mac-rom/OS/FPUEmulation/Power.a
Elliot Nunn 4325cdcc78 Bring in CubeE sources
Resource forks are included only for .rsrc files. These are DeRezzed into their data fork. 'ckid' resources, from the Projector VCS, are not included.

The Tools directory, containing mostly junk, is also excluded.
2017-12-26 09:52:23 +08:00

1212 lines
36 KiB
Plaintext

;
; File: Power.a
;
; Contains: Routines to emulate exponential functions
;
; Originally Written by: Motorola Inc.
; Adapted to Apple/MPW: Jon Okada
;
; Copyright: © 1990,1991, 1993 by Apple Computer, Inc., all rights reserved.
;
; This file is used in these builds: Mac32
;
; Change History (most recent first):
;
; <SM2> 2/3/93 CSS Update from Horror:
; <H2> 12/21/91 jmp (BG,Z4) (for JOkada) Corrected three constants under labels
; "EM1TINY:" and "EM12TINY" to obtain correct rounding behavior
; for FETOXM1 with small arguments.
; ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
; Pre-Horror ROM comments begin here.
; ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
; <3> 4/13/91 BG Modified FTWOTOX emulation to not signal inexact on exact cases.
; <2> 3/30/91 BG Rolling in Jon Okada's latest changes.
; <1> 12/14/90 BG First checked into TERROR/BBS.
;
; power.a
; Based upon Motorola files 'setox.sa' and 'stwotox.sa'.
; setox
; CHANGE LOG:
; 07 Jan 91 JPO Deleted constants HUGE and TINY (not referenced).
; Moved constants and table EXPTBL to file
; 'constants.a'.
; 28 Mar 91 JPO Modified 'stwotox' to deliver exact results for
; integral input. Streamlined some instruction
; streams throughout the file.
; 11 Dec 91 JPO Corrected three constants under labels "EM1TINY:"
; and "EM12TINY" to obtain correct rounding behavior
; for FETOXM1 with small arguments.
;
*
* setox.sa 3.1 12/10/90
*
* The entry point setox computes the exponential of a value.
* setoxd does the same except the input value is a denormalized
* number. setoxm1 computes exp(X)-1, and setoxm1d computes
* exp(X)-1 for denormalized X.
*
* INPUT
* -----
* Double-extended value in memory location pointed to by address
* register a0.
*
* OUTPUT
* ------
* exp(X) or exp(X)-1 returned in floating-point register fp0.
*
* ACCURACY and MONOTONICITY
* -------------------------
* The returned result is within 0.85 ulps in 64 significant bit, i.e.
* within 0.5001 ulp to 53 bits if the result is subsequently rounded
* to double precision. The result is provably monotonic in double
* precision.
*
* SPEED
* -----
* Two timings are measured, both in the copy-back mode. The
* first one is measured when the function is invoked the first time
* (so the instructions and data are not in cache), and the
* second one is measured when the function is reinvoked at the same
* input argument.
*
* The program setox takes approximately 210/190 cycles for input
* argument X whose magnitude is less than 16380 log2, which
* is the usual situation. For the less common arguments,
* depending on their values, the program may run faster or slower --
* but no worse than 10% slower even in the extreme cases.
*
* The program setoxm1 takes approximately ???/??? cycles for input
* argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
* approximately ???/??? cycles. For the less common arguments,
* depending on their values, the program may run faster or slower --
* but no worse than 10% slower even in the extreme cases.
*
* ALGORITHM and IMPLEMENTATION NOTES
* ----------------------------------
*
* setoxd
* ------
* Step 1. Set ans := 1.0
*
* Step 2. Return ans := ans + sign(X)*2^(-126). Exit.
* Notes: This will always generate one exception -- inexact.
*
*
* setox
* -----
*
* Step 1. Filter out extreme cases of input argument.
* 1.1 If |X| >= 2^(-65), go to Step 1.3.
* 1.2 Go to Step 7.
* 1.3 If |X| < 16380 log(2), go to Step 2.
* 1.4 Go to Step 8.
* Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
* To avoid the use of floating-point comparisons, a
* compact representation of |X| is used. This format is a
* 32-bit integer, the upper (more significant) 16 bits are
* the sign and biased exponent field of |X|; the lower 16
* bits are the 16 most significant fraction (including the
* explicit bit) bits of |X|. Consequently, the comparisons
* in Steps 1.1 and 1.3 can be performed by integer comparison.
