MacGLide/MacGLide/OpenGLide/Framebuffer.cpp

1 line
48 KiB
C++

//**************************************************************
//* OpenGLide - Glide to OpenGL Wrapper
//* http://openglide.sourceforge.net
//*
//* framebuffer emulation
//*
//* OpenGLide is OpenSource under LGPL license
//* Mac version and additional features by Jens-Olaf Hemprich
//**************************************************************
#include "Framebuffer.h"
#include "Glide.h"
#include "GlideApplication.h"
#include "GlideSettings.h"
#include "GLRender.h"
#include "GLRenderUpdateState.h"
#include "GLColorAlphaCombineEnvTables.h"
// check if tile needs to be displayed
#define CHECK_RENDER_TILE
// Display small dots at opposite corners of rendered framebuffer tiles
//#define DEBUG_TILE_RENDERING
Framebuffer::Framebuffer()
: m_x_step_start(0)
, m_y_step_start(0)
, m_x_step_start_opaque(0)
, m_y_step_start_opaque(0)
, m_width(0)
, m_height(0)
, m_framebuffer(NULL)
, m_texbuffer(NULL)
, m_origin(GR_ORIGIN_UPPER_LEFT)
, m_glInternalFormat(-1)
, m_glFormat(-1)
, m_glType(-1)
, m_glDepth(1.0f)
, m_format_valid(false)
, m_use_client_storage(false)
, m_useRectangleARB(false)
, m_must_clear_buffer(true)
, m_custom_tilesizes(NULL)
{
// Don't set the checksum to 0, as this would cause white screen in Carmageddon
// because fully black tile also have a 0 checksum and no texture data would be
// download at all (and the tile would be rendered as if TEXTURE_2D was disabled)
memset(m_tileChecksums, 0xff, sizeof(vector unsigned long) * m_tileCount);
}
Framebuffer::~Framebuffer()
{
}
bool Framebuffer::initialise_buffers(BufferStruct* framebuffer, BufferStruct* texbuffer, FxU32 width, FxU32 height, const tilesize* tilesizetable)
{
#ifdef OGL_FRAMEBUFFER
GlideMsg( "GlideFrameBuffer::initialise_buffers(---, ---, %d, %d, ---)\n", width, height);
#endif
m_custom_tilesizes = tilesizetable;
return initialise_buffers(framebuffer, texbuffer, width, height, 0, 0);
}
bool Framebuffer::initialise_buffers(BufferStruct* framebuffer, BufferStruct* texbuffer, FxU32 width, FxU32 height, FxU32 x_tile, FxU32 y_tile)
{
#ifdef OGL_FRAMEBUFFER
GlideMsg( "Framebuffer::initialise_buffers(---, ---, %d, %d, %d, %d)\n", width, height, x_tile, y_tile);
#endif
m_framebuffer = framebuffer;
m_texbuffer = texbuffer;
m_framebuffer->WriteMode = m_texbuffer->WriteMode = GR_LFBWRITEMODE_UNUSED;
m_width = width;
m_height = height;
// find out largest texture size
GLint tile_size;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &tile_size);
m_x_step_start_opaque = tile_size;
m_y_step_start_opaque = tile_size;
m_x_step_start = min(tile_size, x_tile);
m_y_step_start = min(tile_size, y_tile);
m_x_step_start = max(16, m_x_step_start);
m_y_step_start = max(16, m_y_step_start);
m_useRectangleARB = InternalConfig.ARB_texture_rectangle &&
InternalConfig.EXT_compiled_vertex_array;
// The texture priority is set to minimun because
// frame buffer textures are never used a second time
// @todo: This is not true anymore in all cases
// because of the altivec checksum feature
const GLfloat zero = 0.0f;
glGenTextures(m_tileCount, &m_textureNames[0]);
glPrioritizeTextures(m_tileCount, &m_textureNames[0], &zero);
for(int i = 0; i < m_tileCount; i++)
{
const GLenum textureTarget = m_useRectangleARB ? GL_TEXTURE_RECTANGLE_ARB : GL_TEXTURE_2D;
glBindTexture(textureTarget, m_textureNames[i]);
if (m_useRectangleARB)
{
// This will not probably not work right now, because
// we're using RGBA (the OS9 prefered texture format)
// @todo: use ABGR??? in order to avoid byte swizzling
// glTextureRangeAPPLE(GLenum target, GLsizei length, GLvoid *pointer);
glTexParameteri(textureTarget,
GL_TEXTURE_STORAGE_HINT_APPLE,
GL_STORAGE_CACHED_APPLE);
glReportError();
}
glTexParameteri(textureTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(textureTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(textureTarget, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(textureTarget, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
// If a game has its own tilesize table, use
// the largest tiles for opaque renderings
GLint y_step = y_tile == 0 ? m_y_step_start_opaque : m_y_step_start;
// init default/opaque tilesize table
int w = 0;
for(FxU32 y = 0; y < m_height && w < MaxTiles ; y += y_step, w++)
{
while (m_height - y < y_step)
{
y_step = y_step >> 1;
}
m_tilesizes[w].y = y_step;
GLint x_step = x_tile == 0 ? m_x_step_start_opaque : m_x_step_start;
int v = 0;
for(FxU32 x = 0; x < m_width && v < MaxTiles; x += x_step, v++ )
{
while (m_width - x < x_step)
{
x_step = x_step >> 1;
}
m_tilesizes[w].x[v] = x_step;
}
}
// Build compiled vertex arrays
if (InternalConfig.EXT_compiled_vertex_array)
{
// Store various render buffers indices
m_tilesizesVertexArrayIndex = OGLRender.FrameBufferStartIndex;
m_tilesizesCount = buildVertexArrays(&m_tilesizes[0], m_tilesizesVertexArrayIndex);
if (m_custom_tilesizes)
{
m_customtilesizesVertexArrayIndex = m_tilesizesVertexArrayIndex + m_tilesizesCount * 2;
m_customtilesizesCount = buildVertexArrays(m_custom_tilesizes, m_customtilesizesVertexArrayIndex);
}
}
return m_width > 0 && m_height > 0 && m_x_step_start > 0 && m_y_step_start > 0 && m_format_valid;
}
void Framebuffer::free_buffers()
{
#ifdef OGL_FRAMEBUFFER
GlideMsg( "Framebuffer::free_buffers()\n");
#endif
if (m_tilesizes) FreeObject(m_tilesizes);
glDeleteTextures(m_tileCount, &m_textureNames[0]);
}
void Framebuffer::initialise_format(GrLfbWriteMode_t writemode)
{
#if defined(OGL_PART_DONE) || defined(OGL_FRAMEBUFFER)
GlideMsg("Framebuffer::initialise_format(0x%x)\n", writemode);
#endif
// Enlarge buffer?
