greenscsi/src/greenscsi.ino

1259 lines
37 KiB
C++
Executable File

/*
* GreenSCSI
* Copyright (c) 2021 David Kuder
*
* Based on BlueSCSI
* Copyright (c) 2021 Eric Helgeson, Androda
*
* This file is free software: you may copy, redistribute and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 2 of the License, or (at your
* option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see https://github.com/erichelgeson/bluescsi.
*
* This file incorporates work covered by the following copyright and
* permission notice:
*
* Copyright (c) 2019 komatsu
*
* Permission to use, copy, modify, and/or distribute this software
* for any purpose with or without fee is hereby granted, provided
* that the above copyright notice and this permission notice appear
* in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <Arduino.h> // For Platform.IO
#include <SPI.h>
#include <LittleFS.h>
#include <SdFat.h>
#include "sdios.h"
#include "config.h"
#include "scsi_defs.h"
#include "cmd.h"
// SDFAT
SdFs sd;
LittleFS_Program lfs;
struct part_s {
uint8_t boot;
uint8_t beginCHS[3];
uint8_t type;
uint8_t endCHS[3];
uint32_t firstSector;
uint32_t totalSectors;
} __attribute__((packed));
typedef struct part_s part_t;
//-----------------------------------------------------------------------------
struct mbr_s {
uint8_t bootCode[446];
part_t part[4];
uint8_t signature[2];
} __attribute__((packed));
typedef struct mbr_s mbr_t;
boolean debuglog = 0;
#if DEBUG == 1
#define LOG(XX) if(debuglog) Serial.print(XX)
#define LOGHEX2(XX) if(debuglog) Serial.printf("%02x", XX)
#define LOGHEX4(XX) if(debuglog) Serial.printf("%04x", XX)
#define LOGHEX6(XX) if(debuglog) Serial.printf("%06x", XX)
#define LOGHEX8(XX) if(debuglog) Serial.printf("%08x", XX)
#define LOGN(XX) if(debuglog) Serial.println(XX)
#define LOGHEX2N(XX) if(debuglog) Serial.printf("%02x\r\n", XX)
#define LOGHEX4N(XX) if(debuglog) Serial.printf("%04x\r\n", XX)
#define LOGHEX6N(XX) if(debuglog) Serial.printf("%06x\r\n", XX)
#define LOGHEX8N(XX) if(debuglog) Serial.printf("%08x\r\n", XX)
#elif DEBUG == 2
#define LOG(XX) LOG_FILE.print(XX); LOG_FILE.sync();
#define LOGHEX2(XX) LOG_FILE.printf("%02x", XX); LOG_FILE.sync();
#define LOGHEX4(XX) LOG_FILE.printf("%04x", XX); LOG_FILE.sync();
#define LOGHEX6(XX) LOG_FILE.printf("%06x", XX); LOG_FILE.sync();
#define LOGHEX8(XX) LOG_FILE.printf("%08x", XX); LOG_FILE.sync();
#define LOGN(XX) LOG_FILE.println(XX); LOG_FILE.sync();
#define LOGHEX2N(XX) LOG_FILE.printf("%02x\r\n", XX); LOG_FILE.sync();
#define LOGHEX4N(XX) LOG_FILE.printf("%04x\r\n", XX); LOG_FILE.sync();
#define LOGHEX6N(XX) LOG_FILE.printf("%06x\r\n", XX); LOG_FILE.sync();
#define LOGHEX8N(XX) LOG_FILE.printf("%08x\r\n", XX); LOG_FILE.sync();
#else
#define LOG(XX) //Serial.print(XX)
#define LOGHEX2(XX) //Serial.printf("%02x", XX)
#define LOGHEX4(XX) //Serial.printf("%04x", XX)
#define LOGHEX6(XX) //Serial.printf("%06x", XX)
#define LOGHEX8(XX) //Serial.printf("%08x", XX)
#define LOGN(XX) //Serial.println(XX)
#define LOGHEX2N(XX) //Serial.printf("%02x\r\n", XX)
#define LOGHEX4N(XX) //Serial.printf("%04x\r\n", XX)
#define LOGHEX6N(XX) //Serial.printf("%06x\r\n", XX)
#define LOGHEX8N(XX) //Serial.printf("%08x\r\n", XX)
#endif
#define DB0 0 // SCSI:DB0 Port B Bit 16
#define DB1 1 // SCSI:DB1 Port B Bit 17
#define DB2 29 // SCSI:DB2 Port B Bit 18
#define DB3 30 // SCSI:DB3 Port B Bit 19
#define DB4 43 // SCSI:DB4 Port B Bit 20
#define DB5 46 // SCSI:DB5 Port B Bit 21
#define DB6 44 // SCSI:DB6 Port B Bit 22
#define DB7 45 // SCSI:DB7 Port B Bit 23
#define DB8 32 // SCSI:DBP Port B Bit 11
#define ATN 12 // SCSI:ATN Port C Bit 7
#define BSY 10 // SCSI:BSY Port C Bit 4
#define ACK 9 // SCSI:ACK Port C Bit 3
#define RST 8 // SCSI:RST Port D Bit 3
#define MSG 7 // SCSI:MSG Port D Bit 2
#define SEL 6 // SCSI:SEL Port D Bit 4
#define CD 5 // SCSI:C/D Port D Bit 7
#define REQ 4 // SCSI:REQ Port A Bit 13
#define IO 3 // SCSI:I/O Port A Bit 12
#define SD_CS BUILTIN_SDCARD // SDCARD:CS
