/* * simm_programmer.c * * Created on: Dec 9, 2011 * Author: Doug * * Copyright (C) 2011-2020 Doug Brown * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "simm_programmer.h" #include "hal/usbcdc.h" #include "drivers/parallel_flash.h" #include "tests/simm_electrical_test.h" #include "programmer_protocol.h" #include "led.h" #include "hardware.h" #include /// Maximum size of an individual chip on a SIMM we read #define MAX_CHIP_SIZE (2UL * 1024UL * 1024UL) /// Number of bytes we read/write at once #define READ_WRITE_CHUNK_SIZE_BYTES 1024UL /// Make sure the chunk size is a multiple of 4 bytes, since there are 4 chips #if ((READ_WRITE_CHUNK_SIZE_BYTES % 4) != 0) #error Read/write chunk size should be a multiple of 4 bytes #endif /// The smallest granularity for sector erase that we support #define ERASE_SECTOR_SIZE_BYTES (256UL * 1024UL) /// Internal state so we know how to interpret the next-received byte typedef enum ProgrammerCommandState { WaitingForCommand = 0, //!< No active commands ReadingChipsReadLength, //!< Reading the length for reading data from the SIMM ReadingChips, //!< Reading data from the SIMM WritingChips, //!< Writing data to the SIMM ErasePortionReadingPosLength,//!< Reading the length of SIMM data to erase ReadingChipsReadStartPos, //!< Reading the start position for reading data from the SIMM WritingChipsReadingStartPos, //!< Reading the start position for writing data to the SIMM ReadingChipsMask, //!< Reading the bitmask of which chips should be programmed } ProgrammerCommandState; static ProgrammerCommandState curCommandState = WaitingForCommand; // State info for reading/writing static uint16_t curReadIndex; static uint32_t readLength; static uint8_t readLengthByteIndex; static int16_t writePosInChunk = -1; static uint16_t curWriteIndex = 0; static bool verifyDuringWrite = false; static uint32_t erasePosition; static uint32_t eraseLength; static uint8_t chipsMask = ALL_CHIPS; /// Buffers we use to store incoming/outgoing data. static union { uint32_t words[READ_WRITE_CHUNK_SIZE_BYTES / PARALLEL_FLASH_NUM_CHIPS]; uint8_t bytes[READ_WRITE_CHUNK_SIZE_BYTES]; } writeChunks, readChunks; // Private functions static void SIMMProgrammer_HandleWaitingForCommandByte(uint8_t byte); static void SIMMProgrammer_HandleReadingChipsByte(uint8_t byte); static void SIMMProgrammer_HandleReadingChipsReadLengthByte(uint8_t byte); static void SIMMProgrammer_SendReadDataChunk(void); static void SIMMProgrammer_HandleWritingChipsByte(uint8_t byte); static void SIMMProgrammer_ElectricalTest_Fail_Handler(uint8_t index1, uint8_t index2); static void SIMMProgrammer_HandleErasePortionReadPosLengthByte(uint8_t byte); static void SIMMProgrammer_HandleReadingChipsReadStartPosByte(uint8_t byte); static void SIMMProgrammer_HandleWritingChipsReadingStartPosByte(uint8_t byte); static void SIMMProgrammer_HandleReadingChipsMaskByte(uint8_t byte); /** Initializes the SIMM programmer and prepares it for USB communication. * */ void SIMMProgrammer_Init(void) { USBCDC_Init(); } /** Allows the SIMM programmer to do its thing. Main loop handler. * * Call this function during every main loop iteration. */ void SIMMProgrammer_Check(void) { // Read as many bytes as we can and process them int16_t result; while ((result = USBCDC_ReadByte()) >= 0) { uint8_t recvByte = (uint8_t)result; // Hand it off to the correct handler function based on the current state switch (curCommandState) { case WaitingForCommand: SIMMProgrammer_HandleWaitingForCommandByte(recvByte); break; case ReadingChipsReadLength: SIMMProgrammer_HandleReadingChipsReadLengthByte(recvByte); break; case ReadingChips: SIMMProgrammer_HandleReadingChipsByte(recvByte); break; case WritingChips: SIMMProgrammer_HandleWritingChipsByte(recvByte); break; case ErasePortionReadingPosLength: