RASCSI/cpp/rasdump.cpp
Daniel Markstedt 08194af424
Move C++ code into cpp/ dir (#941)
- Moved C++ code to cpp/ from src/raspberrypi
- Related updates to Makefile, easyinstall.sh, and the github build rules
- Removed the native X68k C code in src/x68k from the repo
2022-10-25 12:59:30 -07:00

999 lines
19 KiB
C++

//---------------------------------------------------------------------------
//
// SCSI Target Emulator RaSCSI Reloaded
// for Raspberry Pi
//
// Powered by XM6 TypeG Technology.
// Copyright (C) 2016-2020 GIMONS
// [ HDD dump utility (initiator mode) ]
//
//---------------------------------------------------------------------------
#include <cerrno>
#include <csignal>
#include <unistd.h>
#include "os.h"
#include "rasdump_fileio.h"
#include "hal/gpiobus.h"
#include "hal/gpiobus_factory.h"
#include "hal/systimer.h"
#include "rascsi_version.h"
#include <cstring>
#include <iostream>
#include <array>
using namespace std;
//---------------------------------------------------------------------------
//
// Constant Declaration
//
//---------------------------------------------------------------------------
static const int BUFSIZE = 1024 * 64; // Buffer size of about 64KB
//---------------------------------------------------------------------------
//
// Variable Declaration
//
//---------------------------------------------------------------------------
unique_ptr<GPIOBUS> bus; // GPIO Bus // Bus
int targetid; // Target ID
int boardid; // Board ID (own ID)
string hdsfile; // HDS file
bool restore; // Restore flag
BYTE buffer[BUFSIZE]; // Work Buffer
int result; // Result Code
//---------------------------------------------------------------------------
//
// Cleanup() Function declaration
//
//---------------------------------------------------------------------------
void Cleanup();
//---------------------------------------------------------------------------
//
// Signal processing
//
//---------------------------------------------------------------------------
void KillHandler(int)
{
// Stop running
Cleanup();
exit(0);
}
//---------------------------------------------------------------------------
//
// Banner Output
//
//---------------------------------------------------------------------------
bool Banner(int argc, char* argv[])
{
printf("RaSCSI hard disk dump utility ");
printf("version %s (%s, %s)\n",
rascsi_get_version_string().c_str(),
__DATE__,
__TIME__);
if (argc < 2 || strcmp(argv[1], "-h") == 0) {
printf("Usage: %s -i ID [-b BID] -f FILE [-r]\n", argv[0]);
printf(" ID is target device SCSI ID {0|1|2|3|4|5|6|7}.\n");
printf(" BID is rascsi board SCSI ID {0|1|2|3|4|5|6|7}. Default is 7.\n");
printf(" FILE is HDS file path.\n");
printf(" -r is restore operation.\n");
return false;
}
return true;
}
//---------------------------------------------------------------------------
//
// Initialization
//
//---------------------------------------------------------------------------
bool Init()
{
// Interrupt handler setting
if (signal(SIGINT, KillHandler) == SIG_ERR) {
return false;
}
if (signal(SIGHUP, KillHandler) == SIG_ERR) {
return false;
}
if (signal(SIGTERM, KillHandler) == SIG_ERR) {
return false;
}
bus = GPIOBUS_Factory::Create();
// GPIO Initialization
if (!bus->Init(BUS::mode_e::INITIATOR)) {
return false;
}
// Work Intitialization
targetid = -1;
boardid = 7;
restore = false;
return true;
}
//---------------------------------------------------------------------------
//
// Cleanup
//
//---------------------------------------------------------------------------
void Cleanup()
{
// Cleanup the bus
bus->Cleanup();
}
