible */
|
|
memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb);
|
|
sp += freeb;
|
|
len -= freeb;
|
|
freeb = SHA1_BLOCK_SIZE;
|
|
pos = 0;
|
|
sha1_compile(ctx);
|
|
}
|
|
|
|
memcpy(((unsigned char *) ctx->wbuf) + pos, sp, len);
|
|
}
|
|
|
|
/* SHA1 Final padding and digest calculation */
|
|
# if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
static uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
|
|
static uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
|
|
# else
|
|
static uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
|
|
static uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
|
|
# endif /* __BYTE_ORDER */
|
|
|
|
static void sha1_end(unsigned char hval[], struct sha1_ctx_t *ctx)
|
|
{
|
|
uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK);
|
|
|
|
/* mask out the rest of any partial 32-bit word and then set */
|
|
/* the next byte to 0x80. On big-endian machines any bytes in */
|
|
/* the buffer will be at the top end of 32 bit words, on little */
|
|
/* endian machines they will be at the bottom. Hence the AND */
|
|
/* and OR masks above are reversed for little endian systems */
|
|
ctx->wbuf[cnt >> 2] =
|
|
(ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
|
|
|
|
/* we need 9 or more empty positions, one for the padding byte */
|
|
/* (above) and eight for the length count. If there is not */
|
|
/* enough space pad and empty the buffer */
|
|
if (cnt > SHA1_BLOCK_SIZE - 9) {
|
|
if (cnt < 60)
|
|
ctx->wbuf[15] = 0;
|
|
sha1_compile(ctx);
|
|
cnt = 0;
|
|
} else /* compute a word index for the empty buffer positions */
|
|
cnt = (cnt >> 2) + 1;
|
|
|
|
while (cnt < 14) /* and zero pad all but last two positions */
|
|
ctx->wbuf[cnt++] = 0;
|
|
|
|
/* assemble the eight byte counter in the buffer in big-endian */
|
|
/* format */
|
|
|
|
ctx->wbuf[14] = swap_b32((ctx->count[1] << 3) | (ctx->count[0] >> 29));
|
|
ctx->wbuf[15] = swap_b32(ctx->count[0] << 3);
|
|
|
|
sha1_compile(ctx);
|
|
|
|
/* extract the hash value as bytes in case the hash buffer is */
|
|
/* misaligned for 32-bit words */
|
|
|
|
for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
|
|
hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3));
|
|
}
|
|
|
|
/*
|
|
---------------------------------------------------------------------------
|
|
End of Dr. Gladman's sha1 code
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
#endif /* CONFIG_SHA1 */
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_MD5SUM
|
|
/*
|
|
* md5sum.c - Compute MD5 checksum of files or strings according to the
|
|
* definition of MD5 in RFC 1321 from April 1992.
|
|
*
|
|
* Copyright (C) 1995-1999 Free Software Foundation, Inc.
|
|
* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
|
|
*
|
|
*
|
|
* June 29, 2001 Manuel Novoa III
|
|
*
|
|
* Added MD5SUM_SIZE_VS_SPEED configuration option.
|
|
*
|
|
* Current valid values, with data from my system for comparison, are:
|
|
* (using uClibc and running on linux-2.4.4.tar.bz2)
|
|
* user times (sec) text size (386)
|
|
* 0 (fastest) 1.1 6144
|
|
* 1 1.4 5392
|
|
* 2 3.0 5088
|
|
* 3 (smallest) 5.1 4912
|
|
*/
|
|
|
|
# define MD5SUM_SIZE_VS_SPEED 2
|
|
|
|
/* Handle endian-ness */
|
|
# if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
# define SWAP(n) (n)
|
|
# elif defined(bswap_32)
|
|
# define SWAP(n) bswap_32(n)
|
|
# else
|
|
# define SWAP(n) ((n << 24) | ((n&65280)<<8) | ((n&16711680)>>8) | (n>>24))
|
|
# endif
|
|
|
|
# if MD5SUM_SIZE_VS_SPEED == 0
|
|
/* This array contains the bytes used to pad the buffer to the next
|
|
64-byte boundary. (RFC 1321, 3.1: Step 1) */
|
|
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
|
# endif /* MD5SUM_SIZE_VS_SPEED == 0 */
|
|
|
|
/* Structure to save state of computation between the single steps. */
|
|
struct md5_ctx_t {
|
|
uint32_t A;
|
|
uint32_t B;
|
|
uint32_t C;
|
|
uint32_t D;
|
|
uint32_t total[2];
|
|
uint32_t buflen;
|
|
char buffer[128];
|
|
};
|
|
|
|
/* Initialize structure containing state of computation.