#define LED 13 // LED Port C Bit 5
// LED control
#define LED_ON() { GPIOC_PSOR = (1 << 5); }
#define LED_OFF() { GPIOC_PCOR = (1 << 5); }
#define SET_REQ_ACTIVE() { GPIOA_PCOR = (1 << 13); }
#define SET_REQ_INACTIVE() { GPIOA_PSOR = (1 << 13); }
//#define SET_MSG_ACTIVE() { GPIOD_PCOR = (1 << 2); __asm__("nop""\n\t""nop""\n\t"); }
//#define SET_MSG_INACTIVE() { GPIOD_PSOR = (1 << 2); __asm__("nop""\n\t""nop""\n\t"); }
//#define SET_CD_ACTIVE() { GPIOD_PCOR = (1 << 7); __asm__("nop""\n\t""nop""\n\t"); }
//#define SET_CD_INACTIVE() { GPIOD_PSOR = (1 << 7); __asm__("nop""\n\t""nop""\n\t"); }
//#define SET_IO_ACTIVE() { GPIOA_PCOR = (1 << 12); __asm__("nop""\n\t""nop""\n\t"); }
//#define SET_IO_INACTIVE() { GPIOA_PSOR = (1 << 12); __asm__("nop""\n\t""nop""\n\t"); }
//#define SET_REQ_ACTIVE() { pinMode(REQ, OUTPUT_OPENDRAIN); digitalWrite(REQ, LOW); }
//#define SET_REQ_INACTIVE() { digitalWrite(REQ, HIGH); pinMode(REQ, INPUT); }
#define SET_MSG_ACTIVE() { pinMode(MSG, OUTPUT_OPENDRAIN); digitalWrite(MSG, LOW); }
#define SET_MSG_INACTIVE() { digitalWrite(MSG, HIGH); pinMode(MSG, INPUT); }
#define SET_CD_ACTIVE() { pinMode(CD, OUTPUT_OPENDRAIN); digitalWrite(CD, LOW); }
#define SET_CD_INACTIVE() { digitalWrite(CD, HIGH); pinMode(CD, INPUT); }
#define SET_IO_ACTIVE() { pinMode(IO, OUTPUT_OPENDRAIN); digitalWrite(IO, LOW); }
#define SET_IO_INACTIVE() { digitalWrite(IO, HIGH); pinMode(IO, INPUT); }
//#define SET_BSY_ACTIVE() { pinMode(BSY, OUTPUT_OPENDRAIN); digitalWrite(BSY, LOW); }
//#define SET_BSY_INACTIVE() { digitalWrite(BSY, HIGH); pinMode(BSY, INPUT); }
#define SET_BSY_ACTIVE() { GPIOC_PCOR = (1 << 4); __asm__("nop""\n\t"); }
#define SET_BSY_INACTIVE() { GPIOC_PSOR = (1 << 4); }
#define GET_ACK() (!(GPIOC_PDIR & (1 << 3)))
#define GET_ATN() (!(GPIOC_PDIR & (1 << 7)))
#define GET_BSY() (!(GPIOC_PDIR & (1 << 4)))
#define GET_RST() (!(GPIOD_PDIR & (1 << 3)))
#define GET_SEL() (!(GPIOD_PDIR & (1 << 4)))
// Initiator Mode
#define SET_ACK_ACTIVE() { GPIOC_PCOR = (1 << 3); __asm__("nop""\n\t"); }
#define SET_ACK_INACTIVE() { GPIOC_PSOR = (1 << 3); }
#define SET_ATN_ACTIVE() { GPIOC_PCOR = (1 << 7); __asm__("nop""\n\t"); }
#define SET_ATN_INACTIVE() { GPIOC_PSOR = (1 << 7); }
#define SET_RST_ACTIVE() { GPIOD_PCOR = (1 << 3); __asm__("nop""\n\t"); }
#define SET_RST_INACTIVE() { GPIOD_PSOR = (1 << 3); }
#define SET_SEL_ACTIVE() { GPIOD_PCOR = (1 << 4); __asm__("nop""\n\t"); }
#define SET_SEL_INACTIVE() { GPIOD_PSOR = (1 << 4); }
#define GET_MSG() (!(GPIOD_PDIR & (1 << 2)))
#define GET_CD() (!(GPIOD_PDIR & (1 << 7)))
#define GET_IO() (!(GPIOA_PDIR & (1 << 12)))
#define GET_REQ() (!(GPIOA_PDIR & (1 << 13)))
// Turn on the output only for BSY
// BSY,REQ,MSG,CD,IO Turn on the output (no change required for OD)
#define SCSI_TARGET_ACTIVE() { }
// BSY,REQ,MSG,CD,IO Turn off output
#define SCSI_TARGET_INACTIVE() { SCSI_DB_INPUT(); SET_REQ_INACTIVE(); SET_MSG_INACTIVE(); SET_CD_INACTIVE(); SET_IO_INACTIVE(); SET_BSY_INACTIVE(); }
#define SCSI_INITIATOR_INACTIVE() { SCSI_DB_INPUT(); SET_SEL_INACTIVE(); SET_ACK_INACTIVE(); SET_ATN_INACTIVE(); SET_RST_INACTIVE(); }
#define SCSI_DB_MASK 0x00ff0800
// HDImage file
#define HDIMG_ID_POS 2 // Position to embed ID number
#define HDIMG_LUN_POS 3 // Position to embed LUN numbers
#define HDIMG_BLK_POS 5 // Position to embed block size numbers
#define MAX_FILE_PATH 32 // Maximum file name length
typedef struct m_sense_s {
uint8_t m_key;
uint8_t m_code;
uint8_t m_key_specific[4];
} msense_t;
typedef void (*CommandHandler_t)();
CommandHandler_t m_badlunhandler[256];
// VirtualDevice
typedef struct VirtualDevice_s
{
boolean m_enabled;
uint8_t m_id;
uint8_t m_lun;
uint8_t m_type; // Device Type
char m_filename[MAX_FILE_PATH+1];
FsFile m_file; // File object
uint64_t m_fileSize; // File size
uint8_t m_sectors;
uint8_t m_heads;
uint32_t m_cylinders;
size_t m_blocksize; // SCSI BLOCK size
uint32_t m_firstSector; // First sector for partition
boolean m_rawPart; // Raw Partition (True) or Image File (False)
#if SUPPORT_TAPE