if (writemode >= GR_LFBWRITEMODE_888 &&
(m_framebuffer->WriteMode < GR_LFBWRITEMODE_888 || m_framebuffer->WriteMode == GR_LFBWRITEMODE_UNUSED) &&
m_framebuffer->Address)
{
// Delete existing buffer
FreeFrameBuffer(m_framebuffer->Address);
m_framebuffer->Address = NULL;
m_texbuffer->Address = NULL;
}
// Allocate 32-bit buffer (16bit buffer has been allocated in grSstWinOpen()
if (m_framebuffer->Address == NULL)
{
unsigned long openglpixels = OpenGL.WindowWidth * OpenGL.WindowHeight;
// Framebuffer can be written to with 16bit or 32bit data
unsigned long buffertypesize = (writemode >= GR_LFBWRITEMODE_888) ? sizeof(FxU32) : sizeof(FxU16);
Glide.FrameBuffer.Address = (FxU16*) AllocFrameBuffer(Glide.WindowTotalPixels * buffertypesize + openglpixels * sizeof(FxU32), 1);
Glide.TempBuffer.Address = &Glide.FrameBuffer.Address[Glide.WindowTotalPixels * buffertypesize >> 1];
memset( Glide.FrameBuffer.Address, 0, Glide.WindowTotalPixels * buffertypesize);
memset( Glide.TempBuffer.Address, 0, openglpixels * sizeof(FxU32));
}
m_framebuffer->WriteMode = writemode;
m_glInternalFormat = 4;
m_glFormat = GL_RGBA;
m_glType = GL_UNSIGNED_BYTE;
FxU16 chromakeyvalue;
switch (writemode)
{
case GR_LFBWRITEMODE_565:
chromakeyvalue = s_GlideApplication.GetType() == GlideApplication::Carmageddon
? 0x1f1f : 0x07ff;
m_format_valid = true;
break;
case GR_LFBWRITEMODE_1555:
chromakeyvalue = 0x03ff;
m_format_valid = true;
break;
case GR_LFBWRITEMODE_888:
chromakeyvalue = 0x7ffdfeff;
m_format_valid = true;
break;
default:
chromakeyvalue = 0x0;
m_format_valid = false;
break;
}
// When the chromakeyvalue changes, the buffer has to be cleared
if (chromakeyvalue != m_ChromaKey.Scalar)
{
SetChromaKeyValue(chromakeyvalue);
m_must_clear_buffer = true;
}
}
bool Framebuffer::begin_write()
{
#ifdef OGL_FRAMEBUFFER
GlideMsg("Framebuffer::begin_write()\n");
#endif
if (m_must_clear_buffer)
{
Clear();
m_must_clear_buffer = false;
}
return true;
}
void Framebuffer::Clear()
{
#ifdef OGL_FRAMEBUFFER
GlideMsg( "Framebuffer::Clear()\n");
#endif
const FxU16 chromakey = GetChromaKeyValue();
const FxU32 count = m_width * m_height ;
FxU16* framebuffer = m_framebuffer->Address;
for ( int i = 0; i < count; i++)
{
framebuffer[i] = chromakey;
}
}
bool Framebuffer::end_write(FxU32 alpha, GLfloat depth, bool pixelpipeline)
{
#ifdef OGL_FRAMEBUFFER
GlideMsg("Framebuffer::end_write(%d, %f, %d)\n", alpha, depth, pixelpipeline);
#endif
m_glDepth = depth;
#ifdef __ALTIVEC__
for(int i = 0; i < 4; i++)
{
(&m_glAlpha.Scalar)[i] = alpha;
}
#else
m_glAlpha.Scalar = alpha;
#endif
// if all pixels are invisible, nothing must be rendered.
// The pixel conversion functions assume alpha is != 0 in order
// to determine if a tile contains any pixels to be rendered.
if (m_glAlpha.Scalar == 0) return false;
set_gl_state(pixelpipeline);
if (InternalConfig.EXT_compiled_vertex_array)
{
if (m_custom_tilesizes)
{
drawCompiledVertexArrays(m_custom_tilesizes, m_customtilesizesVertexArrayIndex, m_customtilesizesCount, pixelpipeline);
}
else
{
drawCompiledVertexArrays(m_tilesizes, m_tilesizesVertexArrayIndex, m_tilesizesCount, pixelpipeline);
}
}
else
{
const tilesize* tilesizes = m_custom_tilesizes ? m_custom_tilesizes : m_tilesizes;
draw(tilesizes, pixelpipeline);
}
restore_gl_state(pixelpipeline);
return true;
}
bool Framebuffer::end_write(FxU32 alpha)
{
#ifdef OGL_DONE
GlideMsg("Framebuffer::end_write(%d)\n", alpha);
#endif
// draw frame buffer
// @todo: Depth should OpenGL.ZNear, but that breaks overlays in Myth
FxBool result = end_write(alpha, 0.0, false);
return result;
}
bool Framebuffer::end_write()
{
#ifdef OGL_FRAMEBUFFER
GlideMsg( "Framebuffer::end_write( )\n" );
#endif
return end_write(0x000000ff);
}
bool Framebuffer::end_write_opaque()
{
#ifdef OGL_FRAMEBUFFER
GlideMsg("Framebuffer::end_write_opaque()\n");
#endif
// @todo: Depth should OpenGL.ZNear, but that breaks overlays in Myth
return end_write(0x000000ff, 0.0, false);
}
void Framebuffer::set_gl_state(bool pixelpipeline)
{
#ifdef OGL_FRAMEBUFFER
GlideMsg( "Framebuffer::set_gl_state(%d)\n", pixelpipeline);
#endif
glReportErrors("Framebuffer::set_gl_state");
VERIFY_ACTIVE_TEXTURE_UNIT(OpenGL.ColorAlphaUnit1);
// Disable the cull mode
glDisable(GL_CULL_FACE);
// Disable clip volume hint manually to avoid recursion
if (InternalConfig.EXT_clip_volume_hint && OpenGL.ClipVerticesEnabledState)
{
glHint(GL_CLIP_VOLUME_CLIPPING_HINT_EXT, GL_FASTEST);
}
if (pixelpipeline)
{
if (OpenGL.ColorAlphaUnit2)
{
// Pixelpipeline support for env cobine based rendering:
// Framebuffer pixels must be routed through the coloralpha unit
// as if they were produced by the vertex iterators without an
// additional GL texture unit -> source must be changed accordingly
m_bRestoreColorCombine = false;
if (Glide.State.ColorCombineLocal == GR_COMBINE_LOCAL_ITERATED)
{
Glide.State.ColorCombineLocal = GR_COMBINE_LOCAL_PIXELPIPELINE;
m_bRestoreColorCombine = true;
}
if (Glide.State.ColorCombineOther == GR_COMBINE_OTHER_ITERATED)
{
Glide.State.ColorCombineOther = GR_COMBINE_OTHER_PIXELPIPELINE;
m_bRestoreColorCombine = true;
}
if (m_bRestoreColorCombine) SetColorCombineState();
m_bRestoreAlphaCombine = false;