|
|
* (RFC 1321, 3.3: Step 3)
|
|
*/
|
|
static void md5_begin(struct md5_ctx_t *ctx)
|
|
{
|
|
ctx->A = 0x67452301;
|
|
ctx->B = 0xefcdab89;
|
|
ctx->C = 0x98badcfe;
|
|
ctx->D = 0x10325476;
|
|
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
/* These are the four functions used in the four steps of the MD5 algorithm
|
|
* and defined in the RFC 1321. The first function is a little bit optimized
|
|
* (as found in Colin Plumbs public domain implementation).
|
|
* #define FF(b, c, d) ((b & c) | (~b & d))
|
|
*/
|
|
# define FF(b, c, d) (d ^ (b & (c ^ d)))
|
|
# define FG(b, c, d) FF (d, b, c)
|
|
# define FH(b, c, d) (b ^ c ^ d)
|
|
# define FI(b, c, d) (c ^ (b | ~d))
|
|
|
|
/* Starting with the result of former calls of this function (or the
|
|
* initialization function update the context for the next LEN bytes
|
|
* starting at BUFFER.
|
|
* It is necessary that LEN is a multiple of 64!!!
|
|
*/
|
|
static void md5_hash_block(const void *buffer, size_t len, struct md5_ctx_t *ctx)
|
|
{
|
|
uint32_t correct_words[16];
|
|
const uint32_t *words = buffer;
|
|
size_t nwords = len / sizeof(uint32_t);
|
|
const uint32_t *endp = words + nwords;
|
|
|
|
# if MD5SUM_SIZE_VS_SPEED > 0
|
|
static const uint32_t C_array[] = {
|
|
/* round 1 */
|
|
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
|
|
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
|
|
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
|
|
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
|
|
/* round 2 */
|
|
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
|
|
0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8,
|
|
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
|
|
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
|
|
/* round 3 */
|
|
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
|
|
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
|
|
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
|
|
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
|
|
/* round 4 */
|
|
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
|
|
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
|
|
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
|
|
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
|
|
};
|
|
|
|
static const char P_array[] = {
|
|
# if MD5SUM_SIZE_VS_SPEED > 1
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
|
|
# endif /* MD5SUM_SIZE_VS_SPEED > 1 */
|
|
1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
|
|
5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
|
|
0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
|
|
};
|
|
|
|
# if MD5SUM_SIZE_VS_SPEED > 1
|
|
static const char S_array[] = {
|
|
7, 12, 17, 22,
|
|
5, 9, 14, 20,
|
|
4, 11, 16, 23,
|
|
6, 10, 15, 21
|
|
};
|
|
# endif /* MD5SUM_SIZE_VS_SPEED > 1 */
|
|
# endif
|
|
|
|
uint32_t A = ctx->A;
|
|
uint32_t B = ctx->B;
|
|
uint32_t C = ctx->C;
|
|
uint32_t D = ctx->D;
|
|
|
|
/* First increment the byte count. RFC 1321 specifies the possible
|
|
length of the file up to 2^64 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += len;
|
|
if (ctx->total[0] < len)
|
|
++ctx->total[1];
|
|
|
|
/* Process all bytes in the buffer with 64 bytes in each round of
|
|
the loop. */
|
|
while (words < endp) {
|
|
uint32_t *cwp = correct_words;
|
|
uint32_t A_save = A;
|
|
uint32_t B_save = B;
|
|
uint32_t C_save = C;
|
|
uint32_t D_save = D;
|
|
|
|
# if MD5SUM_SIZE_VS_SPEED > 1
|
|
# define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
|
|
|
|
const uint32_t *pc;
|
|
const char *pp;
|
|
const char *ps;
|
|
int i;
|
|
uint32_t temp;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
cwp[i] = SWAP(words[i]);
|
|
}
|
|
words += 16;
|
|
|
|
# if MD5SUM_SIZE_VS_SPEED > 2
|
|
pc = C_array;
|
|
pp = P_array;
|
|
ps = S_array - 4;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
if ((i & 0x0f) == 0)
|
|
ps += 4;
|
|
temp = A;
|
|
switch (i >> 4) {
|
|
case 0:
|
|
temp += FF(B, C, D);
|
|
break;
|
|
case 1:
|
|
temp += FG(B, C, D);
|
|
break;
|
|
case 2:
|
|
temp += FH(B, C, D);
|
|
break;
|
|
case 3:
|
|
temp += FI(B, C, D);
|
|
}
|
|
temp += cwp[(int) (*pp++)] + *pc++;
|
|
CYCLIC(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
# else
|
|
pc = C_array;
|
|
pp = P_array;
|
|
ps = S_array;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FF(B, C, D) + cwp[(int) (*pp++)] + *pc++;
|
|
CYCLIC(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
|
|
ps += 4;
