2022-04-17 11:25:48 +02:00

319 lines
12 KiB
Verilog

/*
* NuBus controller
*
* Autor: Valeriya Pudova (hww.github.io)
* Adapted by Romain Dolbeau <romain@dolbeau.org> for the NuBusFPGA
* Copyright (c) 2021-2022
*/
/* This module is running on the FPGA */
module nubus
#(
// All slots area starts with address $FXXX XXXX
parameter SLOTS_ADDRESS = 'hF,
// All superslots starts at $9000 0000
parameter SUPERSLOTS_ADDRESS = 'h9,
// Watch dog timer bits. Master controller will terminate transfer
// after (2 ^ WDT_W) clocks
parameter WDT_W = 8,
// Local space of card start and end address. For example 0-5
// makes local space address $00000000-$50000000
// UNUSED in NuBusFPGA
parameter LOCAL_SPACE_EXPOSED_TO_NUBUS = 0,
parameter LOCAL_SPACE_START = 0,
parameter LOCAL_SPACE_END = 5
)
(
/* *** NuBus signals *** */
/* those are connected to the FPGA */
/* connected via the CPLD */
input nub_clkn, // Clock (rising is driving edge, faling is sampling)
input nub_resetn, // Reset
input [ 3:0] nub_idn, // Slot Identification
inout nub_tm0n, // Transfer Mode
inout nub_tm1n, // Transfer Mode
inout nub_startn, // Start
inout nub_rqstn, // Request
inout nub_ackn, // Acknowledge
// connected via the CPLD but NuBus90 (unimplemented)
input nub_clk2xn,
inout nub_tm2n,
/* connected via the 74LVT245 */
inout [31:0] nub_adn, // Address/Data
/* those are not used, and not even connected in the board */
// inout nub_pfwn, // Power Fail Warning
// inout nub_spn, // System Parity
// inout nub_spvn, // System Parity Valid
/* those ared used but handled in directly in the Litex code */
// output nub_nmrqn, // Non-Master Request, handled in the Litex code
/* those are used but connected only to the CPLD */
/* we deal with the CPLD via 'arbcy_n' and 'grant'
// inout [ 3:0] nub_arbn, // Arbitration
/* *** CPLD <-> FPGA signals, not in NuBus */
output arbcy_n, // request arbitration
input grant, // arbitration won
output tmoen, // output enable for tm0/1
/* *** CPLD <-> FPGA signals, spare, currently unused */
output fpga_to_cpld_signal, // regular signal
// inout fpga_to_cpld_signal_2, // regular signal
// inout fpga_to_cpld_clk, // clk input on CPLD or regular signal
/* FPGA -> drivers */
output NUBUS_AD_DIR, // direction for the LS245 (input/output for A/D lines)
output nubus_master_dir, // are we in master mode (to drive the proper signals)
/* 'memory bus' signals; those are used to interface with the Wishbone to access the FPGA resources from NuBus */
output mem_valid,
output [31:0] mem_addr,
output [31:0] mem_wdata,
output [ 3:0] mem_write,
input mem_ready,
input [31:0] mem_rdata,
input mem_error, // ignored
input mem_tryagain, // ignored
/* 'processor bus' signals; those are used to interface with the Wishbone to access NuBus resources from the FPGA */
input cpu_valid,
input [31:0] cpu_addr,
input [31:0] cpu_wdata,
input [ 3:0] cpu_write,
output cpu_ready,
output [31:0] cpu_rdata,
input cpu_lock,
input cpu_eclr, // ignored
output [3:0] cpu_errors, // ignored
/* utilities signal from the NuBus stuff, currently unused */
// Access to slot area
output mem_stdslot,
// Access to superslot area ($sXXXXXXX where <s> is card id)
output mem_super,
// Access to local memory on the card
output mem_local
);
`include "nubus.svh"
// ==========================================================================
// Colock and reset
// ==========================================================================
wire nub_clk = ~nub_clkn;
wire nub_reset = ~nub_resetn;
// ==========================================================================
// Global signals
// ==========================================================================
// ===== SLAVE =====
//wire slv_master;
wire slv_slave; // output nubus_slave module; input internal ; active during slave cycle
wire slv_tm1n; // output nubus_slave module; input internal & nubus_membus
wire slv_tm0n; // output nubus_slave module; input nubus_membus
wire slv_ackcyn; // output nubus_slave module; input nubus_driver
wire slv_myslotcy; // output nubus_slave module; input internal & nubus_driver
wire unsigned [31:0] slv_addr;// output nubus_slave module; input nubus_membus
// ===== CPU ====
wire unsigned [31:0] cpu_ad; // output nubus_master; input MUX to A/D lines 'nub_ad' (nub_ad then as an OE and an iverter to reach nub_adn)
wire cpu_tm1n; // R(h)/W(l); output nubus_cpu; input nubus_driver & internal
wire cpu_tm0n; // byte size(l); idem
wire cpu_masterd; // ignored
// ===== DRIVER =====
wire drv_tmoen; // output enable for tm0n/tm1n (== tmoen) by nubus_driver
wire drv_mstdn; // ??? only connected to driver as an output
// ===== MASTER ===
wire mst_timeout; // timeout???; output nubus_master; input nubus_driver & nubus_slave
wire mst_arbcyn; // req. arb; output nubus_master; input internal & to CPLD & nubus_driver
assign arbcy_n = mst_arbcyn;
wire mst_adrcyn; // during the address cycle for master; output nubus_master; input nubus_driver & nubus_cpubus
wire mst_lockedn; // for locked accesses (?); output nubus_master; input nubus_driver
wire mst_arbdn; // delay during arbitration; output nubus_master; input [NULL] ???
