mac-rom/Toolbox/SANE/Elems68K2.a

1012 lines
22 KiB
Plaintext
Raw Normal View History

;
; File: Elems68K2.a
;
; Contains: xxx put contents here (or delete the whole line) xxx
;
; Written by: xxx put name of writer here (or delete the whole line) xxx
;
; Copyright: <09> 1983-1990 by Apple Computer, Inc., all rights reserved.
;
; This file is used in these builds: Mac32
;
; Change History (most recent first):
;
; <3> 9/15/90 BG Removed <2>. 040s are behaving more reliably now.
; <2> 7/4/90 BG Added temporary EclipseNOPs to deal with flakey 040s.
; <1.1> 11/11/88 CCH Fixed Header.
; <1.0> 11/9/88 CCH Adding to EASE.
; <1.1> 5/16/88 BBM FBcc -> FBccL (new macros that don<6F>t conflict w/ 881) <1.1>
; <1.0> 2/12/88 BBM Adding file for the first time into EASE<53>
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; File: Elems68K2.a
;; Implementation of Elems68K for machines using the Motorola MC68881
;; Copyright Apple Computer, Inc. 1983,1984,1985,1986,1987
;; All Rights Reserved
;; Confidential and Proprietary to Apple Computer,Inc.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; EXP(x) and EXP2(x) share the same exception code. To compute
; numerical results, express result as 2^K * ((2^frac - 1) + 1),
; and use EXPAPPROX to figure (2^frac - 1).
;
EXPTOP
BLANKS ON
STRING ASIS
SUBQ.B #1,D1 ; HAVE SUB #CLINF ALREADY
BEQ P1STUFF ; EXP(+-0) IS +1
BGT.S EXPNONZERO
TST.W D1
BMI P0STUFF ; EXP(-INF) IS +0
BRA RESULTDELIVERED ; ALREADY HAVE +INF
EXPNONZERO
BTST #BTLOGBASE2,D3 ; NONZERO IF EXP2X
BEQ.S EXPR
;
; 2^T is easy, for general T.
; Set cell W to integer part of T.
; Set T to fraction part of itself.
; Use root computation to evaluate 2^T - 1 with LOGAPPROX;
; add 1 to T, and scale by W.
;
EXP2R
BSR.S SPLIT2
BRA.S EXPROOT
;
; EXP(T) is just slightly more complicated than EXP2(T) above.
; Let T = K * LN(2) + F
; Then EXP(T) is 2^K + ((2^(F/LN(2)) - 1) + 1).
; So use EXP2ROOT with W set to K and T set to F/LN(2).
; Find F with REM modulo LN(2); then subtract from T and divide by LN(2)
; to get K.
;
EXPR
BSR SPLIT
BSR TESTOFLOW
BEQ.S EXPROOT
BSR FORCEINEXACT ; EITHER O/UFLOW
TST.W D1 ; OPERAND SIGN
BPL.S PINFSTUFF ; OFLOW TO +INF
BSR CLEAROFLOW
BSR FORCEUFLOW
BRA P0STUFF
;
; This is the root of V^X where V is 2 or E.
; Compute ((2^T - 1) + 1) * 2*W. EXPAPPROX gives the innermost
; expression. W is presumed to be an integer, possibly huge.
;
EXPROOT
BSR EXPAPPROX ; 2^T - 1
PEA FPK1 ; (2^T - 1) + 1
PEA (A4)
FADDX
MOVEA.L A4,A0 ; RESULT PTR
LEA STW(A6),A1 ; INTEGER PART
BSR SCALBXX
BRA RESULTDELIVERED
;ne 100
;
; Given general number in T, split into integer part in W
; and fraction in T, rounding.
;
SPLIT2
MOVEA.L A4,A0
LEA STW(A6),A1
BSR A0TOA1 ; COPY T
PEA (A1) ; CELL W
FRINTX ; INTEGER PART OF T, ROUNDED
BSR CLEARINEXACT ; DON'T RECORD ROUNDING ERROR
PEA (A1) ; INTEGER PART
PEA (A4) ; ALL OF NUMBER
FSUBX
RTS
;
; Split T for EXP(x) and EXP(x)-1.