//---------------------------------------------------------------------------
//
// Reset
//
//---------------------------------------------------------------------------
void Reset()
{
// Reset the bus signal line
bus->Reset();
}
//---------------------------------------------------------------------------
//
// Argument processing
//
//---------------------------------------------------------------------------
bool ParseArgument(int argc, char* argv[])
{
int opt;
const char *file = nullptr;
// Argument Parsing
opterr = 0;
while ((opt = getopt(argc, argv, "i:b:f:r")) != -1) {
switch (opt) {
case 'i':
targetid = optarg[0] - '0';
break;
case 'b':
boardid = optarg[0] - '0';
break;
case 'f':
file = optarg;
break;
case 'r':
restore = true;
break;
default:
break;
}
}
// TARGET ID check
if (targetid < 0 || targetid > 7) {
fprintf(stderr,
"Error : Invalid target id range\n");
return false;
}
// BOARD ID check
if (boardid < 0 || boardid > 7) {
fprintf(stderr,
"Error : Invalid board id range\n");
return false;
}
// Target and Board ID duplication check
if (targetid == boardid) {
fprintf(stderr,
"Error : Invalid target or board id\n");
return false;
}
// File Check
if (!file) {
fprintf(stderr,
"Error : Invalid file path\n");
return false;
}
hdsfile = file;
return true;
}
//---------------------------------------------------------------------------
//
// Wait Phase
//
//---------------------------------------------------------------------------
bool WaitPhase(BUS::phase_t phase)
{
// Timeout (3000ms)
const uint32_t now = SysTimer::GetTimerLow();
while ((SysTimer::GetTimerLow() - now) < 3 * 1000 * 1000) {
bus->Acquire();
if (bus->GetREQ() && bus->GetPhase() == phase) {
return true;
}
}
return false;
}
//---------------------------------------------------------------------------
//
// Bus Free Phase
//
//---------------------------------------------------------------------------
void BusFree()
{
// Bus Reset
bus->Reset();
}
//---------------------------------------------------------------------------
//
// Selection Phase
//
//---------------------------------------------------------------------------
bool Selection(int id)
{
// ID setting and SEL assert
BYTE data = 1 << boardid;
data |= (1 << id);
bus->SetDAT(data);
bus->SetSEL(true);
// wait for busy
int count = 10000;
do {
// Wait 20 microseconds
const timespec ts = { .tv_sec = 0, .tv_nsec = 20 * 1000};
nanosleep(&ts, nullptr);
bus->Acquire();
if (bus->GetBSY()) {
break;
}
} while (count--);
// SEL negate
bus->SetSEL(false);
// Success if the target is busy
return bus->GetBSY();
}
//---------------------------------------------------------------------------
//
// Command Phase
//
//---------------------------------------------------------------------------
bool Command(BYTE *buf, int length)
{
// Waiting for Phase
if (!WaitPhase(BUS::phase_t::command)) {
return false;
}
// Send Command
const int count = bus->SendHandShake(buf, length, BUS::SEND_NO_DELAY);
// Success if the transmission result is the same as the number
// of requests
if (count == length) {
return true;
}
// Return error
return false;
}
//---------------------------------------------------------------------------
//
// Data in phase
//
//---------------------------------------------------------------------------
int DataIn(BYTE *buf, int length)
{
// Wait for phase
if (!WaitPhase(BUS::phase_t::datain)) {
return -1;
}
// Data reception
return bus->ReceiveHandShake(buf, length);
}
//---------------------------------------------------------------------------
//
// Data out phase
//
//---------------------------------------------------------------------------
int DataOut(BYTE *buf, int length)
{