if (Glide.State.AlphaLocal == GR_COMBINE_LOCAL_ITERATED)
{
Glide.State.AlphaLocal = GR_COMBINE_LOCAL_PIXELPIPELINE;
m_bRestoreAlphaCombine = true;
}
if (Glide.State.AlphaOther == GR_COMBINE_OTHER_ITERATED)
{
Glide.State.AlphaOther = GR_COMBINE_OTHER_PIXELPIPELINE;
m_bRestoreAlphaCombine = true;
}
if (m_bRestoreAlphaCombine) SetAlphaCombineState();
// Update the opengl state for the pixel pipeline
RenderUpdateState();
// If the write mode doesn't provide alpha then m_glAlpha is used
// as the constant alpha value, and we can use the alpha test
// to mask out chromakey pixels
switch (m_framebuffer->WriteMode)
{
case GR_LFBWRITEMODE_565:
case GR_LFBWRITEMODE_888:
glEnable(GL_ALPHA_TEST);
const GLenum alphaTestFunction = GL_EQUAL;
const GLfloat alphaTestReferenceValue= m_glAlpha.Scalar * D1OVER255;
OpenGL.AlphaTestFunction = alphaTestFunction;
OpenGL.AlphaReferenceValue = alphaTestReferenceValue;
glAlphaFunc(alphaTestFunction, alphaTestReferenceValue);
glReportError();
break;
}
}
// GL_RECTANGLE_ARB overrides GL_TEXTURE_2D
if (m_useRectangleARB)
{
const GLenum textureTarget = GL_TEXTURE_RECTANGLE_ARB;
const bool enableColoralphaTextureUnit1 = OpenGL.ColorAlphaUnitColorEnabledState[0] || OpenGL.ColorAlphaUnitAlphaEnabledState[0];
if (enableColoralphaTextureUnit1)
{
glEnable(textureTarget);
glReportError();
}
if (OpenGL.ColorAlphaUnit2)
{
const bool enableColoralphaTextureUnit2 = OpenGL.ColorAlphaUnitColorEnabledState[1] || OpenGL.ColorAlphaUnitAlphaEnabledState[1];
if (enableColoralphaTextureUnit2)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit2);
glReportError();
glEnable(textureTarget);
glReportError();
glActiveTextureARB(OpenGL.ColorAlphaUnit1);
glReportError();
}
}
// The client texture state is already setup correctly since we just
// have to adjust the texture rectangle state
// (the texture_2d state is not changed when the pixelpipeline mode is active)
}
// Set the origin with clipping
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (m_origin == GR_ORIGIN_LOWER_LEFT)
{
glOrtho(Glide.State.ClipMinX, Glide.State.ClipMaxX,
Glide.State.ClipMinY, Glide.State.ClipMaxY,
OpenGL.ZNear, OpenGL.ZFar);
glViewport(OpenGL.OriginX + OpenGL.ClipMinX,
OpenGL.OriginY + OpenGL.ClipMinY,
OpenGL.ClipMaxX - OpenGL.ClipMinX,
OpenGL.ClipMaxY - OpenGL.ClipMinY);
}
else
{
glOrtho(Glide.State.ClipMinX, Glide.State.ClipMaxX,
Glide.State.ClipMaxY, Glide.State.ClipMinY,
OpenGL.ZNear, OpenGL.ZFar);
glViewport(OpenGL.OriginX + OpenGL.ClipMinX,
OpenGL.OriginY + OpenGL.WindowHeight - OpenGL.ClipMaxY,
OpenGL.ClipMaxX - OpenGL.ClipMinX,
OpenGL.ClipMaxY - OpenGL.ClipMinY);
}
// The scissor rectangle is not reset, because scissor mode
// is only enabled when clearing the buffer
glMatrixMode(GL_MODELVIEW);
glReportError();
}
else
{
// disable blend
glDisable(GL_BLEND);
// disable depth buffer
glDepthMask(false);
// Enable colormask
glColorMask( true, true, true, false);
// Needed for displaying in-game menus
if (Glide.State.DepthBufferMode != GR_DEPTHBUFFER_DISABLE)
{
glDisable(GL_DEPTH_TEST);
}
glEnable(GL_ALPHA_TEST);
// Update state as we're calling update triggers on restore
const GLenum alphaTestFunction = GL_GREATER;
const GLfloat alphaTestReferenceValue= 0.0;
OpenGL.AlphaTestFunction = alphaTestFunction;
OpenGL.AlphaReferenceValue = alphaTestReferenceValue;
glAlphaFunc(alphaTestFunction, alphaTestReferenceValue);
glReportError();
if (InternalConfig.EXT_secondary_color)
{
glDisable(GL_COLOR_SUM_EXT);
glReportError();
}
// Reset the clipping window
// and set the origin
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (m_origin == GR_ORIGIN_LOWER_LEFT)
{
glOrtho(0, Glide.WindowWidth,
0, Glide.WindowHeight,
OpenGL.ZNear, OpenGL.ZFar);
glViewport(OpenGL.OriginX,
OpenGL.OriginY,
OpenGL.WindowWidth,
OpenGL.WindowHeight);
}
else
{
glOrtho(0, Glide.WindowWidth,
Glide.WindowHeight, 0,
OpenGL.ZNear, OpenGL.ZFar);
glViewport(OpenGL.OriginX,
OpenGL.OriginY,
OpenGL.WindowWidth,
OpenGL.WindowHeight);
}
// The scissor rectangle is not changed, because scissor mode
// is only enabled when clearing the buffer
glMatrixMode(GL_MODELVIEW);
glReportError();
// Disable fog
bool disable_fog_texture_unit = OpenGL.FogTextureUnit;
if (disable_fog_texture_unit)
{
glActiveTextureARB(OpenGL.FogTextureUnit);
if (InternalConfig.EXT_compiled_vertex_array)
{
glClientActiveTextureARB(OpenGL.FogTextureUnit);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(4, GL_FLOAT, 0, NULL);
}
glDisable(GL_TEXTURE_2D);
}
if (OpenGL.Fog &&
InternalConfig.FogMode != OpenGLideFogEmulation_None &&
InternalConfig.FogMode != OpenGLideFogEmulation_EnvCombine)
{
glDisable(GL_FOG);
}
glReportError();
// enable framebuffer texture unit
if (OpenGL.ColorAlphaUnit2)
{
bool disable_coloralpha_texture_unit_2 = OpenGL.ColorAlphaUnitColorEnabledState[1] || OpenGL.ColorAlphaUnitAlphaEnabledState[1];
if (disable_coloralpha_texture_unit_2)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit2);
if (InternalConfig.EXT_compiled_vertex_array)
{
glClientActiveTextureARB(OpenGL.ColorAlphaUnit2);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
// On MacOS9 (Classic?) the texcoord pointer needs to be reset
// to the default value when glLockArrays/glUnlockArrays is used