SIMMProgrammer_HandleErasePortionReadPosLengthByte(recvByte); break; case ReadingChipsReadStartPos: SIMMProgrammer_HandleReadingChipsReadStartPosByte(recvByte); break; case WritingChipsReadingStartPos: SIMMProgrammer_HandleWritingChipsReadingStartPosByte(recvByte); break; case ReadingChipsMask: SIMMProgrammer_HandleReadingChipsMaskByte(recvByte); break; } } // And do any periodic USB CDC tasks USBCDC_Check(); } /** Handles a received byte when we are waiting for a command * * @param byte The received byte */ static void SIMMProgrammer_HandleWaitingForCommandByte(uint8_t byte) { switch (byte) { // Asked to enter waiting mode -- we're already there, so say OK. case EnterWaitingMode: USBCDC_SendByte(CommandReplyOK); curCommandState = WaitingForCommand; break; // Asked to do the electrical test. Reply OK, and then do the test, // sending whatever replies necessary case DoElectricalTest: USBCDC_SendByte(CommandReplyOK); // Flush out the initial "OK" reply immediately in this case so the // caller gets immediate feedback that the test has started USBCDC_Flush(); SIMMElectricalTest_Run(SIMMProgrammer_ElectricalTest_Fail_Handler); USBCDC_SendByte(ProgrammerElectricalTestDone); curCommandState = WaitingForCommand; break; // Asked to identify the chips in the SIMM. Identify them and send reply. case IdentifyChips: { struct ParallelFlashChipID chips[PARALLEL_FLASH_NUM_CHIPS]; USBCDC_SendByte(CommandReplyOK); ParallelFlash_IdentifyChips(chips); for (int i = 0; i < PARALLEL_FLASH_NUM_CHIPS; i++) { USBCDC_SendByte(chips[i].manufacturer); USBCDC_SendByte(chips[i].device); } USBCDC_SendByte(ProgrammerIdentifyDone); break; } // Asked to read a single byte from each SIMM. Change the state and reply. case ReadByte: USBCDC_SendByte(CommandReplyInvalid); // not implemented yet break; // Asked to read all four chips. Set the state, reply with the first chunk. // This will read from the BEGINNING of the SIMM every time. Use // ReadChipsAt to specify a start position case ReadChips: curCommandState = ReadingChipsReadLength; curReadIndex = 0; readLengthByteIndex = 0; readLength = 0; USBCDC_SendByte(CommandReplyOK); break; case ReadChipsAt: curCommandState = ReadingChipsReadStartPos; curReadIndex = 0; readLengthByteIndex = 0; readLength = 0; USBCDC_SendByte(CommandReplyOK); break; // Erase the chips and reply OK. (TODO: Sometimes erase might fail) case EraseChips: ParallelFlash_EraseChips(chipsMask); USBCDC_SendByte(CommandReplyOK); break; // Begin writing the chips. Change the state, reply, wait for chunk of data case WriteChips: curCommandState = WritingChips; curWriteIndex = 0; writePosInChunk = -1; USBCDC_SendByte(CommandReplyOK); break; case WriteChipsAt: curCommandState = WritingChipsReadingStartPos; curWriteIndex = 0; readLengthByteIndex = 0; writePosInChunk = -1; USBCDC_SendByte(CommandReplyOK); break; // Asked for the current bootloader state. We are in the program right now, // so reply accordingly. case GetBootloaderState: USBCDC_SendByte(CommandReplyOK); USBCDC_SendByte(BootloaderStateInProgrammer); break; // Enter the bootloader. Wait a bit, then jump to the bootloader location. case EnterBootloader: USBCDC_SendByte(CommandReplyOK); // Force this to be sent immediately so the programmer software knows. USBCDC_Flush(); // Now enter the bootloader Board_EnterBootloader(); break; // Enter the programmer. We're already there, so reply OK. case EnterProgrammer: // Already in the programmer USBCDC_SendByte(CommandReplyOK); break; // Set the SIMM type to the older, smaller chip size (2MB and below) case SetSIMMTypePLCC32_2MB: ParallelFlash_SetChipType(ParallelFlash_SST39SF040_x4); USBCDC_SendByte(CommandReplyOK); break; case SetSIMMTypeLarger: ParallelFlash_SetChipType(ParallelFlash_M29F160FB5AN6E2_x4); USBCDC_SendByte(CommandReplyOK); break; case SetVerifyWhileWriting: verifyDuringWrite = true; USBCDC_SendByte(CommandReplyOK); break; case SetNoVerifyWhileWriting: verifyDuringWrite = false; USBCDC_SendByte(CommandReplyOK); break; case ErasePortion: readLengthByteIndex = 0; eraseLength = 0; erasePosition = 0; curCommandState = ErasePortionReadingPosLength; USBCDC_SendByte(CommandReplyOK); break; case SetChipsMask: curCommandState = ReadingChipsMask; USBCDC_SendByte(CommandReplyOK); break; // We don't know what this command is, so reply that it was invalid. default: USBCDC_SendByte(CommandReplyInvalid); break; } } /** Handles a received byte when we are reading from chips * * @param byte The received byte */ static void SIMMProgrammer_HandleReadingChipsByte(uint8_t byte) { // The byte should be a reply from the computer. It should be either: // 1) ComputerReadOK -- meaning it got the chunk we just sent // or // 2) ComputerReadCancel -- meaning the user canceled the read switch (byte) { case ComputerReadOK: // If they have confirmed the final data chunk, let them know // that they have finished, and enter command state. if (curReadIndex >= readLength) { LED_Off(); USBCDC_SendByte(ProgrammerReadFinished); curCommandState = WaitingForCommand; } else // There's more data left to read, so read it and send it to them! { LED_Toggle(); USBCDC_SendByte(ProgrammerReadMoreData); SIMMProgrammer_SendReadDataChunk(); } break; case ComputerReadCancel: // If they've canceled, let them know we got their request and go back // to "waiting for command" state USBCDC_SendByte(ProgrammerReadConfirmCancel); curCommandState = WaitingForCommand; break; } } /** Handles a received byte when we are reading the length of data requested to be read * * @param byte The received byte */ static void SIMMProgrammer_HandleReadingChipsReadLengthByte(uint8_t byte) { // There will be four bytes, so count up until we know the length. If they // have sent all four bytes, send the first read chunk. readLength |= (((uint32_t)byte) << (8*readLengthByteIndex)); if (++readLengthByteIndex >= 4) { // Ensure it's within limits and a multiple of 1024 if ((curReadIndex + readLength > PARALLEL_FLASH_NUM_CHIPS * MAX_CHIP_SIZE) || (readLength % READ_WRITE_CHUNK_SIZE_BYTES) || (curReadIndex % READ_WRITE_CHUNK_SIZE_BYTES) || (readLength == 0))// Ensure it's within limits and a multiple of 1024 { USBCDC_SendByte(ProgrammerReadError); curCommandState = WaitingForCommand; } else { // Convert the length/pos into the number of chunks we need to send readLength /= READ_WRITE_CHUNK_SIZE_BYTES; curReadIndex /= READ_WRITE_CHUNK_SIZE_BYTES; curCommandState = ReadingChips; USBCDC_SendByte(ProgrammerReadOK); SIMMProgrammer_SendReadDataChunk(); } } } /** Reads a chunk of data from the SIMM and sends it over the USB CDC serial port. * */ static void SIMMProgrammer_SendReadDataChunk(void) { // Read the next chunk of data, send it over USB, and make sure // we sent it correctly. ParallelFlash_Read(curReadIndex * (READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS), readChunks.words, READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS); bool retVal = USBCDC_SendData(readChunks.bytes, READ_WRITE_CHUNK_SIZE_BYTES); // If for some reason there was an error, mark it as such. Otherwise, // increment our pointer so we know the next chunk of data to send. if (!retVal) { //curCommandState = ReadingChipsUnableSendError; // TODO: not implemented curCommandState = WaitingForCommand; } else { curReadIndex++; } } /** Handles a received byte when we are in the "writing chips" state * * @param byte The received byte */ static void SIMMProgrammer_HandleWritingChipsByte(uint8_t byte) { // This means we have just started the entire process or just finished // a chunk, so see what the computer has decided for us to do. if (writePosInChunk == -1) { switch (byte) { // The computer asked to write more data