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FG(B, C, D) + cwp[(int) (*pp++)] + *pc++;
|
|
CYCLIC(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
ps += 4;
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FH(B, C, D) + cwp[(int) (*pp++)] + *pc++;
|
|
CYCLIC(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
ps += 4;
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FI(B, C, D) + cwp[(int) (*pp++)] + *pc++;
|
|
CYCLIC(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
|
|
# endif /* MD5SUM_SIZE_VS_SPEED > 2 */
|
|
# else
|
|
/* First round: using the given function, the context and a constant
|
|
the next context is computed. Because the algorithms processing
|
|
unit is a 32-bit word and it is determined to work on words in
|
|
little endian byte order we perhaps have to change the byte order
|
|
before the computation. To reduce the work for the next steps
|
|
we store the swapped words in the array CORRECT_WORDS. */
|
|
|
|
# define OP(a, b, c, d, s, T) \
|
|
do \
|
|
{ \
|
|
a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
|
|
++words; \
|
|
CYCLIC (a, s); \
|
|
a += b; \
|
|
} \
|
|
while (0)
|
|
|
|
/* It is unfortunate that C does not provide an operator for
|
|
cyclic rotation. Hope the C compiler is smart enough. */
|
|
/* gcc 2.95.4 seems to be --aaronl */
|
|
# define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
|
|
|
|
/* Before we start, one word to the strange constants.
|
|
They are defined in RFC 1321 as
|
|
|
|
T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
|
|
*/
|
|
|
|
# if MD5SUM_SIZE_VS_SPEED == 1
|
|
const uint32_t *pc;
|
|
const char *pp;
|
|
int i;
|
|
# endif /* MD5SUM_SIZE_VS_SPEED */
|
|
|
|
/* Round 1. */
|
|
# if MD5SUM_SIZE_VS_SPEED == 1
|
|
pc = C_array;
|
|
for (i = 0; i < 4; i++) {
|
|
OP(A, B, C, D, 7, *pc++);
|
|
OP(D, A, B, C, 12, *pc++);
|
|
OP(C, D, A, B, 17, *pc++);
|
|
OP(B, C, D, A, 22, *pc++);
|
|
}
|
|
# else
|
|
OP(A, B, C, D, 7, 0xd76aa478);
|
|
OP(D, A, B, C, 12, 0xe8c7b756);
|
|
OP(C, D, A, B, 17, 0x242070db);
|
|
OP(B, C, D, A, 22, 0xc1bdceee);
|
|
OP(A, B, C, D, 7, 0xf57c0faf);
|
|
OP(D, A, B, C, 12, 0x4787c62a);
|
|
OP(C, D, A, B, 17, 0xa8304613);
|
|
OP(B, C, D, A, 22, 0xfd469501);
|
|
OP(A, B, C, D, 7, 0x698098d8);
|
|
OP(D, A, B, C, 12, 0x8b44f7af);
|
|
OP(C, D, A, B, 17, 0xffff5bb1);
|
|
OP(B, C, D, A, 22, 0x895cd7be);
|
|
OP(A, B, C, D, 7, 0x6b901122);
|
|
OP(D, A, B, C, 12, 0xfd987193);
|
|
OP(C, D, A, B, 17, 0xa679438e);
|
|
OP(B, C, D, A, 22, 0x49b40821);
|
|
# endif /* MD5SUM_SIZE_VS_SPEED == 1 */
|
|
|
|
/* For the second to fourth round we have the possibly swapped words
|
|
in CORRECT_WORDS. Redefine the macro to take an additional first
|
|
argument specifying the function to use. */
|
|
# undef OP
|
|
# define OP(f, a, b, c, d, k, s, T) \
|
|
do \
|
|
{ \
|
|
a += f (b, c, d) + correct_words[k] + T; \
|
|
CYCLIC (a, s); \
|
|
a += b; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Round 2. */
|
|
# if MD5SUM_SIZE_VS_SPEED == 1
|
|
pp = P_array;
|
|
for (i = 0; i < 4; i++) {
|
|
OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
|
|
OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
|
|
OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
|
|
OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
|
|
}
|
|
# else
|
|
OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
|
|
OP(FG, D, A, B, C, 6, 9, 0xc040b340);
|
|
OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
|
|
OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
|
|
OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
|
|
OP(FG, D, A, B, C, 10, 9, 0x02441453);
|
|
OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
|
|
OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
|
|
OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
|
|
OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
|
|
OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
|
|
OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
|
|
OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
|
|
OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
|
|
OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
|
|
OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
|
|
# endif /* MD5SUM_SIZE_VS_SPEED == 1 */
|
|
|
|
/* Round 3. */
|
|
# if MD5SUM_SIZE_VS_SPEED == 1
|
|
for (i = 0; i < 4; i++) {
|
|
OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
|
|
OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
|
|
OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
|
|
OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
|
|
}
|
|
# else
|
|
OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
|
|
OP(FH, D, A, B, C, 8, 11, 0x8771f681);
|
|
OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
|
|
OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
|
|
OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
|
|
OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
|
|
OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
|
|
OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
|
|
OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
|
|
OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
|
|
OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
|
|
OP(FH, B, C, D, A, 6, 23, 0x04881d05);
|
|
OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
|
|
OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
|
|
OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
|
|
OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
|
|
# endif /* MD5SUM_SIZE_VS_SPEED == 1 */
|
|
|
|
/* Round 4. */
|
|
# if MD5SUM_SIZE_VS_SPEED == 1
|
|
for (i = 0; i < 4; i++) {
|
|
OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
|
|
OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
|
|
OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
|
|
OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
|
|
}
|
|
# else
|
|
OP(FI, A, B, C, D, 0, 6, 0xf4292244);
|
|
OP(FI, D, A, B, C, 7, 10, 0x432aff97);
|
|
OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
|
|
OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
|
|
OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
|
|
OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
|
|
OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
|
|
OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
|
|
OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
|
|
OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
|
|
OP(FI, C, D, A, B, 6, 15, 0xa3014314);
|
|
OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
|
|
OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
|
|
OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
|
|
OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
|
|
OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
|
|
# endif /* MD5SUM_SIZE_VS_SPEED == 1 */
|
|
# endif /* MD5SUM_SIZE_VS_SPEED > 1 */
|
|
|
|
/* Add the starting values of the context. */
|
|
A += A_save;
|
|
B += B_save;
|
|
C += C_save;
|
|
D += D_save;
|
|
}
|
|
|
|
/* Put checksum in context given as argument. */
|
|
ctx->A = A;
|
|
ctx->B = B;
|
|
ctx->C = C;
|
|
ctx->D = D;
|
|
}
|
|
|
|
/* Starting with the result of former calls of this function (or the
|
|
* initialization function update the context for the next LEN bytes
|
|
* starting at BUFFER.
|
|
* It is NOT required that LEN is a multiple of 64.
|
|
*/
|
|
|
|
static void md5_hash_bytes(const void *buffer, size_t len, struct md5_ctx_t *ctx)
|
|
{
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if (ctx->buflen != 0) {
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
|
|
memcpy(&ctx->buffer[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if (left_over + add > 64) {
|
|
md5_hash_block(ctx->buffer, (left_over + add) & ~63, ctx);
|
|
/* The regions in the following copy operation cannot overlap. */
|
|
memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
|
|
(left_over + add) & 63);
|
|
ctx->buflen = (left_over + add) & 63;
|
|
}
|
|
|
|
buffer = (const char *) buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if (len > 64) {
|
|
md5_hash_block(buffer, len & ~63, ctx);
|
|
buffer = (const char *) buffer + (len & ~63);
|
|
len &= 63;
|
|
}
|
|
|
|
/* Move remaining bytes in internal buffer. */
|
|
if (len > 0) {
|
|
memcpy(ctx->buffer, buffer, len);
|
|
ctx->buflen = len;
|
|
}
|
|
}
|
|
|
|
static void md5_hash(const void *buffer, size_t length, void *md5_ctx)
|
|
{
|
|
if (length % 64 == 0) {
|
|
md5_hash_block(buffer, length, md5_ctx);
|
|
} else {
|
|
md5_hash_bytes(buffer, length, md5_ctx);
|
|
}
|
|
}
|
|
|
|
/* Process the remaining bytes in the buffer and put result from CTX
|
|
* in first 16 bytes following RESBUF. The result is always in little
|
|
* endian byte order, so that a byte-wise output yields to the wanted
|
|
* ASCII representation of the message digest.
|
|
*
|
|
* IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
* aligned for a 32 bits value.