// Wait for phase
if (!WaitPhase(BUS::phase_t::dataout)) {
return -1;
}
// Data transmission
return bus->SendHandShake(buf, length, BUS::SEND_NO_DELAY);
}
//---------------------------------------------------------------------------
//
// Status Phase
//
//---------------------------------------------------------------------------
int Status()
{
BYTE buf[256];
// Wait for phase
if (!WaitPhase(BUS::phase_t::status)) {
return -2;
}
// Data reception
if (bus->ReceiveHandShake(buf, 1) == 1) {
return (int)buf[0];
}
// Return error
return -1;
}
//---------------------------------------------------------------------------
//
// Message in phase
//
//---------------------------------------------------------------------------
int MessageIn()
{
BYTE buf[256];
// Wait for phase
if (!WaitPhase(BUS::phase_t::msgin)) {
return -2;
}
// Data reception
if (bus->ReceiveHandShake(buf, 1) == 1) {
return (int)buf[0];
}
// Return error
return -1;
}
//---------------------------------------------------------------------------
//
// TEST UNIT READY
//
//---------------------------------------------------------------------------
int TestUnitReady(int id)
{
array<BYTE, 256> cmd = {};
// Result code initialization
result = 0;
// SELECTION
if (!Selection(id)) {
result = -1;
goto exit;
}
// COMMAND
cmd[0] = 0x00;
if (!Command(cmd.data(), 6)) {
result = -2;
goto exit;
}
// STATUS
if (Status() < 0) {
result = -4;
goto exit;
}
// MESSAGE IN
if (MessageIn() < 0) {
result = -5;
goto exit;
}
exit:
// Bus free
BusFree();
return result;
}
//---------------------------------------------------------------------------
//
// REQUEST SENSE
//
//---------------------------------------------------------------------------
int RequestSense(int id, BYTE *buf)
{
array<BYTE, 256> cmd = {};
// Result code initialization
result = 0;
int count = 0;
// SELECTION
if (!Selection(id)) {
result = -1;
goto exit;
}
// COMMAND
cmd[0] = 0x03;
cmd[4] = 0xff;
if (!Command(cmd.data(), 6)) {
result = -2;
goto exit;
}
// DATAIN
memset(buf, 0x00, 256);
count = DataIn(buf, 256);
if (count <= 0) {
result = -3;
goto exit;
}
// STATUS
if (Status() < 0) {
result = -4;
goto exit;
}
// MESSAGE IN
if (MessageIn() < 0) {
result = -5;
goto exit;
}
exit:
// Bus Free
BusFree();
// Returns the number of transfers if successful
if (result == 0) {
return count;
}
return result;
}
//---------------------------------------------------------------------------
//
// MODE SENSE
//
//---------------------------------------------------------------------------
int ModeSense(int id, BYTE *buf)
{
array<BYTE, 256> cmd = {};
// Result code initialization
result = 0;
int count = 0;
// SELECTION
if (!Selection(id)) {
result = -1;
goto exit;
}
// COMMAND
cmd[0] = 0x1a;
cmd[2] = 0x3f;
cmd[4] = 0xff;
if (!Command(cmd.data(), 6)) {
result = -2;
goto exit;
}
// DATAIN
memset(buf, 0x00, 256);
count = DataIn(buf, 256);
if (count <= 0) {
result = -3;
goto exit;
}
// STATUS
if (Status() < 0) {
result = -4;
goto exit;
}
// MESSAGE IN
if (MessageIn() < 0) {
result = -5;
goto exit;
}
exit:
// Bus free
BusFree();
// Returns the number of transfers if successful
if (result == 0) {
return count;
}
return result;
}
//---------------------------------------------------------------------------
//
// INQUIRY
//
//---------------------------------------------------------------------------
int Inquiry(int id, BYTE *buf)
{
array<BYTE, 256> cmd = {};
// Result code initialization
result = 0;
int count = 0;
// SELECTION
if (!Selection(id)) {
result = -1;
goto exit;
}
// COMMAND
cmd[0] = 0x12;
cmd[4] = 0xff;
if (!Command(cmd.data(), 6)) {
result = -2;
goto exit;
}
// DATAIN