; Let T = K * LN(2) + F. Want W=K and T=F/LN(2).
; Find F with REM modulo LN(2); then subtract from T and divide by LN(2)
; to get K.
;
SPLIT
MOVEA.L A4,A0 ; T POINTER
LEA STW(A6),A1 ; COPY T INTO CELL W
BSR A0TOA1
PEA FPKLOGE2 ; NEED 3 COPIES OF LN(2)
MOVE.L (SP),-(SP)
MOVE.L (SP),-(SP)
PEA (A4)
FREMX ; T REM LN(2) IN T
PEA (A4)
PEA (A1)
FSUBX ; T - (T REM LN(2)) IN W
PEA (A1)
FDIVX ; T - (T REM...) / LN(2)
PEA (A1)
FRINTX ; MAKE SURE IT'S AN INT
PEA (A4)
FDIVX ; (T REM LN(2)) / LN(2)
BRA CLEARINEXACT ; ...AND EXIT
;ne 100
;
; EXP(x)-1 and EXP2(x)-1 share the same exception code. Then both exploit
; EXPAPPROX for the root computation 2^frac - 1.
;
EXP1TOP
SUBQ.B #1,D1 ; SUBTRACTED #CLINF BEFORE
BGT.S EXP1FINITE ; FINITE, NONZERO
BEQ EXPEASY ; Y^+-0 - 1 IS +-0
TST.W D1 ; TEST SIGN OF INF
BMI M1STUFF ; Y^-INF - 1 IS -1
EXPEASY
BRA RESULTDELIVERED ; Y^+INF - 1 IS +INF
EXP1FINITE
;
; If the number is denormalized, have easy case whether EXP1 or EXP21.
; Have subtracted #CLZERO so far. Subtracting 1 more from D1.B leaves
; 0 if normalized, 1 if denormalized.
;
SUBQ.B #1,D1 ; 0-NORM 1-DENORM
BTST #BTLOGBASE2,D3 ; NONZERO IF EXP2X
BEQ.S EXP1R
;
; As above, for 2^T-1 split T into fraction part in T and integer
; in W, and go to root computation.
;
EXP21R
TST.B D1
BEQ.S EXP21RNORM
PEA FPKLOGE2 ; 2^T-1 IS T*LN(2) FOR TINY T
PEA (A4)
FMULX
EXP1OUT
BSR FORCEUFLOW
BSR FORCEINEXACT
BRA.S EXP1RDONE
EXP21RNORM
BSR SPLIT2 ; ???? WAS BSR.S
BRA.S EXP1ROOT
;
; For E^T-1, split T into K and F/LN(2), where T = K*LN(2) + F.
; If overflow, then force INF or -1...
;
EXP1R
TST.B D1
BNE.S EXP1OUT ; E^T-1 IS T, WITH UFLOW FOR NOW
BSR.S SPLIT
BSR TESTOFLOW
BEQ.S EXP1ROOT
BSR FORCEINEXACT ; EITHER O/UFLOW
TST.W D1 ; OPERAND SIGN
BPL PINFSTUFF ; OFLOW TO +INF
BSR CLEAROFLOW ; LEAVE INEXACT SET
BRA M1STUFF ; FORCE -1
;
; This is the root of V^X-1 where V is 2 or E.
; Compute (2^T - 1) for fraction T. Then if (integer) W is
; nonzero, finish off with (((2^T - 1) + 1) * 2^W) - 1.
;
EXP1ROOT
BSR EXPAPPROX ; 2^T - 1
PEA FPK0
PEA STW(A6)
FCMPX
FBEQS EXP1RDONE
PEA FPK1 ; (2^T - 1) + 1
PEA (A4)
FADDX
MOVEA.L A4,A0 ; RESULT PTR
LEA STW(A6),A1 ; INTEGER PART
BSR SCALBXX ; ((2^T - 1) + 1) * 2^W
PEA FPK1 ; FINALLY, SUBTRACT 1
PEA (A4)
FSUBX
;
; Reset underflow, which cannot occur if W (as in 2^W) is nonzero.