|
|
*/
|
|
static void *md5_end(void *resbuf, struct md5_ctx_t *ctx)
|
|
{
|
|
/* Take yet unprocessed bytes into account. */
|
|
uint32_t bytes = ctx->buflen;
|
|
size_t pad;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if (ctx->total[0] < bytes)
|
|
++ctx->total[1];
|
|
|
|
pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
|
|
# if MD5SUM_SIZE_VS_SPEED > 0
|
|
memset(&ctx->buffer[bytes], 0, pad);
|
|
ctx->buffer[bytes] = 0x80;
|
|
# else
|
|
memcpy(&ctx->buffer[bytes], fillbuf, pad);
|
|
# endif /* MD5SUM_SIZE_VS_SPEED > 0 */
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
*(uint32_t *) & ctx->buffer[bytes + pad] = SWAP(ctx->total[0] << 3);
|
|
*(uint32_t *) & ctx->buffer[bytes + pad + 4] =
|
|
SWAP(((ctx->total[1] << 3) | (ctx->total[0] >> 29)));
|
|
|
|
/* Process last bytes. */
|
|
md5_hash_block(ctx->buffer, bytes + pad + 8, ctx);
|
|
|
|
/* Put result from CTX in first 16 bytes following RESBUF. The result is
|
|
* always in little endian byte order, so that a byte-wise output yields
|
|
* to the wanted ASCII representation of the message digest.
|
|
*
|
|
* IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
* aligned for a 32 bits value.
|
|
*/
|
|
((uint32_t *) resbuf)[0] = SWAP(ctx->A);
|
|
((uint32_t *) resbuf)[1] = SWAP(ctx->B);
|
|
((uint32_t *) resbuf)[2] = SWAP(ctx->C);
|
|
((uint32_t *) resbuf)[3] = SWAP(ctx->D);
|
|
|
|
return resbuf;
|
|
}
|
|
#endif /* CONFIG_MD5SUM */
|
|
|
|
|
|
|
|
|
|
extern int hash_fd(int src_fd, const size_t size, const uint8_t hash_algo,
|
|
uint8_t * hashval)
|
|
{
|
|
int result = EXIT_SUCCESS;
|
|
// size_t hashed_count = 0;
|
|
size_t blocksize = 0;
|
|
size_t remaining = size;
|
|
unsigned char *buffer = NULL;
|
|
void (*hash_fn_ptr)(const void *, size_t, void *) = NULL;
|
|
void *cx = NULL;
|
|
|
|
#ifdef CONFIG_SHA1SUM
|
|
struct sha1_ctx_t sha1_cx;
|
|
#endif
|
|
#ifdef CONFIG_MD5SUM
|
|
struct md5_ctx_t md5_cx;
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_SHA1SUM
|
|
if (hash_algo == HASH_SHA1) {
|
|
/* Ensure that BLOCKSIZE is a multiple of 64. */
|
|
blocksize = 65536;
|
|
buffer = xmalloc(blocksize);
|
|
hash_fn_ptr = sha1_hash;
|
|
cx = &sha1_cx;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_MD5SUM
|
|
if (hash_algo == HASH_MD5) {
|
|
blocksize = 4096;
|
|
buffer = xmalloc(blocksize + 72);
|
|
hash_fn_ptr = md5_hash;
|
|
cx = &md5_cx;
|
|
}
|
|
#endif
|
|
|
|
/* Initialize the computation context. */
|
|
#ifdef CONFIG_SHA1SUM
|
|
if (hash_algo == HASH_SHA1) {
|
|
sha1_begin(&sha1_cx);
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_MD5SUM
|
|
if (hash_algo == HASH_MD5) {
|
|
md5_begin(&md5_cx);
|
|
}
|
|
#endif
|
|
/* Iterate over full file contents. */
|
|
while ((remaining == (size_t) -1) || (remaining > 0)) {
|
|
size_t read_try;
|
|
ssize_t read_got;
|
|
|
|
if (remaining > blocksize) {
|
|
read_try = blocksize;
|
|
} else {
|
|
read_try = remaining;
|
|
}
|
|
read_got = bb_full_read(src_fd, buffer, read_try);
|
|
if (read_got < 1) {
|
|
/* count == 0 means short read
|
|
* count == -1 means read error */
|
|
result = read_got - 1;
|
|
break;
|
|
}
|
|
if (remaining != (size_t) -1) {
|
|
remaining -= read_got;
|
|
}
|
|
|
|
/* Process buffer */
|
|
hash_fn_ptr(buffer, read_got, cx);
|
|
}
|
|
|
|
/* Finalize and write the hash into our buffer. */
|
|
#ifdef CONFIG_SHA1SUM
|
|
if (hash_algo == HASH_SHA1) {
|
|
sha1_end(hashval, &sha1_cx);
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_MD5SUM
|
|
if (hash_algo == HASH_MD5) {
|
|
md5_end(hashval, &md5_cx);
|
|
}
|
|
#endif
|
|
|
|
free(buffer);
|
|
return result;
|
|
}
|