glTexCoordPointer( 4, GL_FLOAT, 0, NULL );
}
glDisable(GL_TEXTURE_2D);
}
if (disable_fog_texture_unit || disable_coloralpha_texture_unit_2)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit1);
if (InternalConfig.EXT_compiled_vertex_array)
{
glClientActiveTextureARB(OpenGL.ColorAlphaUnit1);
}
}
if (!OpenGL.ColorAlphaUnitColorEnabledState[0] && !OpenGL.ColorAlphaUnitAlphaEnabledState[0])
{
glEnable(GL_TEXTURE_2D);
if (InternalConfig.EXT_compiled_vertex_array)
{
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(4, GL_FLOAT, 0, &OGLRender.TTexture[0]);
}
}
}
else
{
if (disable_fog_texture_unit)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit1);
if (InternalConfig.EXT_compiled_vertex_array)
{
glClientActiveTextureARB(OpenGL.ColorAlphaUnit1);
}
}
if (OpenGL.Texture == false)
{
// GL_RECTANGLE_ARB overrides GL_RECTANGLE_2D
if (!m_useRectangleARB) glEnable(GL_TEXTURE_2D);
if (InternalConfig.EXT_compiled_vertex_array)
{
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(4, GL_FLOAT, 0, &OGLRender.TTexture[0]);
}
}
}
if (m_useRectangleARB)
{
glEnable(GL_TEXTURE_RECTANGLE_ARB);
glReportError();
}
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glReportError();
}
}
void Framebuffer::restore_gl_state(bool pixelpipeline)
{
#ifdef OGL_FRAMEBUFFER
GlideMsg( "Framebuffer::restore_gl_state(%d)\n", pixelpipeline);
#endif
glReportErrors("Framebuffer::restore_gl_state");
// Restore the cull mode
switch (Glide.State.CullMode)
{
case GR_CULL_DISABLE:
break;
case GR_CULL_NEGATIVE:
case GR_CULL_POSITIVE:
glEnable(GL_CULL_FACE);
break;
}
if (InternalConfig.EXT_clip_volume_hint && OpenGL.ClipVerticesEnabledState)
{
glHint(GL_CLIP_VOLUME_CLIPPING_HINT_EXT, GL_NICEST);
}
// Restore the clipping window
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if ( Glide.State.OriginInformation == GR_ORIGIN_LOWER_LEFT )
{
glOrtho(Glide.State.ClipMinX, Glide.State.ClipMaxX,
Glide.State.ClipMinY, Glide.State.ClipMaxY,
OpenGL.ZNear, OpenGL.ZFar);
glViewport(OpenGL.OriginX + OpenGL.ClipMinX,
OpenGL.OriginY + OpenGL.ClipMinY,
OpenGL.ClipMaxX - OpenGL.ClipMinX,
OpenGL.ClipMaxY - OpenGL.ClipMinY);
}
else
{
glOrtho(Glide.State.ClipMinX, Glide.State.ClipMaxX,
Glide.State.ClipMaxY, Glide.State.ClipMinY,
OpenGL.ZNear, OpenGL.ZFar);
glViewport(OpenGL.OriginX + OpenGL.ClipMinX,
OpenGL.OriginY + OpenGL.WindowHeight - OpenGL.ClipMaxY,
OpenGL.ClipMaxX - OpenGL.ClipMinX,
OpenGL.ClipMaxY - OpenGL.ClipMinY);
}
// The scissor rectangle is not reset, because scissor mode
// is only enabled when clearing the buffer
glMatrixMode( GL_MODELVIEW );
glReportError();
if (pixelpipeline)
{
if (OpenGL.ColorAlphaUnit2)
{
// restore current values
if (m_bRestoreColorCombine)
{
if (Glide.State.ColorCombineLocal == GR_COMBINE_LOCAL_PIXELPIPELINE) Glide.State.ColorCombineLocal = GR_COMBINE_LOCAL_ITERATED;
if (Glide.State.ColorCombineOther == GR_COMBINE_OTHER_PIXELPIPELINE) Glide.State.ColorCombineOther = GR_COMBINE_OTHER_ITERATED;
SetColorCombineState();
}
if(m_bRestoreAlphaCombine)
{
if (Glide.State.AlphaLocal == GR_COMBINE_LOCAL_PIXELPIPELINE) Glide.State.AlphaLocal = GR_COMBINE_LOCAL_ITERATED;
if (Glide.State.AlphaOther == GR_COMBINE_OTHER_PIXELPIPELINE) Glide.State.AlphaOther = GR_COMBINE_LOCAL_ITERATED;
SetAlphaCombineState();
}
}
switch (m_framebuffer->WriteMode)
{
case GR_LFBWRITEMODE_565:
case GR_LFBWRITEMODE_888:
SetChromaKeyAndAlphaState();
break;
}
// GL_RECTANGLE_ARB overrides GL_TEXTURE_2D
if (m_useRectangleARB)
{
const GLenum textureTarget = GL_TEXTURE_RECTANGLE_ARB;
const bool disableColoralphaTextureUnit1 = !(OpenGL.ColorAlphaUnitColorEnabledState[0] || OpenGL.ColorAlphaUnitAlphaEnabledState[0]);
if (disableColoralphaTextureUnit1)
{
glDisable(textureTarget);
glReportError();
}
if (OpenGL.ColorAlphaUnit2)
{
const bool disableColoralphaTextureUnit2 = !(OpenGL.ColorAlphaUnitColorEnabledState[1] || OpenGL.ColorAlphaUnitAlphaEnabledState[1]);
if (disableColoralphaTextureUnit2)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit2);
glReportError();
glDisable(textureTarget);
glReportError();
glActiveTextureARB(OpenGL.ColorAlphaUnit1);
glReportError();
}
}
// The client texture state is already setup correctly since we just
// have to adjust the texture rectangle state to the texture_2d state
}
}
else
{
// restore previous state
if (OpenGL.DepthBufferWritting )
{
glDepthMask( true );
}
if (Glide.State.DepthBufferMode != GR_DEPTHBUFFER_DISABLE)
{
glEnable( GL_DEPTH_TEST );
}
// Restore colormask
bool rgb = Glide.State.ColorMask;
glColorMask(rgb, rgb, rgb, Glide.State.AlphaMask);
if ( OpenGL.Blend )
{
glEnable( GL_BLEND );
}
if ( InternalConfig.EXT_secondary_color )
{
glEnable( GL_COLOR_SUM_EXT );
}
glReportError();
// Enable fog?
bool enable_fog_texture_unit = OpenGL.FogTextureUnit &&
((OpenGL.Fog && InternalConfig.FogMode == OpenGLideFogEmulation_EnvCombine) ||
Glide.State.ColorCombineInvert ||
Glide.State.AlphaInvert);
if (enable_fog_texture_unit)
{
glActiveTextureARB(OpenGL.FogTextureUnit);
glEnable(GL_TEXTURE_2D);
// We're not using glDrawArrays to render the frame buffer,
// but without disabling the client state the next texture drawn
// by RenderDrawTriangles would get the wrong coordinates.