;
BSR CLEARUFLOW
EXP1RDONE
BRA RESULTDELIVERED
; ne 100
;
; Compute approximate (2^T - 1) for T in (A4).
; Uses cells X and Y, regs D0-D2/A0-A2.
; Expression has the form
; ( 2 * T * P(T*T) ) / ( Q(T*T) - (T * P(T*T)) )
; One special case: if T is 0, just return 0, and don't set
; the inexact flag.
;
EXPAPPROX
PEA FPK0 ; COMPARE INPUT WITH 0
PEA (A4)
FCMPX
FBNES EXPHARD
RTS ; EASY IF 0
EXPHARD
LEA STY(A6),A1 ; CELL Y
MOVEA.L A4,A0
BSR A0TOA1 ; COPY INPUT T
PEA (A1)
PEA (A1)
FMULX ; T^2 INTO CELL Y
LEA STX(A6),A0 ; PLACE P(Y) INTO X
LEA EXP21P,A1 ; EXPONENT P COEFS
LEA STY(A6),A2 ; VAR IS T^2 IN Y
BSR POLYEVAL
PEA STX(A6)
PEA (A4)
FMULX ; T * P(T^2) IN RESULT
LEA STX(A6),A0 ; PLACE Q(Y) INTO X
LEA EXP21Q,A1
LEA STY(A6),A2
BSR POLYEVAL
PEA (A4)
PEA STX(A6)
FSUBX ; Q(Y) - T*P(Y)
PEA FPK2 ; 2.0
PEA (A4) ; Y*P(Y)
FMULX
PEA STX(A6)
PEA (A4)
FDIVX
;
; Finally, set inexact and clear any underflow messages.
;
BSR FORCEINEXACT
BRA CLEARUFLOW ; AND EXIT...
;
;
;ne 100
;
; Raise extended dst to integer src power.
;
XPWRITOP
MOVEA.L D4,A0 ; SRC PTR
MOVE.W (A0),D2 ; I OVERWRITES BOGUS CLASS
BEQ P1STUFF ; ANY^0 IS 1
SUBQ.B #1,D1 ; #CLINF ALREADY SUBTRACTED
BGT.S FINPWRI ; GT MEANS NONZERO^I
;
; Get here if INF^I or 0^I. If I is negative, must reciprocate
; (signaling div by 0 in case of 0^-N). If I is even, must clear
; sign.
;
ASR.W #1,D2 ; GET ODD BIT OF I INTO C,X
BCS.S @1 ; CARRY SET IF ODD
BCLR #7,(A4) ; ABS OF DST (LEAVES X BIT ALONE)
@1
ADDX.W D2,D2 ; REGAIN ORIGINAL VALUE I
BPL RESULTDELIVERED ; (INF OR ZERO)^POS ???? WAS BPL.S
TST.B D1 ; INF OR ZERO?
BPL.S ZPWRNEG
TST.B (A4)
BPL P0STUFF ; +INF^NEG IS +0
BRA M0STUFF ; -INF^NEG IS -0
ZPWRNEG
TST.B (A4)
BPL DIVP0STUFF ; +0^NEG IS +INF
BRA DIVM0STUFF ; -0^NEG IS -INF
;
; NONZERO^I is broken into two cases:
; If I is small, then just multiply out. Note that sign perseveres if
; I is odd.
; Otherwise, convert I to extended and evaluate with exponentials.
;
FINPWRI
MOVE.W D2,D0 ; ABS(D2) --> D0
BPL.S @1
NEG.W D0
@1
CMPI.W #SMALLEXP,D0
BHI.S XPWRBIG ; USE LOG AND EXP
BSR.S XPWRK ; MULTIPLY OUT
BRA RESULTDELIVERED
;
; Integer power is too large to multiply out, so convert to extended
; and use general x^y routine. Make copy of integer in cell W.
