//--------------------------------------------------------------------------- // // SCSI Target Emulator RaSCSI Reloaded // for Raspberry Pi // // Copyright (C) 2022 Uwe Seimet // //--------------------------------------------------------------------------- #include "log.h" #include "rascsi_exceptions.h" #include "dispatcher.h" #include "primary_device.h" using namespace std; using namespace scsi_defs; PrimaryDevice::PrimaryDevice(const string& id) : ScsiPrimaryCommands(), Device(id) { // Mandatory SCSI primary commands dispatcher.AddCommand(eCmdTestUnitReady, "TestUnitReady", &PrimaryDevice::TestUnitReady); dispatcher.AddCommand(eCmdInquiry, "Inquiry", &PrimaryDevice::Inquiry); dispatcher.AddCommand(eCmdReportLuns, "ReportLuns", &PrimaryDevice::ReportLuns); // Optional commands used by all RaSCSI devices dispatcher.AddCommand(eCmdRequestSense, "RequestSense", &PrimaryDevice::RequestSense); } bool PrimaryDevice::Dispatch() { return dispatcher.Dispatch(this, ctrl->cmd[0]); } void PrimaryDevice::SetController(AbstractController *c) { controller = c; ctrl = controller->GetCtrl(); } void PrimaryDevice::TestUnitReady() { CheckReady(); EnterStatusPhase(); } void PrimaryDevice::Inquiry() { // EVPD and page code check if ((ctrl->cmd[1] & 0x01) || ctrl->cmd[2]) { throw scsi_error_exception(sense_key::ILLEGAL_REQUEST, asc::INVALID_FIELD_IN_CDB); } vector buf = InquiryInternal(); size_t allocation_length = ctrl->cmd[4] + (ctrl->cmd[3] << 8); if (allocation_length > buf.size()) { allocation_length = buf.size(); } memcpy(ctrl->buffer, buf.data(), allocation_length); ctrl->length = (uint32_t)allocation_length; // Report if the device does not support the requested LUN if (int lun = controller->GetEffectiveLun(); !controller->HasDeviceForLun(lun)) { LOGTRACE("Reporting LUN %d for device ID %d as not supported", lun, GetId()) // Signal that the requested LUN does not exist ctrl->buffer[0] |= 0x7f; } EnterDataInPhase(); } void PrimaryDevice::ReportLuns() { int allocation_length = (ctrl->cmd[6] << 24) + (ctrl->cmd[7] << 16) + (ctrl->cmd[8] << 8) + ctrl->cmd[9]; BYTE *buf = ctrl->buffer; memset(buf, 0, allocation_length < ctrl->bufsize ? allocation_length : ctrl->bufsize); int size = 0; // Only SELECT REPORT mode 0 is supported if (ctrl->cmd[2]) { throw scsi_error_exception(sense_key::ILLEGAL_REQUEST, asc::INVALID_FIELD_IN_CDB); } for (int lun = 0; lun < controller->GetMaxLuns(); lun++) { if (controller->HasDeviceForLun(lun)) { size += 8; buf[size + 7] = (BYTE)lun; } } buf[2] = (BYTE)(size >> 8); buf[3] = (BYTE)size; size += 8; ctrl->length = allocation_length < size ? allocation_length : size; EnterDataInPhase(); } void PrimaryDevice::RequestSense() { int lun = controller->GetEffectiveLun(); // Note: According to the SCSI specs the LUN handling for REQUEST SENSE non-existing LUNs do *not* result // in CHECK CONDITION. Only the Sense Key and ASC are set in order to signal the non-existing LUN. if (!controller->HasDeviceForLun(lun)) { // LUN 0 can be assumed to be present (required to call RequestSense() below) assert(controller->HasDeviceForLun(0)); lun = 0; // Do not raise an exception here because the rest of the code must be executed controller->Error(sense_key::ILLEGAL_REQUEST, asc::INVALID_LUN); ctrl->status = 0x00; } vector buf = controller->GetDeviceForLun(lun)->HandleRequestSense(); size_t allocation_length = ctrl->cmd[4]; if (allocation_length > buf.size()) { allocation_length = buf.size(); } memcpy(ctrl->buffer, buf.data(), allocation_length); ctrl->length = (uint32_t)allocation_length; EnterDataInPhase(); } void PrimaryDevice::CheckReady() { // Not ready if reset if (IsReset()) { SetReset(false); LOGTRACE("%s Device in reset", __PRETTY_FUNCTION__) throw scsi_error_exception(sense_key::UNIT_ATTENTION, asc::POWER_ON_OR_RESET); } // Not ready if it needs attention if (IsAttn()) { SetAttn(false); LOGTRACE("%s Device in needs attention", __PRETTY_FUNCTION__) throw scsi_error_exception(sense_key::UNIT_ATTENTION, asc::NOT_READY_TO_READY_CHANGE); } // Return status if not ready if (!IsReady()) { LOGTRACE("%s Device not ready", __PRETTY_FUNCTION__) throw scsi_error_exception(sense_key::NOT_READY, asc::MEDIUM_NOT_PRESENT); } // Initialization with no error LOGTRACE("%s Device is ready", __PRETTY_FUNCTION__) } vector PrimaryDevice::HandleInquiry(device_type type, scsi_level level, bool is_removable) const { vector buf(0x1F + 5); // Basic data // buf[0] ... SCSI device type // buf[1] ... Bit 7: Removable/not removable // buf[2] ... SCSI compliance level of command system // buf[3] ... SCSI compliance level of Inquiry response // buf[4] ... Inquiry additional data buf[0] = (BYTE)type; buf[1] = is_removable ? 0x80 : 0x00; buf[2] = (BYTE)level; buf[3] = (BYTE)(level >= scsi_level::SCSI_2 ? scsi_level::SCSI_2 : scsi_level::SCSI_1_CCS); buf[4] = 0x1F; // Padded vendor, product, revision memcpy(&buf[8], GetPaddedName().c_str(), 28); return buf; } vector PrimaryDevice::HandleRequestSense() const { // Return not ready only if there are no errors if (!GetStatusCode() && !IsReady()) { throw scsi_error_exception(sense_key::NOT_READY, asc::MEDIUM_NOT_PRESENT); } // Set 18 bytes including extended sense data vector buf(18); // Current error buf[0] = 0x70; buf[2] = (BYTE)(GetStatusCode() >> 16); buf[7] = 10; buf[12] = (BYTE)(GetStatusCode() >> 8); buf[13] = (BYTE)GetStatusCode(); LOGTRACE("%s Status $%02X, Sense Key $%02X, ASC $%02X",__PRETTY_FUNCTION__, ctrl->status, ctrl->buffer[2], ctrl->buffer[12]) return buf; } bool PrimaryDevice::WriteByteSequence(BYTE *, uint32_t) { LOGERROR("%s Writing bytes is not supported by this device", __PRETTY_FUNCTION__) return false; }