size_t m_filemarks; // Tape position counter (file marks since BOM)
#endif
uint8_t m_inquiryresponse[SCSI_INQUIRY_RESPONSE_SIZE];
CommandHandler_t m_handler[256];
msense_t m_sense;
uint16_t m_quirks;
} VirtualDevice_t;
VirtualDevice_t m_vdev[NUM_VDEV]; // Maximum number
uint8_t m_vdevcnt = 0; // Number of allocated vdevs
uint8_t m_vdevmap[NUM_SCSIID][NUM_SCSILUN]; // Map ID/LUN to a vdev
volatile bool m_isBusReset = false; // Bus reset
uint8_t scsi_id_mask; // Mask list of responding SCSI IDs
uint8_t m_id; // Currently responding SCSI-ID
uint8_t m_lun; // Logical unit number currently responding
uint8_t m_sts; // Status uint8_t
uint8_t m_msg; // Message uint8_ts
VirtualDevice_t *m_sel; // VirtualDevice for current SCSI-ID, LUN
uint8_t m_buf[MAX_BLOCKSIZE+1]; // General purpose buffer + overrun fetch
int m_msc;
uint8_t m_msb[256]; // Command storage uint8_ts
uint8_t m_cmdlen;
uint8_t m_cmd[12];
uint8_t m_responsebuffer[256];
uint16_t default_quirks = (SUPPORT_SASI_DEFAULT ? QUIRKS_SASI : 0) | (SUPPORT_APPLE_DEFAULT ? QUIRKS_APPLE : 0);
uint16_t ledbits = 0;
uint8_t ledbit = 0;
uint8_t cardMBR[512];
typedef enum {
PHASE_BUSFREE = 0,
PHASE_SELECTION,
PHASE_MESSAGEOUT,
PHASE_COMMAND,
PHASE_STATUSIN,
PHASE_MESSAGEIN,
} phase_t;
phase_t m_phase = PHASE_BUSFREE;
// Log File
#define VERSION "1.4-20230529"
#if DEBUG == 2
#define LOG_FILENAME "LOG.txt"
FsFile LOG_FILE;
#endif
void onBusReset(void);
void initFileLog(void);
void finalizeFileLog(void);
/*
* IO read.
*/
inline uint8_t readIO(void)
{
// Port input data register
uint32_t ret = ~GPIOB_PDIR;
//uint8_t bret = ret >> 16;
#if READ_PARITY_CHECK
if((db_bsrr[bret] ^ ret) & 0x0800)
m_sts |= 0x01; // parity error
#endif
return ret >> 16; //bret;
}
boolean OpenImage(VirtualDevice_t *h, const char *image_name)
{
h->m_fileSize = 0;
h->m_file = sd.open(image_name, O_RDWR);
if(h->m_file.isOpen()) {
h->m_fileSize = h->m_file.size();
h->m_cylinders = (uint32_t)((uint64_t)h->m_fileSize / ((uint64_t)h->m_blocksize * (uint64_t)h->m_heads * (uint64_t)h->m_sectors));
return true; // File opened
}
return false;
}
#if SUPPORT_DISK or SUPPORT_OPTICAL
/*
* Open HDD or CDROM image file
*/
boolean OpenDiskImage(VirtualDevice_t *h, const char *image_name, int blocksize)
{
if(!strncmp(image_name, "/tgts/", 6)) {
LOGN("/tgts/ path is not supported for disk images.");
return false;
}
if(!strncmp(image_name, "/vdevs/", 7)) {
LOGN("/vdevs/ path is not supported for disk images.");
return false;
}
if(!strncmp(image_name, "/diag/", 6)) {
LOGN("/diag/ path is not supported for disk images.");
return false;
}
if(!strncmp(image_name, "/nv/", 4)) {
LOGN("/nv/ path is not supported for disk images.");
return false;
}
h->m_rawPart = false;
if(!strncmp(image_name, "/raw/part", 9)) {
int partIndex = image_name[9] - '0';
mbr_t *mbr = (mbr_t *)cardMBR;
if((partIndex < 0) || (partIndex > 3)) {
LOGN("partition index is outside the allowed range.");
return false;
}
sd.card()->readSector(0, cardMBR);
if(mbr->part[partIndex].type != 0x87) {
LOGN("partition is of the wrong type.");
return false;
}
h->m_blocksize = blocksize;
h->m_fileSize = ((uint64_t)mbr->part[partIndex].totalSectors) * ((uint64_t)512);
h->m_cylinders = (uint32_t)((uint64_t)h->m_fileSize / ((uint64_t)h->m_blocksize * (uint64_t)h->m_heads * (uint64_t)h->m_sectors));
h->m_rawPart = true;
h->m_firstSector = mbr->part[partIndex].firstSector;
LOG(" Imagefile: ");
LOG(image_name);
LOG(" / ");
LOG(h->m_fileSize / h->m_blocksize);
LOG(" sectors / ");
LOG(h->m_fileSize / 1024);
LOG(" KiB / ");
LOG(h->m_fileSize / 1024 / 1024);
LOGN(" MiB");
return true; // File opened
}
if(!strncmp(image_name, "/sd/", 4))
image_name += 3;
h->m_fileSize = 0;
h->m_blocksize = blocksize;
h->m_file = sd.open(image_name, O_RDWR);
if(h->m_file.isOpen())
{
h->m_fileSize = h->m_file.size();
h->m_cylinders = (uint32_t)((uint64_t)h->m_fileSize / ((uint64_t)h->m_blocksize * (uint64_t)h->m_heads * (uint64_t)h->m_sectors));
LOG(" Imagefile: ");
LOG(image_name);
if(h->m_fileSize>0)