* Note also that the constant 16380 log(2) used in Step 1.3
* is also in the compact form. Thus taking the branch
* to Step 2 guarantees |X| < 16380 log(2). There is no harm
* to have a small number of cases where |X| is less than,
* but close to, 16380 log(2) and the branch to Step 9 is
* taken.
*
* Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
* 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
* 2.2 N := round-to-nearest-integer( X * 64/log2 ).
* 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63.
* 2.4 Calculate M = (N - J)/64; so N = 64M + J.
* 2.5 Calculate the address of the stored value of 2^(J/64).
* 2.6 Create the value Scale = 2^M.
* Notes: The calculation in 2.2 is really performed by
*
* Z := X * constant
* N := round-to-nearest-integer(Z)
*
* where
*
* constant := single-precision( 64/log 2 ).
*
* Using a single-precision constant avoids memory access.
* Another effect of using a single-precision "constant" is
* that the calculated value Z is
*
* Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
*
* This error has to be considered later in Steps 3 and 4.
*
* Step 3. Calculate X - N*log2/64.
* 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
* 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
* Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate
* the value -log2/64 to 88 bits of accuracy.
* b) N*L1 is exact because N is no longer than 22 bits and
* L1 is no longer than 24 bits.
* c) The calculation X+N*L1 is also exact due to cancellation.
* Thus, R is practically X+N(L1+L2) to full 64 bits.
* d) It is important to estimate how large can |R| be after
* Step 3.2.
*
* N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
* X*64/log2 (1+eps) = N + f, |f| <= 0.5
* X*64/log2 - N = f - eps*X 64/log2
* X - N*log2/64 = f*log2/64 - eps*X
*
*
* Now |X| <= 16446 log2, thus
*
* |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
* <= 0.57 log2/64.
* This bound will be used in Step 4.
*
* Step 4. Approximate exp(R)-1 by a polynomial
* p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
* Notes: a) In order to reduce memory access, the coefficients are
* made as "short" as possible: A1 (which is 1/2), A4 and A5
* are single precision; A2 and A3 are double precision.
* b) Even with the restrictions above,
* |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
* Note that 0.0062 is slightly bigger than 0.57 log2/64.
* c) To fully utilize the pipeline, p is separated into
* two independent pieces of roughly equal complexities
* p = [ R + R*S*(A2 + S*A4) ] +
* [ S*(A1 + S*(A3 + S*A5)) ]
* where S = R*R.
*
* Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
* ans := T + ( T*p + t)
* where T and t are the stored values for 2^(J/64).
* Notes: 2^(J/64) is stored as T and t where T+t approximates
* 2^(J/64) to roughly 85 bits; T is in extended precision
* and t is in single precision. Note also that T is rounded
* to 62 bits so that the last two bits of T are zero. The
* reason for such a special form is that T-1, T-2, and T-8
* will all be exact --- a property that will give much
* more accurate computation of the function EXPM1.
*
* Step 6. Reconstruction of exp(X)
* exp(X) = 2^M * 2^(J/64) * exp(R).
* 6.1 If AdjFlag = 0, go to 6.3
* 6.2 ans := ans * AdjScale
* 6.3 Restore the user FPCR
* 6.4 Return ans := ans * Scale. Exit.
* Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
* |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
* neither overflow nor underflow. If AdjFlag = 1, that
* means that
* X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
* Hence, exp(X) may overflow or underflow or neither.
* When that is the case, AdjScale = 2^(M1) where M1 is
* approximately M. Thus 6.2 will never cause over/underflow.
* Possible exception in 6.4 is overflow or underflow.
* The inexact exception is not generated in 6.4. Although
* one can argue that the inexact flag should always be
* raised, to simulate that exception cost to much than the
* flag is worth in practical uses.
*
* Step 7. Return 1 + X.
* 7.1 ans := X
* 7.2 Restore user FPCR.
* 7.3 Return ans := 1 + ans. Exit
* Notes: For non-zero X, the inexact exception will always be
* raised by 7.3. That is the only exception raised by 7.3.
* Note also that we use the FMOVEM instruction to move X
* in Step 7.1 to avoid unnecessary trapping. (Although
* the FMOVEM may not seem relevant since X is normalized,
* the precaution will be useful in the library version of
* this code where the separate entry for denormalized inputs
* will be done away with.)
*
* Step 8. Handle exp(X) where |X| >= 16380log2.
* 8.1 If |X| > 16480 log2, go to Step 9.
* (mimic 2.2 - 2.6)
* 8.2 N := round-to-integer( X * 64/log2 )
* 8.3 Calculate J = N mod 64, J = 0,1,...,63
* 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
* 8.5 Calculate the address of the stored value 2^(J/64).