wire mst_busyn; // busy during transfer; output nubus_master; input [NULL] ???
wire mst_ownern; // master is bus owner; output nubus_master; input nubus_driver & internal
wire mst_dtacyn; // during the data cycle for master; output nubus_master; input nubus_driver & internal
// ==========================================================================
// Drive NuBus address-data line
// ==========================================================================
// Should we be putting the address (instead of data) on the bus [see also nub_adoe]
// yes during address cycle, or if we're reading (not writing) data
// actually during write the CPU puts data in cpu_ad so also when writing
// nub_adoe takes care of the enablement
wire cpu_adsel = ~mst_adrcyn | ~mst_dtacyn;// & ~cpu_tm1n;
// Select nubus address or data signals
wire [31:0] nub_ad = cpu_adsel ? cpu_ad : mem_rdata;
// Tri-state control for the A/D line
// nub_adoe is the output enable, when 0 A/D lines are high-impedance
// Slave: only drive the A/D lines to return data on a read (slave cycle with tm1n high)
// Master: drives during (a) address cycle
// (b) data cycle when writing
wire nub_adoe = slv_slave & slv_tm1n /* SLAVE read of card */
| cpu_valid & ~mst_adrcyn /* MASTER address cycle*/
| ~mst_ownern & ~mst_dtacyn & ~cpu_tm1n /* MASTER data cycle, when writing*/
;
assign nub_adn = nub_adoe ? ~nub_ad : 'bZ;
/* for direction */
assign NUBUS_AD_DIR = ~nub_adoe;
//assign nubus_master_dir = grant | ~mst_adrcyn | ~mst_arbdn | ~mst_ownern | ~mst_dtacyn;
assign nubus_master_dir = ~mst_ownern;
/* for slave access, enable the access during slv_myslotcy*/
assign mem_valid = slv_myslotcy;
// ==========================================================================
// Slave FSM
// ==========================================================================
nubus_slave
#(
.SLOTS_ADDRESS (SLOTS_ADDRESS),
.SUPERSLOTS_ADDRESS(SUPERSLOTS_ADDRESS),
.SIMPLE_MAP(0),
// UNUSED in NuBusFPGA
.LOCAL_SPACE_EXPOSED_TO_NUBUS(LOCAL_SPACE_EXPOSED_TO_NUBUS),
.LOCAL_SPACE_START(LOCAL_SPACE_START),
.LOCAL_SPACE_END(LOCAL_SPACE_END)
)
USlave
(
.nub_clkn(nub_clkn), // Clock
.nub_resetn(nub_resetn), // Reset
.nub_idn(nub_idn), // Card ID
.nub_adn(nub_adn), // Address Data
.nub_startn(nub_startn), // Transfer start
.nub_ackn(nub_ackn), // Transfer end
.nub_tm1n(nub_tm1n), // Transition mode 1 (Read/Write)
.nub_tm0n(nub_tm0n),
.mem_ready(mem_ready),
.mst_timeout(mst_timeout),
.slv_slave_o(slv_slave), // Slave mode
.slv_tm1n_o(slv_tm1n), // Latched transition mode 1 (Read/Write)
.slv_tm0n_o(slv_tm0n),
.slv_ackcyn_o(slv_ackcyn), // Acknowlege
.slv_addr_o(slv_addr), // Slave address
.slv_stdslot_o(mem_stdslot), // Starndard slot
.slv_super_o(mem_super), // Superslot
.slv_local_o(mem_local), // Local area
.slv_myslotcy_o(slv_myslotcy) // Any slot
);
// ==========================================================================
// Master FSM