// Can be observed in Carmageddon: The sky texture is rendered "too high"
if (InternalConfig.EXT_compiled_vertex_array)
{
glClientActiveTextureARB(OpenGL.FogTextureUnit);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(1, GL_FLOAT, 0, &OGLRender.TFog[0]);
}
}
if (OpenGL.Fog &&
InternalConfig.FogMode != OpenGLideFogEmulation_None &&
InternalConfig.FogMode != OpenGLideFogEmulation_EnvCombine)
{
glEnable(GL_FOG);
}
glReportError();
if (OpenGL.ColorAlphaUnit2)
{
bool enable_coloralpha_texture_unit_2 = OpenGL.ColorAlphaUnitColorEnabledState[1] || OpenGL.ColorAlphaUnitAlphaEnabledState[1];
if (enable_coloralpha_texture_unit_2)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit2);
glEnable(GL_TEXTURE_2D);
if (InternalConfig.EXT_compiled_vertex_array)
{
glClientActiveTextureARB(OpenGL.ColorAlphaUnit2);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(4, GL_FLOAT, 0, &OGLRender.TTexture[0]);
}
}
if (enable_fog_texture_unit || enable_coloralpha_texture_unit_2)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit1);
if (InternalConfig.EXT_compiled_vertex_array)
{
glClientActiveTextureARB(OpenGL.ColorAlphaUnit1);
}
}
if (!OpenGL.ColorAlphaUnitColorEnabledState[0] && !OpenGL.ColorAlphaUnitAlphaEnabledState[0])
{
if (InternalConfig.EXT_compiled_vertex_array)
{
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer( 4, GL_FLOAT, 0, NULL );
}
glDisable(GL_TEXTURE_2D);
}
// Restore the previous texture environment
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
}
else
{
if (enable_fog_texture_unit)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit1);
if (InternalConfig.EXT_compiled_vertex_array)
{
glClientActiveTextureARB(OpenGL.ColorAlphaUnit1);
}
}
if (OpenGL.Texture == false)
{
if (InternalConfig.EXT_compiled_vertex_array)
{
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer( 4, GL_FLOAT, 0, NULL );
}
// GL_RECTANGLE_ARB overrides GL_TEXTURE_2D and this
// has already been skipped in setState
if (!m_useRectangleARB) glDisable(GL_TEXTURE_2D);
}
// Restore the previous texture environment
SetColorCombineState();
}
// GL_RECTANGLE_ARB overrides GL_TEXTURE_2D
if (m_useRectangleARB)
{
glDisable(GL_TEXTURE_RECTANGLE_ARB);
glReportError();
}
glReportError();
// This must be a forced update because GlideState changes of ChromaKeyMode
// that don't change the corresponding GL-state are filtered out
ForceChromaKeyAndAlphaStateUpdate();
}
glReportError();
VERIFY_ACTIVE_TEXTURE_UNIT(OpenGL.ColorAlphaUnit1);
VERIFY_TEXTURE_ENABLED_STATE();
}
bool Framebuffer::draw(const tilesize* tilesizetable, bool pixelpipeline)
{
#ifdef OGL_FRAMEBUFFER
GlideMsg( "Framebuffer::draw(---, %d)\n", pixelpipeline);
#endif
glReportErrors("Framebuffer::draw()");
bool init_second_textureunit = pixelpipeline && OpenGL.ColorAlphaUnit2;
FxU32* texbuffer = reinterpret_cast<FxU32*>(m_texbuffer->Address);
// Render the tiles
GLint n = 0;
GLint x;
GLint y = 0;
GLint y_step;
for(int w = 0; y < m_height && w < MaxTiles; w++, y += y_step)
{
y_step = tilesizetable[w].y;
x = 0;
GLint x_step;
for(int v = 0; x < m_width && v < MaxTiles; v++, x += x_step)
{
x_step = tilesizetable[w].x[v];
// Use unique (but always the same) name for each texture in order
// to maintain the size and avoid vram memory reallocation
GLint texturename = m_textureNames[n];
const TileUpdateState updateState = createTextureData(texbuffer, x, y, x_step, y_step, n);
if (updateState != TileUpdateState_TileEmpty)
{
#ifdef DEBUG_TILE_RENDERING
unsigned int color;
if (updateState == TileUpdateState_TileDownloadToGPU)
// edges of downloaded tiles are red
color = 0xff0000ff;
else
// edges of rendered tiles are cyan
color = 0x00ffffff;
((long*) texbuffer)[0] =
((long*) texbuffer)[1] =
((long*) texbuffer)[x_step] =
((long*) texbuffer)[x_step -1] =
((long*) texbuffer)[x_step -2] =
((long*) texbuffer)[2 * x_step -1] =
((long*) texbuffer)[(x_step - 1) * y_step] =
((long*) texbuffer)[(x_step - 1) * y_step + 1] =
((long*) texbuffer)[(x_step - 2) * y_step] =
((long*) texbuffer)[x_step * y_step - 1] =
((long*) texbuffer)[x_step * y_step - 2] =
((long*) texbuffer)[x_step * (y_step - 1) - 1] = color;
#endif
glBindTexture(GL_TEXTURE_2D, texturename);
if (init_second_textureunit)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit2);
glBindTexture(GL_TEXTURE_2D, texturename);
glActiveTextureARB(OpenGL.ColorAlphaUnit1);
}
#ifndef DEBUG_TILE_RENDERING
if (updateState == TileUpdateState_TileDownloadToGPU || InternalConfig.APPLE_client_storage == false)
{
glTexImage2D(GL_TEXTURE_2D, 0, m_glInternalFormat, x_step, y_step, 0, m_glFormat, m_glType, texbuffer);
glReportError();
}
#endif
static struct
{
const GLfloat bl[4];
const GLfloat br[4];
const GLfloat tr[4];
const GLfloat tl[4];
}
texcoords =
{
{0.0, 0.0, 1.0, 1.0},
{1.0, 0.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{0.0, 1.0, 1.0, 1.0}
};
glBegin(GL_QUADS);
// counter clockwise
glColor3f(1.0, 1.0, 1.0);
glTexCoord4fv(&texcoords.bl[0]);
if (init_second_textureunit)
{
glMultiTexCoord4fvARB(OpenGL.ColorAlphaUnit2, &texcoords.bl[0]);
}
glVertex3f(x, y, m_glDepth);
glColor3f(1.0, 1.0, 1.0);
glTexCoord4fv(&texcoords.br[0]);
if (init_second_textureunit)
{
glMultiTexCoord4fvARB(OpenGL.ColorAlphaUnit2, &texcoords.br[0]);
}
glVertex3f(x + x_step, y, m_glDepth);
glColor3f(1.0, 1.0, 1.0);
glTexCoord4fv(&texcoords.tr[0]);
if (init_second_textureunit)
{
glMultiTexCoord4fvARB(OpenGL.ColorAlphaUnit2, &texcoords.tr[0]);
}
glVertex3f(x + x_step, y + y_step, m_glDepth);
glColor3f(1.0, 1.0, 1.0);
glTexCoord4fv(&texcoords.tl[0]);
if (init_second_textureunit)
{
glMultiTexCoord4fvARB(OpenGL.ColorAlphaUnit2, &texcoords.tl[0]);
}
glVertex3f(x, y + y_step , m_glDepth);
glEnd();
glReportError();
// Advance to the next texbuffer location
texbuffer += x_step * y_step;
}
n ++;
}
}
s_Framebuffer.SetRenderBufferChanged();
return y == m_height && x == m_width;
}
bool Framebuffer::drawCompiledVertexArrays(const tilesize* tilesizetable, int vertexarrayindex, int tilecount, bool pixelpipeline)