* 8.6 Create the values Scale = 2^M, AdjScale = 2^M1.
* 8.7 Go to Step 3.
* Notes: Refer to notes for 2.2 - 2.6.
*
* Step 9. Handle exp(X), |X| > 16480 log2.
* 9.1 If X < 0, go to 9.3
* 9.2 ans := Huge, go to 9.4
* 9.3 ans := Tiny.
* 9.4 Restore user FPCR.
* 9.5 Return ans := ans * ans. Exit.
* Notes: Exp(X) will surely overflow or underflow, depending on
* X's sign. "Huge" and "Tiny" are respectively large/tiny
* extended-precision numbers whose square over/underflow
* with an inexact result. Thus, 9.5 always raises the
* inexact together with either overflow or underflow.
*
*
* setoxm1d
* --------
*
* Step 1. Set ans := 0
*
* Step 2. Return ans := X + ans. Exit.
* Notes: This will return X with the appropriate rounding
* precision prescribed by the user FPCR.
*
* setoxm1
* -------
*
* Step 1. Check |X|
* 1.1 If |X| >= 1/4, go to Step 1.3.
* 1.2 Go to Step 7.
* 1.3 If |X| < 70 log(2), go to Step 2.
* 1.4 Go to Step 10.
* Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
* However, it is conceivable |X| can be small very often
* because EXPM1 is intended to evaluate exp(X)-1 accurately
* when |X| is small. For further details on the comparisons,
* see the notes on Step 1 of setox.
*
* Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
* 2.1 N := round-to-nearest-integer( X * 64/log2 ).
* 2.2 Calculate J = N mod 64; so J = 0,1,2,..., or 63.
* 2.3 Calculate M = (N - J)/64; so N = 64M + J.
* 2.4 Calculate the address of the stored value of 2^(J/64).
* 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M).
* Notes: See the notes on Step 2 of setox.
*
* Step 3. Calculate X - N*log2/64.
* 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
* 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
* Notes: Applying the analysis of Step 3 of setox in this case
* shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
* this case).
*
* Step 4. Approximate exp(R)-1 by a polynomial
* p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
* Notes: a) In order to reduce memory access, the coefficients are
* made as "short" as possible: A1 (which is 1/2), A5 and A6
* are single precision; A2, A3 and A4 are double precision.
* b) Even with the restriction above,
* |p - (exp(R)-1)| < |R| * 2^(-72.7)
* for all |R| <= 0.0055.
* c) To fully utilize the pipeline, p is separated into
* two independent pieces of roughly equal complexity
* p = [ R*S*(A2 + S*(A4 + S*A6)) ] +
* [ R + S*(A1 + S*(A3 + S*A5)) ]
* where S = R*R.
*
* Step 5. Compute 2^(J/64)*p by
* p := T*p
* where T and t are the stored values for 2^(J/64).
* Notes: 2^(J/64) is stored as T and t where T+t approximates
* 2^(J/64) to roughly 85 bits; T is in extended precision
* and t is in single precision. Note also that T is rounded
* to 62 bits so that the last two bits of T are zero. The
* reason for such a special form is that T-1, T-2, and T-8
* will all be exact --- a property that will be exploited
* in Step 6 below. The total relative error in p is no
* bigger than 2^(-67.7) compared to the final result.
*
* Step 6. Reconstruction of exp(X)-1
* exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
* 6.1 If M <= 63, go to Step 6.3.
* 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6
* 6.3 If M >= -3, go to 6.5.
* 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6
* 6.5 ans := (T + OnebySc) + (p + t).
* 6.6 Restore user FPCR.
* 6.7 Return ans := Sc * ans. Exit.
* Notes: The various arrangements of the expressions give accurate
* evaluations.
*
* Step 7. exp(X)-1 for |X| < 1/4.
* 7.1 If |X| >= 2^(-65), go to Step 9.
* 7.2 Go to Step 8.
*
* Step 8. Calculate exp(X)-1, |X| < 2^(-65).
* 8.1 If |X| < 2^(-16312), goto 8.3
* 8.2 Restore FPCR; return ans := X - 2^(-16382). Exit.
* 8.3 X := X * 2^(140).
* 8.4 Restore FPCR; ans := ans - 2^(-16382).
* Return ans := ans*2^(140). Exit
* Notes: The idea is to return "X - tiny" under the user
* precision and rounding modes. To avoid unnecessary
* inefficiency, we stay away from denormalized numbers the
* best we can. For |X| >= 2^(-16312), the straightforward
* 8.2 generates the inexact exception as the case warrants.