to the SIMM. case ComputerWriteMore: writePosInChunk = 0; // Make sure we don't write past the capacity of the chips. if (curWriteIndex < MAX_CHIP_SIZE / (READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS)) { USBCDC_SendByte(ProgrammerWriteOK); } else { LED_Off(); USBCDC_SendByte(ProgrammerWriteError); curCommandState = WaitingForCommand; } break; // The computer said that it's done writing. case ComputerWriteFinish: LED_Off(); USBCDC_SendByte(ProgrammerWriteOK); curCommandState = WaitingForCommand; break; // The computer asked to cancel. case ComputerWriteCancel: LED_Off(); USBCDC_SendByte(ProgrammerWriteConfirmCancel); curCommandState = WaitingForCommand; break; } } else // Interpret the incoming byte as data to write to the SIMM. { // Save the byte. Then, block until we receive the rest of the data. writeChunks.bytes[writePosInChunk++] = byte; while (writePosInChunk < READ_WRITE_CHUNK_SIZE_BYTES) { writeChunks.bytes[writePosInChunk++] = USBCDC_ReadByteBlocking(); } // We filled up the chunk, write it out and confirm it, then wait // for the next command from the computer! if (chipsMask == ALL_CHIPS) { ParallelFlash_WriteAllChips(curWriteIndex * (READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS), writeChunks.words, READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS); } else { ParallelFlash_WriteSomeChips(curWriteIndex * (READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS), writeChunks.words, READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS, chipsMask); } // Verify if we were asked to. uint8_t badVerifyChipsMask = 0; if (verifyDuringWrite) { // Read back a chunk ParallelFlash_Read(curWriteIndex * (READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS), readChunks.words, READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS); // Compare the readback to what we attempted to flash. // Look at each chip for (uint8_t chip = 0; chip < PARALLEL_FLASH_NUM_CHIPS; chip++) { uint16_t bytePos = chip; uint8_t thisChipMask = 1 << chip; // Loop over all bytes that are on this chip for (uint16_t i = 0; i < READ_WRITE_CHUNK_SIZE_BYTES/PARALLEL_FLASH_NUM_CHIPS; i++) { if (writeChunks.bytes[bytePos] != readChunks.bytes[bytePos]) { badVerifyChipsMask |= thisChipMask; } bytePos += PARALLEL_FLASH_NUM_CHIPS; } } // Filter out chips we didn't care about badVerifyChipsMask &= chipsMask; } // Bail if verification failed if (badVerifyChipsMask != 0) { // Verification failed. The mask we calculated is actually // backwards. We need to reverse it when we transmit the IC // status back to the programmer software. This is kind of silly // but it's too late to update the protocol. uint8_t actualBadMask = 0; for (uint8_t i = 0; i < PARALLEL_FLASH_NUM_CHIPS; i++) { if (badVerifyChipsMask & (1 << i)) { actualBadMask |= 0x80; } actualBadMask >>= 1; } // Uh oh -- verification failure. LED_Off(); // Send the fail bit along with a mask of failed chips. USBCDC_SendByte(ProgrammerWriteVerificationError | badVerifyChipsMask); curCommandState = WaitingForCommand; } else { USBCDC_SendByte(ProgrammerWriteOK); curWriteIndex++; writePosInChunk = -1; LED_Toggle(); } } } /** Handler called during an electrical test when a short is detected * * @param index1 The index of the first shorted pin * @param index2 The index of the second shorted pin * * The two pins at index1 and index2 have been detected as shorted together. * The numbering is internal to the SIMM electrical test, and the programmer * software knows how to interpret it. */ static void SIMMProgrammer_ElectricalTest_Fail_Handler(uint8_t index1, uint8_t index2) { USBCDC_SendByte(ProgrammerElectricalTestFail); USBCDC_SendByte(index1); USBCDC_SendByte(index2); } /** Handles a received byte when we are determining what part of the chip to erase * * @param byte The received byte */ static void SIMMProgrammer_HandleErasePortionReadPosLengthByte(uint8_t byte) { // Read in the position and length to erase if (readLengthByteIndex < 4) { erasePosition |= (((uint32_t)byte) << (8*readLengthByteIndex)); } else { eraseLength |= (((uint32_t)byte) << (8*(readLengthByteIndex - 4))); } if (++readLengthByteIndex >= 8) { ParallelFlashChipType chipType = ParallelFlash_ChipType(); bool eraseSuccess = false; // Ensure they are both within limits of sector size erasure if (((erasePosition % ERASE_SECTOR_SIZE_BYTES) == 0) && ((eraseLength % ERASE_SECTOR_SIZE_BYTES) == 0)) { uint32_t boundary = eraseLength + erasePosition; // Ensure they are within the limits of the chip size too if (chipType == ParallelFlash_SST39SF040_x4) { if (boundary <= (2 * 1024UL * 1024UL)) { // OK! We're erasing certain sectors of a 2 MB SIMM. USBCDC_SendByte(ProgrammerErasePortionOK); // Send the response immediately, it could take a while. USBCDC_Flush(); if (ParallelFlash_EraseSectors(erasePosition/PARALLEL_FLASH_NUM_CHIPS, eraseLength/PARALLEL_FLASH_NUM_CHIPS, chipsMask)) { eraseSuccess = true; } } } else if (chipType == ParallelFlash_M29F160FB5AN6E2_x4) { if (boundary <= (8 * 1024UL * 1024UL)) { // OK! We're erasing certain sectors of an 8 MB SIMM. USBCDC_SendByte(ProgrammerErasePortionOK); // Send the response immediately, it could take a while. USBCDC_Flush(); if (ParallelFlash_EraseSectors(erasePosition/PARALLEL_FLASH_NUM_CHIPS, eraseLength/PARALLEL_FLASH_NUM_CHIPS, chipsMask)) { eraseSuccess = true; } } } } if (eraseSuccess) { // Not on a sector boundary for erase position and/or length USBCDC_SendByte(ProgrammerErasePortionFinished); curCommandState = WaitingForCommand; } else { // Not on a sector boundary for erase position and/or length USBCDC_SendByte(ProgrammerErasePortionError); curCommandState = WaitingForCommand; } } } /** Handles a received byte when we are determining where to start reading from the SIMM * * @param byte The received byte */ static void SIMMProgrammer_HandleReadingChipsReadStartPosByte(uint8_t byte) { // There will be four bytes, so count up until we know the position. If they // have sent all four bytes, then start reading the length curReadIndex |= (((uint32_t)byte) << (8*readLengthByteIndex)); if (++readLengthByteIndex >= 4) { readLengthByteIndex = 0; curCommandState = ReadingChipsReadLength; } } /** Handles a received byte when we are determining where to start writing to the SIMM * * @param byte The received byte */ static void SIMMProgrammer_HandleWritingChipsReadingStartPosByte(uint8_t byte) { // There will be four bytes, so count up until we know the position. If they // have sent all four bytes, then confirm the write and begin curWriteIndex |= (((uint32_t)byte) << (8*readLengthByteIndex)); if (++readLengthByteIndex >= 4) { // Got it...now, is it valid? If so, allow the write to begin if ((curWriteIndex % READ_WRITE_CHUNK_SIZE_BYTES) || (curWriteIndex >= PARALLEL_FLASH_NUM_CHIPS * MAX_CHIP_SIZE)) { USBCDC_SendByte(ProgrammerWriteError); curCommandState = WaitingForCommand; } else { // Convert write size into an index appropriate for rest of code curWriteIndex /= READ_WRITE_CHUNK_SIZE_BYTES; USBCDC_SendByte(ProgrammerWriteOK); curCommandState = WritingChips; } } } /** Handles a received byte when we are determining the mask of which chips to write to * * @param byte The received byte */ static void SIMMProgrammer_HandleReadingChipsMaskByte(uint8_t byte) { // Single byte follows containing mask of chips we're programming if (byte <= 0x0F) { // Mask has to be less than or equal to 0x0F because there are only // four valid mask bits. chipsMask = byte; USBCDC_SendByte(CommandReplyOK); } else { USBCDC_SendByte(CommandReplyError); } // Done either way; now we're waiting for a command to arrive curCommandState = WaitingForCommand; }