{
#ifdef OGL_FRAMEBUFFER
GlideMsg( "Framebuffer::draw(---, %d)\n", pixelpipeline);
#endif
glReportErrors("Framebuffer::drawCompiledVertexArrays()");
// Finish rendering
RenderUnlockArrays();
// Transfer coords to VRAM
glLockArraysEXT(vertexarrayindex * 3, tilecount * 6);
OGLRender.BufferLocked = true;
const bool init_second_textureunit = pixelpipeline &&
(OpenGL.ColorAlphaUnitColorEnabledState[1] ||
OpenGL.ColorAlphaUnitAlphaEnabledState[1]);
FxU32* texbuffer = reinterpret_cast<FxU32*>(m_texbuffer->Address);
// Render the tiles
GLint n = 0;
GLint x;
GLint y = 0;
GLint y_step;
const GLenum textureTarget = m_useRectangleARB ? GL_TEXTURE_RECTANGLE_ARB : GL_TEXTURE_2D;
for(int w = 0; y < m_height && w < MaxTiles; w++, y += y_step)
{
y_step = tilesizetable[w].y;
x = 0;
GLint x_step;
for(int v = 0; x < m_width && v < MaxTiles; v++, x += x_step)
{
x_step = tilesizetable[w].x[v];
const TileUpdateState updateState = createTextureData(texbuffer, x, y, x_step, y_step, n);
if (updateState != TileUpdateState_TileEmpty)
{
#ifdef DEBUG_TILE_RENDERING
unsigned int color;
if (updateState == TileUpdateState_TileDownloadToGPU)
// edges of downloaded tiles are red
color = 0xff0000ff;
else
// edges of rendered tiles are cyan
color = 0x00ffffff;
((long*) texbuffer)[0] =
((long*) texbuffer)[1] =
((long*) texbuffer)[x_step] =
((long*) texbuffer)[x_step -1] =
((long*) texbuffer)[x_step -2] =
((long*) texbuffer)[2 * x_step -1] =
((long*) texbuffer)[x_step * (y_step - 2)] =
((long*) texbuffer)[x_step * (y_step - 1)] =
((long*) texbuffer)[x_step * (y_step - 1) + 1] =
((long*) texbuffer)[x_step * y_step - 1] =
((long*) texbuffer)[x_step * y_step - 2] =
((long*) texbuffer)[x_step * (y_step - 1) - 1] = color;
#endif
// Use unique (but always the same) name for each
// texture in order to be able to reuse tile data
const GLint texturename = m_textureNames[n];
// The texture rectangle is better suited for video,
// which is close to a framebuffer
if (init_second_textureunit)
{
glActiveTextureARB(OpenGL.ColorAlphaUnit2);
glReportError();
glBindTexture(textureTarget, texturename);
glReportError();
glActiveTextureARB(OpenGL.ColorAlphaUnit1);
glReportError();
}
glBindTexture(textureTarget, texturename);
glReportError();
#ifndef DEBUG_TILE_RENDERING
if (updateState == TileUpdateState_TileDownloadToGPU || InternalConfig.APPLE_client_storage == false)
#endif
{
glTexImage2D(textureTarget, 0, m_glInternalFormat, x_step, y_step, 0, m_glFormat, m_glType, texbuffer);
glReportError();
}
// Draw the tile
glDrawArrays(GL_TRIANGLES, vertexarrayindex * 3 + n * 6, 6);
// Advance to the next texbuffer location
texbuffer += x_step * y_step;
glReportError();
}
n++;
}
}
s_Framebuffer.SetRenderBufferChanged();
return y == m_height && x == m_width;
}
int Framebuffer::buildVertexArrays(const tilesize* tilesizetable, int vertexarrayindex)
{
// Compute coordinates for compiled vertex arrays
TColorStruct* pC = &OGLRender.TColor[vertexarrayindex];
TVertexStruct* pV = &OGLRender.TVertex[vertexarrayindex];
TTextureStruct* pTS = &OGLRender.TTexture[vertexarrayindex];
int n = 0;
GLint y = 0;
GLint y_step;
for(int w = 0; y < m_height && w < MaxTiles; w++, y += y_step)
{
y_step = tilesizetable[w].y;
GLint x = 0;
GLint x_step;
for(int v = 0; x < m_width && v < MaxTiles; v++, x += x_step)
{
x_step = tilesizetable[w].x[v];
// Write coordinates counter clockwise into render buffers
pC->ar = pC->ag = pC->ab =
pC->br = pC->bg = pC->bb =
pC->cr = pC->cg = pC->cb =
pC->aa = pC->ba = pC->ca = 1.0f;
pV->ax = x; pV->ay = y;
pV->bx = x + x_step; pV->by = y;
pV->cx = x + x_step; pV->cy = y + y_step;
pV->az = pV->bz = pV->cz = m_glDepth;
pTS->as = 0.0;
pTS->at = 0.0;
pTS->bs = m_useRectangleARB ? x_step : 1.0f;
pTS->bt = 0.0;
pTS->cs = m_useRectangleARB ? x_step : 1.0f;
pTS->ct = m_useRectangleARB ? y_step : 1.0f;
pTS->aq = pTS->bq = pTS->cq = 0.0f;
pTS->aoow = pTS->boow = pTS->coow = 1.0f;
pC++; pV++; pTS++;
pC->ar = pC->ag = pC->ab =
pC->br = pC->bg = pC->bb =
pC->cr = pC->cg = pC->cb =
pC->aa = pC->ba = pC->ca = 1.0f;
pV->ax = x + x_step; pV->ay = y + y_step;
pV->bx = x; pV->by = y + y_step;
pV->cx = x; pV->cy = y;
pV->az = pV->bz = pV->cz = m_glDepth;
pTS->as = m_useRectangleARB ? x_step : 1.0f;
pTS->at = m_useRectangleARB ? y_step : 1.0f;
pTS->bs = 0.0;
pTS->bt = m_useRectangleARB ? y_step : 1.0f;
pTS->cs = 0.0;
pTS->ct = 0.0;
pTS->aq = pTS->bq = pTS->cq = 0.0f;
pTS->aoow = pTS->boow = pTS->coow = 1.0f;
pC++; pV++; pTS++;
n++;
}
}
return n;
}
#ifdef __ALTIVEC__
// altivec code
inline Framebuffer::TileUpdateState Framebuffer::Convert565Kto8888_AV(FxU16* buffer1, register FxU32* buffer2, register FxU32 width, register FxU32 height, register FxU32 stride, int checksumIndex)
{
const vector bool short chromakey_565_av = m_ChromaKey.Vector;
const int width_av = width >> 3; // 8 16-bit words
const int stride_av = stride >> 3; // 8 16-bit words
const int jump_av = width_av + stride_av;
vector bool short* src_av = (vector bool short*) buffer1;
// Setup channel 0 for reading one row of 565 ushorts from src into the L1 cache
// This isn't read again soon, just written back once so we can bypass L2 cache
const int src_control = (((width_av >> 4) & 0x1f) << 3) + (1 << 8) + (stride_av << 16);
vec_dstt(src_av, src_control, 0);
int h = height;
// loop through the src to check whether anything has to be copied at all
vector bool short* stop_zero_av = &src_av[width_av];
do
{
do
{
const vector bool short pixels_565_av = *src_av;
if (!vec_all_eq(pixels_565_av, chromakey_565_av)) goto create_8888_texture_1_av; // Test clear first before jumping to create_8888_texture_1_av
src_av++;
} while (src_av != stop_zero_av);
src_av += stride_av;
// Update channel 0 to prefetch the next row into the L1 cache
vec_dstt(src_av, src_control, 0);
stop_zero_av += jump_av;
} while (--h);
return TileUpdateState_TileEmpty;
create_8888_texture_1_av:
// Delete dst up to the last chromakey entry in src
stop_zero_av = src_av;
src_av = (vector bool short*) buffer1;
vector unsigned long* dst_av = (vector unsigned long*) buffer2;
const vector unsigned long null_av = vec_splat_u32(0);
// We're just writing to dst, no reading must occur, and starting a prefetch is a bad idea
h = height;
vector bool short* stop_av = &src_av[width_av];
do
{
do
{
if (src_av == stop_zero_av) goto create_8888_texture_2_av; // Test clear first
// clear cacheline to prevent it from being read-in (32 bytes = 2 altivec writes)
// we're just clearing the cache line since we're going to write zeros anyway
__dcbz(dst_av, 0);
dst_av += 2;
src_av++;
} while (src_av != stop_av);
src_av += stride_av;
stop_av += jump_av;
} while (--h);
return TileUpdateState_TileEmpty;
create_8888_texture_2_av:
// Build permute vector for storing high/lo 565 pixels into RgbxA
// - results in R = r565+ggg, G = gggbbbbb, B = 0, A = glAlpha
// -> good for comparison, green and blue are converted afterwards
const vector unsigned char permute_hi_av = {0x00, 0x01, 0x12, 0x13, 0x02, 0x03, 0x16, 0x17, 0x04, 0x05, 0x1a, 0x1b, 0x06, 0x07, 0x1e, 0x1f};
// Computing the permute table just takes 2 instructions instead of 1 instruction + 4 memory reads
const vector unsigned char permute_lo_av = vec_or(permute_hi_av, vec_splat_u8(8));
// const vector unsigned long alpha_8888_av = {m_glAlpha, m_glAlpha, m_glAlpha, m_glAlpha};
const vector unsigned long alpha_8888_av = m_glAlpha.Vector;
// Build chromakey and alpha RgbxA vector
const vector unsigned long chromakey_RgbxA_av = vec_perm((const vector unsigned long) chromakey_565_av, alpha_8888_av, permute_lo_av);
// Constants
const vector unsigned long const_3_av = vec_splat_u32(3);
const vector unsigned long const_5_av = vec_splat_u32(5);
// R5G6B500AA color masks
const vector unsigned long mask_8888_ra = {0xf80000ff, 0xf80000ff, 0xf80000ff, 0xf80000ff};
const vector unsigned long mask_8888_g = {0x07e00000, 0x07e00000, 0x07e00000, 0x07e00000};
// Computing the mask just takes 2 instructions instead of 1 instruction + 4 memory reads
const vector unsigned long mask_8888_b = vec_sr(mask_8888_ra, vec_splat_u32(11));
vector unsigned long pixels_8888_src_av;
vector bool long mask;
vector unsigned long p;
vector unsigned long q;
vector unsigned long pixels_8888_dst_av;
// Checksum the tile
vector unsigned long c = null_av;
vector unsigned long d;
// Continue the loop and convert pixels from 565 to 8888
vec_dstt(src_av, src_control, 0);
do
{
do
{
const vector unsigned long pixels_565_av = (const vector unsigned long) (*src_av);
// tile checksum part 1
d = vec_sr(c, const_5_av);
c = vec_add(c, pixels_565_av);
// restore chroma key for next update
*src_av++ = chromakey_565_av;
// hi-word pixels
pixels_8888_src_av = vec_perm(pixels_565_av, alpha_8888_av, permute_hi_av);
mask = vec_cmpeq(pixels_8888_src_av, chromakey_RgbxA_av);
// Keep red and alpha component
pixels_8888_dst_av = vec_and(pixels_8888_src_av, mask_8888_ra);
// add green component
p = vec_and(pixels_8888_src_av, mask_8888_g);
q = vec_sr(p, const_3_av);
pixels_8888_dst_av = vec_or(pixels_8888_dst_av, q);
// add blue component
p = vec_and(pixels_8888_src_av, mask_8888_b);
q = vec_sr(p, const_5_av);
pixels_8888_dst_av = vec_or(pixels_8888_dst_av, q);
// We're just writing to dst and thus can clear the cacheline in order
// to avoid the read-in from system memory (32 bytes = 2 altivec writes)
// Note: This is a G4 hack, but on a G5 the code will be fast enough anyway
__dcbz(dst_av, 0);
// Select between pixels and chromakey
*dst_av++ = vec_sel(pixels_8888_dst_av, null_av, mask);
// tile checksum part 2
c = vec_xor(c, d);
// lo-word pixels
pixels_8888_src_av = vec_perm(pixels_565_av, alpha_8888_av, permute_lo_av);
mask = vec_cmpeq(pixels_8888_src_av, chromakey_RgbxA_av);
// Keep red and alpha component
pixels_8888_dst_av = vec_and(pixels_8888_src_av, mask_8888_ra);
// add green component
p = vec_and(pixels_8888_src_av, mask_8888_g);
q = vec_sr(p, const_3_av);
pixels_8888_dst_av = vec_or(pixels_8888_dst_av, q);
// add blue component
p = vec_and(pixels_8888_src_av, mask_8888_b);
q = vec_sr(p, const_5_av);
pixels_8888_dst_av = vec_or(pixels_8888_dst_av, q);
// Select between pixels and chromakey
*dst_av++ = vec_sel(pixels_8888_dst_av, null_av, mask);
} while (src_av != stop_av);
src_av += stride_av;
vec_dstt(src_av, src_control, 0);
stop_av += jump_av;
} while (--h);
// Skip downloading tile data to the gpu if the content hasn't changed
if (vec_all_eq(c, m_tileChecksums[checksumIndex])) return TileUpdateState_TileDrawOnly;
// The tile has been converted, been changed and must be downloaded to the gpu
m_tileChecksums[checksumIndex] = c;
return TileUpdateState_TileDownloadToGPU;
}
#endif
// Non-Altivec-code
inline Framebuffer::TileUpdateState Framebuffer::Convert565Kto8888(FxU16* buffer1, register FxU32* buffer2, register FxU32 width, register FxU32 height, register FxU32 stride)
{
// Process two pixels at once
const register unsigned long chromakey1 = m_ChromaKey.Scalar << 16;
const register unsigned long chromakey2 = m_ChromaKey.Scalar;
const register unsigned long chromakey12 = chromakey1 | chromakey2;
width = width >> 1;
stride = stride >> 1;
register unsigned long pixel;
register unsigned long* stop;
register unsigned long jump = width + stride;
register unsigned long* src = reinterpret_cast<unsigned long*>(buffer1);
// check if tile must be processed in advance
// to avoid useless writes to main memory
// The tile should at least fit into the second level cache
// so reading it again wouldn't hurt as much as doing needless writes
register unsigned long h = height;
stop = &src[width];
do
{
do
{
pixel = *src++;
if (pixel != chromakey12) goto create_8888_texture;
} while (src != stop);
src += stride;
stop += jump;
} while (--h);
return TileUpdateState_TileEmpty;
create_8888_texture:
const register unsigned long alpha = m_glAlpha.Scalar;