memset(buf, 0x00, 256);
count = DataIn(buf, 256);
if (count <= 0) {
result = -3;
goto exit;
}
// STATUS
if (Status() < 0) {
result = -4;
goto exit;
}
// MESSAGE IN
if (MessageIn() < 0) {
result = -5;
goto exit;
}
exit:
// Bus free
BusFree();
// Returns the number of transfers if successful
if (result == 0) {
return count;
}
return result;
}
//---------------------------------------------------------------------------
//
// READ CAPACITY
//
//---------------------------------------------------------------------------
int ReadCapacity(int id, BYTE *buf)
{
array<BYTE, 256> cmd = {};
// Result code initialization
result = 0;
int count = 0;
// SELECTION
if (!Selection(id)) {
result = -1;
goto exit;
}
// COMMAND
cmd[0] = 0x25;
if (!Command(cmd.data(), 10)) {
result = -2;
goto exit;
}
// DATAIN
memset(buf, 0x00, 8);
count = DataIn(buf, 8);
if (count <= 0) {
result = -3;
goto exit;
}
// STATUS
if (Status() < 0) {
result = -4;
goto exit;
}
// MESSAGE IN
if (MessageIn() < 0) {
result = -5;
goto exit;
}
exit:
// Bus free
BusFree();
// Returns the number of transfers if successful
if (result == 0) {
return count;
}
return result;
}
//---------------------------------------------------------------------------
//
// READ10
//
//---------------------------------------------------------------------------
int Read10(int id, uint32_t bstart, uint32_t blength, uint32_t length, BYTE *buf)
{
array<BYTE, 256> cmd = {};
// Result code initialization
result = 0;
int count = 0;
// SELECTION
if (!Selection(id)) {
result = -1;
goto exit;
}
// COMMAND
cmd[0] = 0x28;
cmd[2] = (BYTE)(bstart >> 24);
cmd[3] = (BYTE)(bstart >> 16);
cmd[4] = (BYTE)(bstart >> 8);
cmd[5] = (BYTE)bstart;
cmd[7] = (BYTE)(blength >> 8);
cmd[8] = (BYTE)blength;
if (!Command(cmd.data(), 10)) {
result = -2;
goto exit;
}
// DATAIN
count = DataIn(buf, length);
if (count <= 0) {
result = -3;
goto exit;
}
// STATUS
if (Status() < 0) {
result = -4;
goto exit;
}
// MESSAGE IN
if (MessageIn() < 0) {
result = -5;
goto exit;
}
exit:
// Bus free
BusFree();
// Returns the number of transfers if successful
if (result == 0) {
return count;
}
return result;
}
//---------------------------------------------------------------------------
//
// WRITE10
//
//---------------------------------------------------------------------------
int Write10(int id, uint32_t bstart, uint32_t blength, uint32_t length, BYTE *buf)
{
array<BYTE, 256> cmd = {};
// Result code initialization
result = 0;
int count = 0;
// SELECTION
if (!Selection(id)) {
result = -1;
goto exit;
}
// COMMAND
cmd[0] = 0x2a;
cmd[2] = (BYTE)(bstart >> 24);
cmd[3] = (BYTE)(bstart >> 16);
cmd[4] = (BYTE)(bstart >> 8);
cmd[5] = (BYTE)bstart;
cmd[7] = (BYTE)(blength >> 8);
cmd[8] = (BYTE)blength;
if (!Command(cmd.data(), 10)) {
result = -2;
goto exit;
}
// DATAOUT
count = DataOut(buf, length);
if (count <= 0) {
result = -3;
goto exit;
}
// STATUS
if (Status() < 0) {
result = -4;
goto exit;
}
// MESSAGE IN
if (MessageIn() < 0) {
result = -5;
goto exit;
}
exit:
// Bus free
BusFree();
// Returns the number of transfers if successful
if (result == 0) {
return count;
}
return result;
}
//---------------------------------------------------------------------------
//
// Main process
//
//---------------------------------------------------------------------------
int main(int argc, char* argv[])
{
int i;
char str[32];
uint32_t bsiz;
uint32_t bnum;
uint32_t duni;
uint32_t dsiz;
uint32_t dnum;
Fileio fio;
Fileio::OpenMode omode;
off_t size;
// Banner output
if (!Banner(argc, argv)) {
exit(0);
}
// Initialization
if (!Init()) {
fprintf(stderr, "Error : Initializing. Are you root?\n");
// Probably not root