{
// check blocksize dummy file
LOG(" / ");
LOG(h->m_fileSize / h->m_blocksize);
LOG(" sectors / ");
LOG(h->m_fileSize / 1024);
LOG(" KiB / ");
LOG(h->m_fileSize / 1024 / 1024);
LOGN(" MiB");
return true; // File opened
}
else
{
h->m_file.close();
h->m_fileSize = h->m_blocksize = 0; // no file
LOGN(" FileSizeError");
}
}
return false;
}
#endif /* SUPPORT_DISK or SUPPORT_OPTICAL */
#if SUPPORT_TAPE
/*
* Open Tape image file
*/
boolean OpenTapeImage(VirtualDevice_t *h, const char *image_name)
{
if(!strncmp(image_name, "/tgts/", 6)) {
LOGN("/tgts/ path is not supported for tape images.");
return false;
}
if(!strncmp(image_name, "/vdevs/", 7)) {
LOGN("/vdevs/ path is not supported for tape images.");
return false;
}
if(!strncmp(image_name, "/diag/", 6)) {
LOGN("/diag/ path is not supported for tape images.");
return false;
}
if(!strncmp(image_name, "/nv/", 4)) {
LOGN("/nv/ path is not supported for tape images.");
return false;
}
if(!strncmp(image_name, "/sd/", 4))
image_name += 3;
h->m_fileSize = 0;
h->m_blocksize = 0;
h->m_filemarks = 0;
h->m_file = sd.open(image_name, O_RDWR);
if(h->m_file.isOpen()) {
h->m_fileSize = h->m_file.size();
h->m_blocksize = 1024;
LOG(" Imagefile: ");
LOG(image_name);
if(h->m_fileSize>0) {
// check blocksize dummy file
LOG(" / ");
LOG(h->m_fileSize / 1024);
LOG(" KiB / ");
LOG(h->m_fileSize / 1024 / 1024);
LOGN(" MiB");
} else {
LOGN(" / Blank Tape");
}
return true; // File opened
}
return false;
}
#endif /* SUPPORT_TAPE */
void pinModeFastSlew(uint8_t pin, int dummy) {
pinMode(pin, OUTPUT_OPENDRAIN);
volatile uint32_t *config = portConfigRegister(pin);
*config = PORT_PCR_ODE | PORT_PCR_DSE | PORT_PCR_MUX(1);
}
/*
* Initialization.
* Initialize the bus and set the PIN orientation
*/
void setup()
{
#if DEBUG > 0
Serial.begin(115200);
delay(1500);
#endif
for(int id = 0; id < NUM_SCSIID; id++)
for(int lun = 0; lun < NUM_SCSILUN; lun++)
m_vdevmap[id][lun] = 0xff;
m_vdevcnt = 0;
// PIN initialization
pinMode(LED, OUTPUT);
LED_OFF();
//GPIO(SCSI BUS)Initialization
// Input port
pinMode(ATN, INPUT_PULLUP);
pinMode(ACK, INPUT_PULLUP);
pinMode(RST, INPUT_PULLUP);
pinMode(SEL, INPUT_PULLUP);
// Output port
pinModeFastSlew(BSY, OUTPUT_OPENDRAIN);
pinModeFastSlew(MSG, OUTPUT_OPENDRAIN);
pinModeFastSlew(CD, OUTPUT_OPENDRAIN);
pinModeFastSlew(IO, OUTPUT_OPENDRAIN);
pinModeFastSlew(REQ, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB0, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB1, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB2, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB3, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB4, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB5, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB6, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB7, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB8, OUTPUT_OPENDRAIN);
// Turn off the output port
SCSI_TARGET_INACTIVE();
//Occurs when the RST pin state changes from HIGH to LOW
attachInterrupt(RST, onBusReset, FALLING);
attachInterrupt(SEL, SelectionPhaseISR, FALLING);
LED_ON();
// Filesystems
lfs.begin(256 * 1024); // 256KB of program memory to be used as nonvolatile storage
if(!sd.begin(SdioConfig(FIFO_SDIO))) {
#if DEBUG > 0
Serial.println("SD initialization failed!");
#endif
ledbits = 0b0000001010101010;
}
initFileLog();
ConfigureBadLunHandlers();
//Sector data overrun uint8_t setting
//m_buf[MAX_BLOCKSIZE] = 0xff; // DB0 all off,DBP off
//HD image file open
scsi_id_mask = 0x00;
// If greenscsi.cfg exists, run it (try first from SD, otherwise from flash)
if(sd.exists("/greenscsi.cfg")) {
execscript((char*)"/sd/greenscsi.cfg");
execLoop();
} else
if(lfs.exists("/greenscsi.cfg")) {
execscript((char*)"/nv/greenscsi.cfg");
execLoop();
}
// Scan for images if we haven't defined any targets yet.
if(m_vdevcnt == 0) findImages();
finalizeFileLog();
LED_OFF();
cmdDisplay();
}
void findImages() {
// Iterate over the root path in the SD card looking for candidate image files.