;
XPWRBIG
MOVE.W (A4),-(SP) ; SAVE SIGN OF INPUT
BCLR #7,(A4) ; ABS(DST) IN T
MOVE.L D4,-(SP) ; ADRS OF INT
PEA STW(A6) ; ADRS OF CELL W
MOVE.L (SP),D4 ; PRETEND IT'S SRC
FI2X ; CONVERT INT TO EXT IN W
BSR XPWRY ; COMPUTE (A4)^(D4)
;
; Note that XPWRY must preserve the integer value in D2.
;
MOVE.W (SP)+,D0 ; RETRIEVE SIGN OF INPUT
BPL.S @3 ; IF POSITIVE, DON'T CARE
ASR.W #1,D2 ; LOW BIT TO CARRY
BCC.S @3
BSET #7,(A4) ; NEGATE OUTPUT
@3
BRA RESULTDELIVERED
;ne 100
;
; Raise T to the power D2, leaving the result in (A4). D0 = abs(D2).
; If D2 is negative, evaluate the positive power and reciprocate at
; the end. Know D2 is nonzero. Sign of (A4) is propagated correctly.
; Trash A0, A1, D0, and cells I, W and X.
;
XPWRK
MOVEA.L A4,A0 ; COPY T
LEA STX(A6),A1 ; INTO CELL W
BSR A0TOA1
BSR.S XPWRKLOOP
;
; Now that loop is finished, produce 1 * T^|I| or 1 / T^|I|, depending
; on sign of I. If overflow or underflow has occurred and I is negative,
; redo computation with pre-reciprocated T.
;
TST.W D2 ; IS I NEGATIVE?
BMI.S XPWRKDIV
XPWRKSTORE
MOVEA.L A1,A0 ; T^|I|
MOVEA.L A4,A1 ; RESULT ADRS
BRA A0TOA1 ; T <-- T^|I|, AND EXIT
XPWRKDIV
LEA FPK1,A0
LEA (A4),A1 ; LOSE ADRS OF CELL X FROM LOOP
BSR A0TOA1 ; T <-- 1
BSR TESTUFLOW
BNE.S XPWRKCLEAR
BSR TESTOFLOW
BNE.S XPWRKCLEAR
PEA STW(A6) ; W = T^|I| FROM XPWRKLOOP
PEA (A4) ; RES=1
FDIVX
RTS
XPWRKCLEAR
BSR CLEAROFLOW
BSR CLEARUFLOW
PEA STX(A6) ; SAVED INPUT T ATOP T^|I|
PEA (A4)
FDIVX
MOVE.W D2,D0 ; GET K AGAIN
BPL.S @11
NEG.W D0
@11
BSR.S XPWRKLOOP
BRA.S XPWRKSTORE
;
; Input: D0 = positive integer K
; A4 = X
; Output: A1 = W = X^K
; Uses: cell W, A0
; Trashes: D0
XPWRKLOOP
LEA FPK1,A0
LEA STW(A6),A1
BSR A0TOA1 ; SEED RESULT WITH 1.0
BRA.S XKLPENTRY
XKLPTOP
PEA (A4)
PEA (A4)
FMULX ; T^(2^(I+1))
XKLPENTRY
LSR.W #1,D0 ; GET LOW BIT INTO C
BCC.S XKLPSKIP
PEA (A4) ; T^(2^I)
PEA (A1) ; RESULT SO FAR
FMULX
XKLPSKIP
TST.W D0 ; ANY MORE BITS?
BNE.S XKLPTOP
RTS
;ne 100
;
; Simple routine to compute (A4)^(D4) into (A4).
; Know that (A4) is positive. Know that the FMULX will never
; encounter 0 * INF, so extreme cases, like INF^3, will be handled
; correctly. Fixed to use temp X while computing, in case sources and
; dest are the same.