exit(EPERM);
}
// Prase Argument
if (!ParseArgument(argc, argv)) {
// Cleanup
Cleanup();
// Exit with invalid argument error
exit(EINVAL);
}
#ifndef USE_SEL_EVENT_ENABLE
cerr << "Error: No RaSCSI hardware support" << endl;
exit(EXIT_FAILURE);
#endif
// Reset the SCSI bus
Reset();
// File Open
if (restore) {
omode = Fileio::OpenMode::ReadOnly;
} else {
omode = Fileio::OpenMode::WriteOnly;
}
if (!fio.Open(hdsfile.c_str(), omode)) {
fprintf(stderr, "Error : Can't open hds file\n");
// Cleanup
Cleanup();
exit(EPERM);
}
// Bus free
BusFree();
// Assert reset signal
bus->SetRST(true);
// Wait 1 ms
const timespec ts = { .tv_sec = 0, .tv_nsec = 1000 * 1000};
nanosleep(&ts, nullptr);
bus->SetRST(false);
// Start dump
printf("TARGET ID : %d\n", targetid);
printf("BOARD ID : %d\n", boardid);
// TEST UNIT READY
int count = TestUnitReady(targetid);
if (count < 0) {
fprintf(stderr, "TEST UNIT READY ERROR %d\n", count);
goto cleanup_exit;
}
// REQUEST SENSE(for CHECK CONDITION)
count = RequestSense(targetid, buffer);
if (count < 0) {
fprintf(stderr, "REQUEST SENSE ERROR %d\n", count);
goto cleanup_exit;
}
// INQUIRY
count = Inquiry(targetid, buffer);
if (count < 0) {
fprintf(stderr, "INQUIRY ERROR %d\n", count);
goto cleanup_exit;
}
// Display INQUIRY information
memset(str, 0x00, sizeof(str));
memcpy(str, &buffer[8], 8);
printf("Vendor : %s\n", str);
memset(str, 0x00, sizeof(str));
memcpy(str, &buffer[16], 16);
printf("Product : %s\n", str);
memset(str, 0x00, sizeof(str));
memcpy(str, &buffer[32], 4);
printf("Revison : %s\n", str);
// Get drive capacity
count = ReadCapacity(targetid, buffer);
if (count < 0) {
fprintf(stderr, "READ CAPACITY ERROR %d\n", count);
goto cleanup_exit;
}
// Display block size and number of blocks
bsiz =
(buffer[4] << 24) | (buffer[5] << 16) |
(buffer[6] << 8) | buffer[7];
bnum =
(buffer[0] << 24) | (buffer[1] << 16) |
(buffer[2] << 8) | buffer[3];
bnum++;
printf("Number of blocks : %d Blocks\n", (int)bnum);
printf("Block length : %d Bytes\n", (int)bsiz);
printf("Unit Capacity : %d MBytes %d Bytes\n",
(int)(bsiz * bnum / 1024 / 1024),
(int)(bsiz * bnum));
// Get the restore file size
if (restore) {
size = fio.GetFileSize();
printf("Restore file size : %d bytes", (int)size);
if (size > (off_t)(bsiz * bnum)) {
printf("(WARNING : File size is larger than disk size)");
} else if (size < (off_t)(bsiz * bnum)) {
printf("(ERROR : File size is smaller than disk size)\n");
goto cleanup_exit;
}
printf("\n");
}
// Dump by buffer size
duni = BUFSIZE;
duni /= bsiz;
dsiz = BUFSIZE;
dnum = bnum * bsiz;
dnum /= BUFSIZE;
if (restore) {
printf("Restore progress : ");
} else {
printf("Dump progress : ");
}
for (i = 0; i < (int)dnum; i++) {
if (i > 0) {
printf("\033[21D");
printf("\033[0K");
}
printf("%3d%%(%7d/%7d)",
(int)((i + 1) * 100 / dnum),
(int)(i * duni),
(int)bnum);
fflush(stdout);
if (restore) {
if (fio.Read(buffer, dsiz) && Write10(targetid, i * duni, duni, dsiz, buffer) >= 0) {
continue;
}
} else {
if (Read10(targetid, i * duni, duni, dsiz, buffer) >= 0 && fio.Write(buffer, dsiz)) {
continue;
}
}
printf("\n");
printf("Error occured and aborted... %d\n", result);
goto cleanup_exit;
}
if (dnum > 0) {
printf("\033[21D");
printf("\033[0K");
}
// Rounding on capacity
dnum = bnum % duni;
dsiz = dnum * bsiz;
if (dnum > 0) {
if (restore) {
if (fio.Read(buffer, dsiz)) {
Write10(targetid, i * duni, dnum, dsiz, buffer);
}
} else {
if (Read10(targetid, i * duni, dnum, dsiz, buffer) >= 0) {
fio.Write(buffer, dsiz);
}
}
}
// Completion Message
printf("%3d%%(%7d/%7d)\n", 100, (int)bnum, (int)bnum);
cleanup_exit:
// File close
fio.Close();
// Cleanup
Cleanup();
// end
exit(0);
}