SdFile root;
root.open("/");
SdFile file;
bool imageReady;
int usedDefaultId = 0;
while (1) {
if (!file.openNext(&root, O_READ)) break;
char name[MAX_FILE_PATH+1];
if(!file.isDir()) {
file.getName(name, MAX_FILE_PATH+1);
file.close();
String file_name = String(name);
file_name.toLowerCase();
#if SUPPORT_DISK or SUPPORT_OPTICAL
if((file_name.startsWith("hd") || file_name.startsWith("cd")) && (file_name.endsWith(".img") || file_name.endsWith(".hda"))) {
// Defaults for Hard Disks and CD-ROMs
int id = -1; // 0 and 3 are common in Macs for physical HD and CD, so avoid them.
int lun = 0;
int blk = 512;
// Positionally read in and coerase the chars to integers.
// We only require the minimum and read in the next if provided.
int file_name_length = file_name.length();
if(file_name_length > 2) { // HD[N]
int tmp_id = file_name[HDIMG_ID_POS] - '0';
if(tmp_id > -1 && tmp_id < NUM_SCSIID) {
id = tmp_id; // If valid id, set it, else use default
if(file_name_length > 3) { // HD0[N]
int tmp_lun = file_name[HDIMG_LUN_POS] - '0';
if(tmp_lun > -1 && tmp_lun < NUM_SCSILUN) {
lun = tmp_lun; // If valid id, set it, else use default
}
}
} else {
id = ++usedDefaultId;
lun = 0;
}
}
int blk1 = 0, blk2 = 0, blk3 = 0, blk4 = 0;
if(file_name_length > 8) { // HD00_[111]
blk1 = name[HDIMG_BLK_POS] - '0';
blk2 = name[HDIMG_BLK_POS+1] - '0';
blk3 = name[HDIMG_BLK_POS+2] - '0';
if(file_name_length > 9) // HD00_NNN[1]
blk4 = name[HDIMG_BLK_POS+3] - '0';
}
if(blk1 == 2 && blk2 == 5 && blk3 == 6) {
blk = 256;
} else if(blk1 == 1 && blk2 == 0 && blk3 == 2 && blk4 == 4) {
blk = 1024;
} else if(blk1 == 2 && blk2 == 0 && blk3 == 4 && blk4 == 8) {
blk = 2048;
}
if(id < NUM_SCSIID && lun < NUM_SCSILUN) {
uint8_t v = m_vdevcnt;
VirtualDevice_t *h = &m_vdev[v];
m_vdevmap[id][lun] = v;
h->m_id = id;
h->m_lun = lun;
imageReady = false;
// Configure Handlers and Inquiry Response for all luns
#if SUPPORT_DISK
if(file_name.startsWith("hd")) {
LOG(" Disk at ID ");
LOG(id);
LOG(":LUN ");
LOG(lun);
ConfigureDisk(h, name);
imageReady = OpenDiskImage(h, name, blk);
}
#endif /* SUPPORT_DISK */
#if SUPPORT_OPTICAL
if(file_name.startsWith("cd")) {
LOG("CDROM at ID ");
LOG(id);
LOG(":LUN ");
LOG(lun);
ConfigureOptical(h, name);
imageReady = OpenDiskImage(h, name, blk);
}
#endif /* SUPPORT_OPTICAL */
if(imageReady) { // Marked as a responsive ID
m_vdevcnt++;
sprintf(h->m_filename, "/sd/%s", name);
h->m_enabled = true;
scsi_id_mask |= 1<<id;
}
} else {
LOG("Bad LUN or SCSI id for image: ");
LOGN(name);
}
} else
#endif /* SUPPORT_DISK or SUPPORT_OPTICAL */
#if SUPPORT_TAPE
if(file_name.startsWith("dt") && file_name.endsWith(".tap")) {
// Defaults for Tapes
int id = 1; // 0 and 3 are common in Macs for physical HD and CD, so avoid them.
int lun = 0;
// Positionally read in and coerase the chars to integers.
// We only require the minimum and read in the next if provided.
int file_name_length = file_name.length();
if(file_name_length > 2) { // HD[N]
int tmp_id = file_name[HDIMG_ID_POS] - '0';
if(tmp_id > -1 && tmp_id < NUM_SCSIID) {
id = tmp_id; // If valid id, set it, else use default
} else {
usedDefaultId++;
}
}
if(file_name_length > 3) { // HD0[N]
int tmp_lun = file_name[HDIMG_LUN_POS] - '0';
if(tmp_lun > -1 && tmp_lun < NUM_SCSILUN) {
lun = tmp_lun; // If valid id, set it, else use default
}
}
if(id < NUM_SCSIID && lun < NUM_SCSILUN) {
uint8_t v = m_vdevcnt;
VirtualDevice_t *h = &m_vdev[v];
m_vdevmap[id][lun] = v;
h->m_id = id;
h->m_lun = lun;
imageReady = false;
LOG(" Tape at ID ");
LOG(id);
LOG(":LUN ");
LOG(lun);
ConfigureTape(h, name);
imageReady = OpenTapeImage(h, name);
if(imageReady) { // Marked as a responsive ID
m_vdevcnt++;
h->m_enabled = true;
sprintf(h->m_filename, "/sd/%s", name);
scsi_id_mask |= 1<<id;
}
} else {
LOG("Bad LUN or SCSI id for image: ");
LOGN(name);
}
} else
#endif /* SUPPORT_TAPE */
{
// LOG("Not an image: ");
// LOGN(name);
}
} else {
file.close();
}
}
if(usedDefaultId > 0) {
LOGN("!! More than one image did not specify a SCSI ID. Last file will be used at ID 1. !!");
}
if(m_vdevcnt == 0) {
LOGN("!! No Virtual Devices defined. Please manually configure. !!");
}
root.close();
}
/*
* Setup initialization logfile
*/
void initFileLog() {
#if DEBUG == 2
LOG_FILE = sd.open(LOG_FILENAME, O_WRONLY | O_CREAT | O_TRUNC);
#endif
#if DEBUG
LOGN("GreenSCSI <-> SD - https://github.com/dkgrizzly/GreenSCSI");
LOG("VERSION: ");
LOGN(VERSION);
LOG("DEBUG:");
LOGN(DEBUG);
#endif
}
/*
* Finalize initialization logfile
*/
void finalizeFileLog() {
LOGN("Initialization complete.");
#if DEBUG == 2
LOG_FILE.close();
#endif
}
/*
* MsgIn2.