;
XPWRY
MOVEA.L A4,A0 ; COPY DST ARG
LEA STX(A6),A1
BSR A0TOA1 ; CELL X <-- INPUT X
PEA (A1) ; X = INPUT
MOVE.W #FOLOG2X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; LOG2((A1))
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVE.L D4,-(SP)
PEA (A1)
FMULX ; (D4) * LOG2((A1))
PEA (A1)
MOVE.W #FOEXP2X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; (A1) ^ (D4)
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVEA.L A1,A0
MOVEA.L A4,A1
BRA A0TOA1
;ne 100
;
; General function x^y is beset by exceptional cases.
;
XPWRYTOP
TST.W D1 ; IS X=DST NEG?
BMI.S NEGPWRY
BSR XPWRYCOM
BRA RESULTDELIVERED
;
; Signal X^Y error and stuff a NAN. Special entry accommodates branches from
; within subroutines, in which case a return address must be popped.
;
XPWRY9ERR
ADDQ.L #4,SP ; KILL RETURN ADDRESS
XPWRYERR
BSR CLEARINEXACT ; SIGNAL INVALID ONLY
MOVEQ #NANPOWER,D0
BRA ERRORNAN
;
; If X is negative, check that Y is integral; otherwise error.
; Save parity of Y to fix sign at end of XPWRYCOM.
;
NEGPWRY
TST.B D2 ; Y CLASS - INF
BEQ.S XPWRYERR
MOVEA.L D4,A0 ; Y=SRC
LEA STW(A6),A1 ; CELL W TEMP
BSR A0TOA1
PEA (A1) ; Y=SRC
FRINTX ; ROUND TO INTEGER
BSR TESTINEXACT
BNE XPWRYERR
;
; NEG ^ INT requires that parity of Y be saved in cell J for later
; setting of sign. To find low bit of floating integer, divide by
; 2 and test inexact.
;
PEA FPK2 ; 2.0
PEA (A1) ; CELL W
FDIVX ; W/2
PEA (A1)
FRINTX ; STRIP OFF ODD BIT OF W
PEA STJ(A6)
FGETENV ; SAVE FLAGS
BSR CLEARINEXACT
BCLR #7,(A4) ; ABS((A4))
BSR XPWRYCOM ; ABS((A4))^(D4)
;
; Fix sign of power, according to parity of Y. The parity is stored in
; the inexact flag, saved in cell J. It's in the high byte so just to
; a bit test.
;
BTST #FBINEXACT,STJ(A6)
BEQ.S @1
BCHG #7,(A4) ; NEGATE IF ODD (INEXACT)
@1
BRA RESULTDELIVERED
;ne 100
;
; Common routine to raise (A4) to (D4) power.
; Know (A4) >= 0 and (D4) is not a NAN.
; Have class codes, less CLINF, in D1 and D2, respectively.
; Can run through 2 ^ Y*LOG2(X) code so long as won't multiply
; INF and 0 to compute exponent. As a minor detail, if Y is 0 or INF,
; clear any inexact that may have been set by LOG2(X).
;
; Since this is called as a subroutine, exits to XPWRYERR must have a special
; pop for the return address.
;
XPWRYCOM
SUBQ.B #1,D1 ; CLINF ALREADY SUBTRACTED
BNE.S NONPWRY
;
; 0 ^ some
;
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BEQ XPWRY9ERR ; 0^0, 0^INF ERRORS, WITH RTS POP
TST.W D2 ; SIGN OF Y
BPL.S @1
;
; 0 ^ nonzero
;
BSR FORCEDIVZER ; SIGNAL DIV BY ZERO
LEA FPKINF,A0
BRA.S @2
@1
LEA FPK0,A0
@2
MOVEA.L A4,A1 ; RESULT PTR
BRA A0TOA1 ; STUFF RESULT AND EXIT
;
; nonzero ^ some
;
NONPWRY
BPL.S FINPWRY ; EXIT IF X FINITE
;
; inf ^ some
;
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BNE.S XPWRYOK
BRA XPWRY9ERR ; INF^O IS AN ERROR
;
; finite ^ some
;
FINPWRY
SUBQ.B #1,D2
BPL.S XPWRYOK ; FIN ^ FIN IS OK
;
; finite ^ inf has the special case 1^INF which is an error.