// ==========================================================================
nubus_master
#(
.WDT_W(WDT_W)
)
UMaster
(
.nub_clkn(nub_clkn), // Clock
.nub_resetn(nub_resetn), // Reset
.nub_rqstn(nub_rqstn), // Bus request
.nub_startn(nub_startn), // Start transfer
.nub_ackn(nub_ackn), // End of transfer
.arb_grant(grant), // Grant access
.cpu_lock(cpu_lock), // Address line
.cpu_masterd(cpu_valid), // Master mode (delayed) // FIXME: ignoring cpu_masterd which is always 0 (see below)
.mst_lockedn_o(mst_lockedn), // Locked or not tranfer
.mst_arbdn_o(mst_arbdn),
.mst_busyn_o(mst_busyn),
.mst_ownern_o(mst_ownern), // Address or data transfer
.mst_dtacyn_o(mst_dtacyn), // Data strobe
.mst_adrcyn_o(mst_adrcyn), // Address strobe
.mst_arbcyn_o(mst_arbcyn), // Arbiter enabled
.mst_timeout_o(mst_timeout)
);
// ==========================================================================
// Driver Nubus
// ==========================================================================
assign tmoen = drv_tmoen;
nubus_driver UNDriver
(
.slv_ackcyn(slv_ackcyn), // Acknowlege
.mst_arbcyn(mst_arbcyn), // Arbiter enabled
.mst_adrcyn(mst_adrcyn), // Address strobe
.mst_dtacyn(mst_dtacyn), // Data strobe
.mst_ownern(mst_ownern), // Master is owner of the bus
.mst_lockedn(mst_lockedn), // Locked or not transfer
.mst_tm1n(cpu_tm1n), // Address lines
.mst_tm0n(cpu_tm0n), // Address lines
.mst_timeout(mst_timeout),
.mis_errorn(TMN_COMPLETE),
.nub_tm0n_o(nub_tm0n), // Transfer mode
.nub_tm1n_o(nub_tm1n), // Transfer mode
.nub_ackn_o(nub_ackn), // Achnowlege
.nub_startn_o(nub_startn), // Transfer start
.nub_rqstn_o(nub_rqstn), // Bus request
.nub_rqstoen_o(fpga_to_cpld_signal), // Bus request enable
.drv_tmoen_o(drv_tmoen), // Transfer mode enable
.drv_mstdn_o(drv_mstdn) // Guess: Slave sends /ACK. Master responds with /MSTDN, which allows slave to clear /ACK and listen for next transaction.
);
// ==========================================================================
// CPU Interface
// ==========================================================================
assign cpu_rdata = ~nub_adn;
assign cpu_ready = ~nub_ackn & nub_startn;
nubus_cpubus UCPUBus
(
.nub_clkn(nub_clkn),
.nub_resetn(nub_resetn),
.mst_adrcyn(mst_adrcyn),
.cpu_valid(cpu_valid),
.cpu_write(cpu_write),
.cpu_addr(cpu_addr),
.cpu_wdata(cpu_wdata),
.cpu_ad_o(cpu_ad),
.cpu_tm1n_o(cpu_tm1n),
.cpu_tm0n_o(cpu_tm0n),
.cpu_error_o(cpu_errors),
.cpu_masterd_o(cpu_masterd) // FIXME, set to 0 in Xibus nubus_cpubus
);
// ==========================================================================
// Memory Interface
// ==========================================================================
nubus_membus UMemBus
(
.nub_clkn(nub_clkn), // Clock
.nub_resetn(nub_resetn), // Reset
.nub_adn(nub_adn),
.slv_tm1n(slv_tm1n),
.slv_tm0n(slv_tm0n),
.slv_myslotcy(slv_myslotcy),
.slv_addr(slv_addr),
.mem_addr_o(mem_addr),
.mem_write_o(mem_write),
.mem_wdata_o(mem_wdata)
);
endmodule