*/
void MsgIn2(int msg)
{
//LOGN("MsgIn2");
SET_MSG_ACTIVE();
SET_CD_ACTIVE();
SET_IO_ACTIVE();
writeHandshake(msg);
}
/*
* MsgOut2.
*/
void MsgOut2()
{
//LOGN("MsgOut2");
SET_MSG_ACTIVE();
SET_CD_ACTIVE();
SET_IO_INACTIVE();
m_msb[m_msc] = readHandshake();
m_msc++;
m_msc %= 256;
}
/*
* Main loop.
*/
elapsedMillis ticktock;
void loop() {
if(ledbits) {
if(ticktock > 250) {
if(ledbits & (1<<ledbit)) {
LED_ON();
} else {
LED_OFF();
}
ledbit++;
ledbit &= 0xf;
ticktock = 0;
}
// Cancel ID error indication if we have any IDs enabled
if((ledbit == 0) && (ledbits == 0b0000000000101010) && (scsi_id_mask != 0))
ledbits = 0;
}
if(!ledbits) {
if(scsi_id_mask == 0) ledbits = 0b0000000000101010;
}
switch(m_phase) {
default:
case PHASE_BUSFREE:
BusFreePhaseHandler();
break;
case PHASE_SELECTION:
//SelectionPhaseHandler();
// Do other work while we wait for SEL to be asserted
cmdPoll();
break;
case PHASE_MESSAGEOUT:
MessageOutPhaseHandler();
break;
case PHASE_COMMAND:
CommandPhaseHandler();
break;
case PHASE_STATUSIN:
StatusInPhaseHandler();
break;
case PHASE_MESSAGEIN:
MessageInPhaseHandler();
break;
}
}
void SelectionPhaseISR() {
m_msg = 0;
// Wait until RST = H, BSY = H, SEL = L
while(GET_BSY() || GET_RST()) {
if(!GET_SEL()) return;
}
// BSY+ SEL-
// If the ID to respond is not driven, wait for the next
uint8_t scsiid = readIO() & scsi_id_mask;
if(scsiid == 0) {
// We were not selected, treat this as an abort and cancel any transactions we can.
m_isBusReset = true;
SCSI_TARGET_INACTIVE();
m_phase = PHASE_BUSFREE;
return;
}
LOG("Selection ");
m_isBusReset = false;
// Set BSY to-when selected
SET_BSY_ACTIVE(); // Turn only BSY output ON, ACTIVE
// Ask for a TARGET-ID to respond
#if USE_DB2ID_TABLE
m_id = db2scsiid[scsiid];
#else
for(m_id=7;m_id>=0;m_id--)
if(scsiid & (1<<m_id)) break;
#endif
m_lun = 0xff;
//LOGN("Wait !SEL");
// Wait until SEL becomes inactive
while(GET_SEL() && !GET_BSY()) {
if(m_isBusReset) {
LOGN("!SEL");
m_phase = PHASE_BUSFREE;
return;
}
}
m_phase = PHASE_MESSAGEOUT;
}
void MessageOutPhaseHandler() {
//LOGN("ACTIVE");
SCSI_TARGET_ACTIVE(); // (BSY), REQ, MSG, CD, IO output turned on
//
if(GET_ATN()) {
//LOGN("ATN");
bool syncenable = false;
int syncperiod = 50;
int syncoffset = 0;
int loopWait = 0;
m_msc = 0;
memset(m_msb, 0x00, sizeof(m_msb));
while(GET_ATN() && loopWait < 255) {
MsgOut2();
loopWait++;
}
for(int i = 0; i < m_msc; i++) {
// ABORT
if (m_msb[i] == 0x06) {
m_phase = PHASE_BUSFREE;
return;
}
// BUS DEVICE RESET
if (m_msb[i] == 0x0C) {
syncoffset = 0;
m_phase = PHASE_BUSFREE;
return;
}
// IDENTIFY message overrides LUN IDs specified in commands.