;
PEA FPK1
PEA (A4)
FCMPX
FBEQL XPWRY9ERR ; <1.1>
;
; Finally, compute finite^reasonable and return.
; Two cases: if exponent is a small integer, then just multiply;
; else use log and exp. To check for an integer, try converting to
; 16 bits. Overflow is Invalid, rounding error is Inexact.
; Must reset Invalid, but if Inexact the result will be anyway.
; Save D2=YClass in D6 across possible call to XPWRK.
;
XPWRYOK
MOVE.W D2,D6 ; COPY OF Y'S CLASS LESS CLNORM
MOVE.L D4,-(SP) ; EXPONENT ADDRESS
PEA STI(A6) ; INTEGER CELL I
FX2I ; CONVERT TO INTEGER
BSR TESTINVALID ; X2I OFLOW IS INVALID
SNE D7
BSR CLEARINVALID ; CLEAR UNDESERVED ERROR
BSR TESTINEXACT ; MAY HAVE JUST ROUNDED OFF
SNE D1
OR.B D1,D7 ; EITHER ERROR?
BNE.S XPWRYHARD
MOVE.W STI(A6),D2 ; GET INTEGER TO REG.
MOVE.W D2,D0
BPL.S @1
NEG.W D0
@1
CMPI.W #SMALLEXP,D0
BLE XPWRK ; DO IT AS INTEGER AND EXIT
XPWRYHARD
BSR CLEARINEXACT
BSR XPWRY
TST.B D6 ; CHECK FOR Y 0 OR INF
BMI CLEARINEXACT ; AND RETURN FROM THERE
RTS
;ne 100
;
; Compute dst <-- (1 + src2)^src r = src2 n = src
; Watch for special cases:
; src2 < -1 is invalid
; else src = 0 yields 1
; else src2 = 0 and src = INF is invalid
; else src = INF yields 0 or INF according to src2
; else src2 = -1 yields 0, 1, or INF according to src
; else actually compute (1 + r)^n !!
;
COMPOUNDTOP
PEA FPKM1 ; -1
MOVE.L D5,-(SP) ; SRC2
FCMPX
FBULTL ERRFINAN ; UNORDERED OR LESS THAN -1 <1.1>
FBGTL CMPGTM1 ; <1.1>
;
; Get here if SRC2 is -1. Check SRC (D2) for 0 or nonzero.
;
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BNE.S CMPM1N
CMPTOZERO
BRA P1STUFF ; (1 + SOME)^0 IS +1
CMPM1N
MOVEA.L D4,A0 ; CHECK SIGN OF SRC
TST.B (A0)
BMI DIVP0STUFF ; (1 - 1)^NEG IS +INF
CMPZERO
BRA P0STUFF ; (1 - 1)^POS IS +0
;
; Get here if SRC2 (r) is > -1.
;
CMPGTM1
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BEQ.S CMPTOZERO ; (1 + SOME)^0 IS +1
BGT.S CMPTOFIN ; GO DO (1 + SOME)^FINITE
;
; Get here if (1 + SOME)^INF. Check for 1^INF, an error, else have
; INF or 0 according to SRC and SRC2.
;
SUBQ.B #1,D1 ; CLINF ALREADY SUBTRACTED
BEQ.S ERRFINAN
EOR.W D2,D1 ; GET XOR OF SRC, SRC2 SIGNS
BMI.S CMPZERO ; SIGNS DIFFER --> ZERO
BRA PINFSTUFF ; SIGNS SAME --> +INF
;
; Finally, compute (1 + reasonable)^finite with the usual...
;
CMPTOFIN
LEA STX(A6),A1 ; CELL X
MOVEA.L D5,A0 ; R = SRC2
BSR A0TOA1 ; COPY R TO X
MOVE (a1),d0 ; D0 gets sign/exponent of R.