const register unsigned long null = 0x00000000;
const register unsigned long mask_pixel1 = 0xffff0000;
const register unsigned long mask_pixel2 = 0x0000ffff;
const register unsigned long mask_pixel1_r = 0xf8000000;
const register unsigned long mask_pixel1_g = 0x07e00000;
const register unsigned long mask_pixel1_b = 0x001f0000;
const register unsigned long mask_pixel2_r = 0x0000f800;
const register unsigned long mask_pixel2_g = 0x000007e0;
const register unsigned long mask_pixel2_b = 0x0000001f;
src = reinterpret_cast<unsigned long*>(buffer1);
stop = &src[width];
do
{
do
{
// GL_RGBA
pixel = *src;
if (pixel == chromakey12)
{
*buffer2++ = null;
*buffer2++ = null;
}
else
{
*src = chromakey12;
if ( (pixel & mask_pixel1) == chromakey1)
{
*buffer2++ = null;
}
else
{
*buffer2++ = ( alpha | // A
( pixel & mask_pixel1_b ) >> 5 | // B
( pixel & mask_pixel1_g ) >> 3 | // G
( pixel & mask_pixel1_r )); // R
}
if ( (pixel & mask_pixel2) == chromakey2)
{
*buffer2++ = null;
}
else
{
*buffer2++ = ( alpha | // A
( pixel & mask_pixel2_b ) << 11 | // B
( pixel & mask_pixel2_g ) << 13 | // G
( pixel & mask_pixel2_r ) << 16); // R
}
}
src++;
} while (src != stop);
src += stride;
stop += jump;
} while (--height);
return TileUpdateState_TileDownloadToGPU;
}
inline Framebuffer::TileUpdateState Framebuffer::Convert1555Kto8888(FxU16* buffer1, register FxU32* buffer2, register FxU32 width, register FxU32 height, register FxU32 stride)
{
// Process two pixels at once
register unsigned long pixel;
register unsigned long x;
register unsigned long* src = reinterpret_cast<unsigned long*>(buffer1);
const unsigned long null = 0x00000000;
register unsigned long dstpixel = null;
const register unsigned long chromakey1 = m_ChromaKey.Scalar << 16;
const register unsigned long chromakey2 = m_ChromaKey.Scalar;
const register unsigned long chromakey12 = chromakey1 | chromakey2;
const register unsigned long alpha = m_glAlpha.Scalar;
const register unsigned long mask_pixel1 = 0xffff0000;
const register unsigned long mask_pixel2 = 0x0000ffff;
const register unsigned long mask_pixel1_r = 0x7c000000;
const register unsigned long mask_pixel1_g = 0x03e00000;
const register unsigned long mask_pixel1_b = 0x001f0000;
const register unsigned long mask_pixel2_r = 0x00007c00;
const register unsigned long mask_pixel2_g = 0x000003e0;
const register unsigned long mask_pixel2_b = 0x0000001f;
width >>= 1;
stride >>= 1;
do
{
x = width;
do
{
// GL_RGBA
pixel = *src;
if (pixel == chromakey12)
{
*buffer2++ = null;
*buffer2++ = null;
}
else
{
*src = chromakey12;
if ( (pixel & mask_pixel1) == chromakey1)
{
*buffer2++ = null;
}
else
{
dstpixel = ( alpha | // A
( pixel & mask_pixel1_b ) >> 5 | // B
( pixel & mask_pixel1_g ) >> 2 | // G
( pixel & mask_pixel1_r ) << 1); // R
*buffer2++ = dstpixel;
}
if ( (pixel & mask_pixel2) == chromakey2)
{
*buffer2++ = null;
}
else
{
dstpixel = ( alpha | // A
( pixel & mask_pixel2_b ) << 11 | // B
( pixel & mask_pixel2_g ) << 14 | // G
( pixel & mask_pixel2_r ) << 17); // R
*buffer2++ = dstpixel;
}
}
src++;
} while (--x);
src += stride;
} while (--height);
return dstpixel != null ? TileUpdateState_TileDownloadToGPU : TileUpdateState_TileEmpty;
}
inline Framebuffer::TileUpdateState Framebuffer::ConvertARGB8888Kto8888(FxU32* buffer1, register FxU32* buffer2, register FxU32 width, register FxU32 height, register FxU32 stride)
{
// Process two pixels at once
const register unsigned long chromakey = m_ChromaKey.Scalar || (m_ChromaKey.Scalar << 16);
register unsigned long pixel;
register unsigned long* stop;
register unsigned jump = width + stride;
register unsigned long* src = buffer1;
// check if tile must be processed in advance
// to avoid useless writes to main memory
// The tile should at least fit into the second level cache
// so reading it again wouldn't hurt as much as doing needless writes
register unsigned long h = height;
stop = &src[width];
do
{
do
{
pixel = *src++;
if (pixel != chromakey) goto create_8888_texture;
} while (src != stop);
src += stride;
stop += jump;
} while (--h);
return TileUpdateState_TileEmpty;
create_8888_texture:
const register unsigned long alpha = m_glAlpha.Scalar;
src = buffer1;
stop = &src[width];
do
{
do
{
// GL_RGBA
pixel = *src;
if (pixel == chromakey)
{
*buffer2++ = 0;
}
else
{
*src = chromakey;
*buffer2++ = (pixel << 8) | alpha;
}
src++;
} while (src != stop);
src += stride;
stop += jump;
} while (--height);
return TileUpdateState_TileDownloadToGPU;
}
inline Framebuffer::TileUpdateState Framebuffer::createTextureData(FxU32* texbuffer, FxU32 x, FxU32 y, FxU32 x_step, FxU32 y_step, int checksumIndex)
{
FxU32 stride = (m_width - x_step);
FxU32 index = x + y * m_width;
if (m_framebuffer->WriteMode == GR_LFBWRITEMODE_565)
{
#ifdef __ALTIVEC__
if (UserConfig.VectorUnitType == OpenGLideVectorUnitType_Altivec)
{
#ifdef OGL_FRAMEBUFFER
const vector unsigned long c = m_tileChecksums[checksumIndex];
#endif
TileUpdateState state = Convert565Kto8888_AV(&m_framebuffer->Address[index], texbuffer, x_step, y_step, stride, checksumIndex);
#ifdef OGL_FRAMEBUFFER
GlideMsg("Tile %d (%d,%d)-(%d,%d) update state is %s (%vlx)->(%vlx)\n",
checksumIndex,
x, y, x_step, y_step,
(state ==TileUpdateState_TileDownloadToGPU) ? "DownLoadToGPU"
: ((state == TileUpdateState_TileDrawOnly) ? "DrawOnly" : "TileEmpty"),
c,
m_tileChecksums[checksumIndex]);
#endif
return state;
}
else
#endif
return Convert565Kto8888(&m_framebuffer->Address[index], texbuffer, x_step, y_step, stride);
}
else if (m_framebuffer->WriteMode == GR_LFBWRITEMODE_1555)
{
return Convert1555Kto8888(&m_framebuffer->Address[index], texbuffer, x_step, y_step, stride);
}
else if (m_framebuffer->WriteMode == GR_LFBWRITEMODE_888)
{
FxU32* framebuffer = &reinterpret_cast<FxU32*>(m_framebuffer->Address)[index];
return ConvertARGB8888Kto8888(framebuffer, texbuffer, x_step, y_step, stride);
}
else
{
return TileUpdateState_TileEmpty;
}
}