if (m_msb[i] & 0x80) {
m_lun = m_msb[i] & 0x07;
}
// Extended message
if (m_msb[i] == 0x01) {
// Check only when synchronous transfer is possible
if (!syncenable || m_msb[i + 2] != 0x01) {
MsgIn2(0x07);
break;
}
// Transfer period factor(50 x 4 = Limited to 200ns)
syncperiod = m_msb[i + 3];
if (syncperiod > 50) {
syncperiod = 50;
}
// REQ/ACK offset(Limited to 16)
syncoffset = m_msb[i + 4];
if (syncoffset > 16) {
syncoffset = 16;
}
// STDR response message generation
MsgIn2(0x01);
MsgIn2(0x03);
MsgIn2(0x01);
MsgIn2(syncperiod);
MsgIn2(syncoffset);
break;
}
}
}
m_phase = PHASE_COMMAND;
}
void CommandPhaseHandler() {
LOG("Command:");
SET_MSG_INACTIVE();
SET_CD_ACTIVE();
SET_IO_INACTIVE();
m_cmd[0] = readHandshake();
if(m_isBusReset) {
m_phase = PHASE_BUSFREE;
return;
}
LOGHEX2(m_cmd[0]);
// Command length selection, reception
static const int cmd_class_len[8]={6,10,10,6,6,12,6,6};
m_cmdlen = cmd_class_len[m_cmd[0] >> 5];
// Receive the remaining command bytes
for(int i = 1; i < m_cmdlen; i++ ) {
m_cmd[i] = readHandshake();
LOG(":");
LOGHEX2(m_cmd[i]);
if(m_isBusReset) {
m_phase = PHASE_BUSFREE;
return;
}
}
// LUN confirmation
m_sts = m_cmd[1]&0xe0; // Preset LUN in status byte if not specified by Identify Message
if(m_lun == 0xff) m_lun = (m_sts>>5);
// HDD Image selection
m_sel = (VirtualDevice_t *)0; // None
if( (m_lun < NUM_SCSILUN) )
{
uint8_t v = m_vdevmap[m_id][m_lun];
if(v < NUM_VDEV) {
m_sel = &(m_vdev[v]); // There is an image
if(!m_sel->m_enabled)
m_sel = (VirtualDevice_t *)0; // Image absent
}
}
LOG(":ID ");
LOG(m_id);
LOG(":LUN ");
LOG(m_lun);
LOG(" ");
if(!m_sel) {
m_badlunhandler[m_cmd[0]]();
} else {
m_sel->m_handler[m_cmd[0]]();
}
}
void ConfigureBadLunHandlers() {
for(int c = 0; c < 256; c++)
m_badlunhandler[c] = &BadLunCommandHandler;
m_badlunhandler[0x03] = &RequestSenseCommandHandler;
m_badlunhandler[0x12] = &InquiryCommandHandler;
}
void StatusInPhaseHandler() {
//LOGN("Sts");
SET_MSG_INACTIVE();
SET_CD_ACTIVE();
SET_IO_ACTIVE();
writeHandshake(m_sts);
m_phase = PHASE_MESSAGEIN;
}
void MessageInPhaseHandler() {
//LOGN("MsgIn");
SET_MSG_ACTIVE();
SET_CD_ACTIVE();
SET_IO_ACTIVE();
writeHandshake(m_msg);
m_phase = PHASE_BUSFREE;
}
void BusFreePhaseHandler() {
//LOGN("BusFree");
// Release control of the bus.
SCSI_TARGET_INACTIVE();
// Clear the reset pending flag.
m_isBusReset = false;
// Reset back to waiting for selection phase.
m_phase = PHASE_SELECTION;
}
typedef struct SelfTestPins_s {
int A;
int B;
int pA;
int pB;
char nA[4];
char nB[4];
} SelfTestPins_t;
SelfTestPins_t SelfTestPins[] = {
{ IO, DB0, 50, 2, "I/O", "DB0" },
{ IO, DB0, 48, 4, "REQ", "DB1" },
{ IO, DB0, 46, 6, "C/D", "DB2" },
{ IO, DB0, 44, 8, "SEL", "DB3" },
{ IO, DB0, 42, 10, "MSG", "DB4" },
{ IO, DB0, 50, 12, "RST", "DB5" },
{ IO, DB0, 38, 14, "ACK", "DB6" },
{ IO, DB0, 36, 16, "BSY", "DB7" },
{ IO, DB0, 32, 18, "ATN", "DBP" },
};
void SelfTest(int argc, char **argv) {
int i, x;
char c;
Serial.printf("Are you sure you wish to run the self test? ");
for(;;) {
if (Serial.available()) {
c = Serial.read();
switch(c) {
default:
return;
case 'y': case 'Y':
goto ConnectHarness;
}
}
}
ConnectHarness:
// Clear any extra characters
while (Serial.available()) {
c = Serial.read();
}
// Disable normal operation and prepare the self test.