BCLR #15,d0 ; Clear sign.
CMP #$3f7f,d0 ; Exponent -64.
BLT.S cmpbasee ; Natural log/exp for tiny
; exponents.
; COMPOUND BASE 2.
PEA (A1)
MOVE.W #FOLOG21X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; LOG2(1 + (A1))
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVE.L D4,-(SP) ; N = SRC ADDRESS
PEA (A1) ; LOG2(1+R)
FMULX ; N * LOG2(1+R)
PEA (A1)
MOVE.W #FOEXP2X,-(SP)
BRA.S cmpresult
cmpbasee ; COMPOUND BASE E.
MOVE.L D4,-(SP) ; N = SRC ADDRESS
PEA (A1) ; LOG2(1+R)
FMULX ; N * LOG2(1+R)
PEA (A1)
MOVE.W #FOEXPX,-(SP)
cmpresult
BSR clearuflow ; Irrelevant!
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; EXP2 OR EXPE((A1))
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVEA.L A1,A0 ; CELL X
MOVEA.L A4,A1
BSR A0TOA1
BRA RESULTDELIVERED
;
; Routine to stuff the financial NAN and go.
;
ERRFINAN
MOVEQ #NANFINAN,D0
BRA ERRORNAN
;ne 100
;
; Compute annuity factor:
; ( 1 - (1 + r)^-n ) / r
; for r = SRC2 and n = SRC.
; Multitudinous special cases handled piece by piece.
;
ANNUITYTOP
PEA FPKM1 ; -1
MOVE.L D5,-(SP) ; R = SRC2
FCMPX ; R VS. -1
FBULTL ERRFINAN ; R < -1 IS AN ERROR <1.1>
FBNES ANNOK
;
; Get here if have (1 - 1)^ANY. Just check n = SRC.
;
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BEQ.S ANN0 ; ANN(-1, 0) IS +0
TST.W D2 ; CHECK SIGN OF NONZERO N
BPL DIVP0STUFF
ANNM1
BRA M1STUFF
;
; Know that R=SRC2 exceeds -1. Check first for N=SRC=0.
;
ANNOK
SUBQ.B #1,D2 ; CLINF ALREADY SUBTRACTED
BNE.S ANNXN
ANN0
BRA P0STUFF
;
; Now check for unusual, 0 or INF, R=SRC2.
;
ANNXN
SUBQ.B #1,D1 ; CLINF ALREADY SUBTRACTED
BGT.S ANNROK
BLT.S ANNRINF
;
; R=SRC2=0. Limit gives result of N=SRC.
;
ANNSRC
MOVEA.L A4,A1 ; DST PTR
MOVEA.L D4,A0 ; SRC=N PTR
BSR A0TOA1
BRA RESULTDELIVERED
;
; R=SRC2=+INF. If N=SRC is nonnegative have 0, else test N=SRC versus -1.
;
ANNRINF
TST.W D2 ; IT'S NONZERO, JUST TEST SIGN
BPL.S ANN0 ; FORCE +0
PEA FPKM1 ; -1
MOVE.L D4,-(SP) ; SRC
FCMPX
FBEQL ANNM1 ; N = -1, STUFF -1 <1.1>
FBGTL M0STUFF ; <1.1>
BRA MINFSTUFF
;
; Way down here, we have R=SRC2 a normal or denormal number.
; Last check is for N=SRC=INF.
;
ANNROK
TST.B D2 ; (CLINF + 1) ALREADY SUB
BPL.S ANNDOIT
EOR.W D2,D1 ; DO R AND N SIGNS MATCH
BMI ANNSRC
MOVEA.L D5,A0 ; ADDRESS OF 4=SRC2, DIVISOR
LEA STX(A6),A1
BSR A0TOA1
PEA (A1) ; FOR DIVIDE BELOW
MOVEA.L A4,A1
LEA FPK1,A0
BSR A0TOA1 ; DST <-- +1
PEA (A1) ; ADDRESS OF DST
FDIVX ; RESULT IS 1/R
BRA RESULTDELIVERED
;
; Finally, compute ( 1 - (1 + r)^-n ) / r.