detachInterrupt(RST);
detachInterrupt(SEL);
Serial.printf("Self Test starting...\r\n");
// Delay for 3 seconds
delay(3000);
while (Serial.available()) {
c = Serial.read();
}
Serial.printf("Connect the Loopback test adapter and press Enter.");
for(;;) {
if (Serial.available()) {
c = Serial.read();
switch(c) {
case 0xA: case 0xD:
goto ExecuteSelfTest;
}
}
}
ExecuteSelfTest:
// Clear any extra characters
while (Serial.available()) {
c = Serial.read();
}
// All pins input
for(i = 0; i < 9; i++) {
pinMode(SelfTestPins[i].A, INPUT_PULLUP);
pinMode(SelfTestPins[i].B, INPUT_PULLUP);
}
for(i = 0; i < 9; i++) {
// Test A -> B
pinMode(SelfTestPins[i].A, OUTPUT_OPENDRAIN);
digitalWrite(SelfTestPins[i].A, LOW);
delay(10);
if(digitalRead(SelfTestPins[i].B) != LOW) {
Serial.printf("Self Test Failed. Pin %d (%s) was unable to pull Pin %d (%s) LOW.\r\n", SelfTestPins[i].pA, SelfTestPins[i].nA, SelfTestPins[i].pB, SelfTestPins[i].nB);
pinMode(SelfTestPins[i].A, INPUT_PULLUP);
return;
}
for(x = 0; x < 9; x++) {
if(x != i) {
if(digitalRead(SelfTestPins[x].A) == LOW) {
Serial.printf("Self Test Failed. Pin %d (%s) is shorted to Pin %d (%s).\r\n", SelfTestPins[i].pA, SelfTestPins[i].nA, SelfTestPins[x].pA, SelfTestPins[x].nA);
pinMode(SelfTestPins[i].A, INPUT_PULLUP);
return;
}
if(digitalRead(SelfTestPins[x].B) == LOW) {
Serial.printf("Self Test Failed. Pin %d (%s) is shorted to Pin %d (%s).\r\n", SelfTestPins[i].pA, SelfTestPins[i].nA, SelfTestPins[x].pB, SelfTestPins[x].nB);
pinMode(SelfTestPins[i].A, INPUT_PULLUP);
return;
}
}
}
pinMode(SelfTestPins[i].A, INPUT_PULLUP);
delay(10);
// Test B -> A
pinMode(SelfTestPins[i].B, OUTPUT_OPENDRAIN);
digitalWrite(SelfTestPins[i].B, LOW);
delay(10);
if(digitalRead(SelfTestPins[i].A) != LOW) {
Serial.printf("Self Test Failed. Pin %d (%s) was unable to pull Pin %d (%s) LOW.\r\n", SelfTestPins[i].pB, SelfTestPins[i].nB, SelfTestPins[i].pA, SelfTestPins[i].nA);
pinMode(SelfTestPins[i].B, INPUT_PULLUP);
return;
}
for(x = 0; x < 9; x++) {
if(x != i) {
if(digitalRead(SelfTestPins[x].A) == LOW) {
Serial.printf("Self Test Failed. Pin %d (%s) is shorted to Pin %d (%s).\r\n", SelfTestPins[i].pB, SelfTestPins[i].nB, SelfTestPins[x].pA, SelfTestPins[x].nA);
pinMode(SelfTestPins[i].B, INPUT_PULLUP);
return;
}
if(digitalRead(SelfTestPins[x].B) == LOW) {
Serial.printf("Self Test Failed. Pin %d (%s) is shorted to Pin %d (%s).\r\n", SelfTestPins[i].pB, SelfTestPins[i].nB, SelfTestPins[x].pB, SelfTestPins[x].nB);
pinMode(SelfTestPins[i].B, INPUT_PULLUP);
return;
}
}
}
pinMode(SelfTestPins[i].B, INPUT_PULLUP);
delay(10);
}
while (Serial.available()) {
c = Serial.read();
}
Serial.printf("Disconnect the Loopback test adapter and press Enter.");
for(;;) {
if (Serial.available()) {
c = Serial.read();
switch(c) {
case 0xA: case 0xD:
goto DisconnectHarness;
}
}
}
DisconnectHarness:
// Clear any extra characters
while (Serial.available()) {
c = Serial.read();
}
for(i = 0; i < 9; i++) {
// Test A -> B
pinMode(SelfTestPins[i].A, OUTPUT_OPENDRAIN);
digitalWrite(SelfTestPins[i].A, LOW);
delay(10);
if(digitalRead(SelfTestPins[i].B) == LOW) {
Serial.printf("Self Test Failed. Pin %d (%s) is shorted to Pin %d (%s).\r\n", SelfTestPins[i].pA, SelfTestPins[i].nA, SelfTestPins[i].pB, SelfTestPins[i].nB);
pinMode(SelfTestPins[i].A, INPUT_PULLUP);
return;
}
// Test B -> A
pinMode(SelfTestPins[i].B, OUTPUT_OPENDRAIN);
digitalWrite(SelfTestPins[i].B, LOW);
delay(10);
if(digitalRead(SelfTestPins[i].A) == LOW) {
Serial.printf("Self Test Failed. Pin %d (%s) is shorted to Pin %d (%s).\r\n", SelfTestPins[i].pB, SelfTestPins[i].nB, SelfTestPins[i].pA, SelfTestPins[i].nA);
pinMode(SelfTestPins[i].B, INPUT_PULLUP);
return;
}
}
//SelfTestComplete:
// Clear any extra characters
while (Serial.available()) {
c = Serial.read();
}
Serial.printf("Self Test Passed.\r\n");
// On success, restore normal operation
// Input port
pinMode(ATN, INPUT_PULLUP);
pinMode(ACK, INPUT_PULLUP);
pinMode(RST, INPUT_PULLUP);
pinMode(SEL, INPUT_PULLUP);
// Output port
pinModeFastSlew(BSY, OUTPUT_OPENDRAIN);
pinModeFastSlew(MSG, OUTPUT_OPENDRAIN);
pinModeFastSlew(CD, OUTPUT_OPENDRAIN);
pinModeFastSlew(IO, OUTPUT_OPENDRAIN);
pinModeFastSlew(REQ, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB0, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB1, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB2, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB3, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB4, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB5, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB6, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB7, OUTPUT_OPENDRAIN);
pinModeFastSlew(DB8, OUTPUT_OPENDRAIN);
// Turn off the output port
SCSI_TARGET_INACTIVE();
attachInterrupt(RST, onBusReset, FALLING);
attachInterrupt(SEL, SelectionPhaseISR, FALLING);
LED_OFF();
}