; Distinguish two cases:
; r normal:
; log2(1 + r)
; n * log2(1 + r)
; -n * log2(1 + r)
; 2^(...) - 1
; 1 - 2^(...)
; (1 - 2^(...)) / r
;
; r denormal:
; log(1 + r) is about r
; n * r
; -n * r
; e^(...) - 1
; 1 - e^(...)
; (1 - e^(...)) / r
; Use D1.B, from which CLZERO has already been subtracted.
; Subtracting one more (CLNORMAL) leaves D1.B 0 for normal, 1 for denormal.
;
ANNDOIT
LEA STX(A6),A1 ; CELL X FOR TEMP
MOVEA.L D5,A0 ; SRC2 PTR
BSR A0TOA1
MOVE (a1),d0 ; D0 gets sign/exponent of R.
BCLR #15,d0 ; Clear sign.
CMP #$3f7f,d0 ; Exponent -64.
BLT.S annbasee ; Natural log/exp for tiny
; exponents.
; Annuity base two.
PEA (A1) ; X
MOVE.W #FOLOG21X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; LOG2(1 + R)
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
MOVE.L D4,-(SP) ; N=SRC PTR
PEA (A1)
FMULX ; N * LOG2(1 + R)
BCHG #7,(A1) ; -(N * LOG2(1 + R))
CMP #$4007,(a1)
BLT.S @1 ; Branch if exp(-n*log(1+r)) not huge.
MOVE.L d5,a0
CMP #$407f,(a0)
BGE.S annspecial ; Branch if r huge.
@1
PEA (A1)
MOVE.W #FOEXP21X,-(SP)
BRA.S annresult
annbasee ; Annuity base e.
MOVE.L D4,-(SP) ; N=SRC PTR
PEA (A1)
FMULX ; N * LOG2(1 + R)
BCHG #7,(A1) ; -(N * LOG2(1 + R))
PEA (A1)
MOVE.W #FOEXP1X,-(SP)
annresult
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; (1 + R)^-N - 1
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
BCHG #7,(A1) ; 1 - (1 + R)^-N
MOVE.L D5,-(SP) ; R=SRC2
PEA (A1)
FDIVX ; ( 1 - (1 + R)^-N ) / R
annclear
BSR CLEARUFLOW
BSR CLEAROFLOW
MOVEA.L A1,A0 ; SET UP REGS FOR CLASS
BSR CLASSIFY
SUBQ.B #FCINF,D0 ; IS IT INF?
BNE.S @1
BSR FORCEOFLOW
BRA.S ANNDOUT
@1
SUBQ.B #2,D0 ; IS IT NORMAL?
BEQ.S ANNDOUT
BSR FORCEUFLOW
ANNDOUT
LEA STX(A6),A0 ; STORE TO DESTINATION
MOVEA.L A4,A1
BSR A0TOA1
BRA RESULTDELIVERED
annspecial
MOVEA.L D5,A0 ; SRC2 PTR
BSR A0TOA1
PEA (A1) ; X := r
MOVE.W #FOLOG2X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; x := LOG2( R)
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
LEA sty(a6),a1
MOVE.L d4,a0
BSR a0toa1 ; Y gets N.
PEA fpk1
PEA (a1)
FADDX ; Y gets N+1.
PEA (A1)
LEA stx(a6),a1 ; A1 gets X again.
PEA (a1)
FMULX ; x gets (n+1) * LOG2( R)
BCHG #7,(A1) ; -(N+1) * LOG2( R)
PEA (A1)
MOVE.W #FOEXP2X,-(SP)
IF FPFORMAC+FPFORDEBUG THEN
BSR ELEMS68K ; ( R)^-(n+1)
ENDIF
IF FPFORLISA THEN
BSR elems68k
ENDIF
BCHG #7,(A1) ; - (R)^-(N+1)
BRA.S annclear
;ne 100