*
* Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
* p = X + X*X*(B1 + X*(B2 + ... + X*B12))
* Notes: a) In order to reduce memory access, the coefficients are
* made as "short" as possible: B1 (which is 1/2), B9 to B12
* are single precision; B3 to B8 are double precision; and
* B2 is double extended.
* b) Even with the restriction above,
* |p - (exp(X)-1)| < |X| 2^(-70.6)
* for all |X| <= 0.251.
* Note that 0.251 is slightly bigger than 1/4.
* c) To fully preserve accuracy, the polynomial is computed
* as X + ( S*B1 + Q ) where S = X*X and
* Q = X*S*(B2 + X*(B3 + ... + X*B12))
* d) To fully utilize the pipeline, Q is separated into
* two independent pieces of roughly equal complexity
* Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
* [ S*S*(B3 + S*(B5 + ... + S*B11)) ]
*
* Step 10. Calculate exp(X)-1 for |X| >= 70 log 2.
* 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
* purposes. Therefore, go to Step 1 of setox.
* 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
* ans := -1
* Restore user FPCR
* Return ans := ans + 2^(-126). Exit.
* Notes: 10.2 will always create an inexact and return -1 + tiny
* in the user rounding precision and mode.
*
*
* Copyright (C) Motorola, Inc. 1990
* All Rights Reserved
*
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
* The copyright notice above does not evidence any
* actual or intended publication of such source code.
* setox IDNT 2,1 Motorola 040 Floating Point Software Package
ADJFLAG equ L_SCR2
SCALE equ FP_SCR1
ADJSCALE equ FP_SCR2
SC equ FP_SCR3
ONEBYSC equ FP_SCR4
setoxd:
*--entry point for EXP(X), X is denormalized
MOVE.L (a0),d0
ANDI.L #$80000000,d0
ORI.L #$00800000,d0 ...sign(X)*2^(-126)
MOVE.L d0,-(sp)
FMOVE.S #"$3F800000",fp0
fmove.l d1,fpcr
FADD.S (sp)+,fp0
bra t_frcinx
setox:
*--entry point for EXP(X), here X is finite, non-zero, and not NaN's
*--Step 1.
MOVE.L (a0),d0 ...load part of input X
ANDI.L #$7FFF0000,d0 ...biased expo. of X
CMPI.L #$3FBE0000,d0 ...2^(-65)
BGE.B EXPC1 ...normal case
BRA.W EXPSM
EXPC1:
*--The case |X| >= 2^(-65)
MOVE.W 4(a0),d0 ...expo. and partial sig. of |X|
CMPI.L #$400CB167,d0 ...16380 log2 trunc. 16 bits
BLT.B EXPMAIN ...normal case
BRA.W EXPBIG
EXPMAIN:
*--Step 2.
*--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
FMOVE.X (a0),fp0 ...load input from (a0)
FMOVE.X fp0,fp1
FMUL.S #"$42B8AA3B",fp0 ...64/log2 * X
fmovem.x fp2/fp3,-(a7) ...save fp2
; MOVE.L #0,ADJFLAG(a6) ; DELETED <3/28/91, JPO> <T3>
clr.l ADJFLAG(a6) ; <3/28/91, JPO> <T3>
FMOVE.L fp0,d0 ...N = int( X * 64/log2 )
LEA EXPTBL,a1
FMOVE.L d0,fp0 ...convert to floating-format
MOVE.L d0,L_SCR1(a6) ...save N temporarily
ANDI.L #$3F,d0 ...D0 is J = N mod 64
LSL.L #4,d0
ADDA.L d0,a1 ...address of 2^(J/64)
MOVE.L L_SCR1(a6),d0
ASR.L #6,d0 ...D0 is M
ADDI.W #$3FFF,d0 ...biased expo. of 2^(M)
MOVE.W L2,L_SCR1(a6) ...prefetch L2, no need in CB
EXPCONT1:
*--Step 3.
*--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
*--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
FMOVE.X fp0,fp2
FMUL.S #"$BC317218",fp0 ...N * L1, L1 = lead(-log2/64)
FMUL.X L2,fp2 ...N * L2, L1+L2 = -log2/64
FADD.X fp1,fp0 ...X + N*L1
FADD.X fp2,fp0 ...fp0 is R, reduced arg.
* MOVE.W #$3FA5,EXPA3 ...load EXPA3 in cache
*--Step 4.
*--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
*-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
*--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
*--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
FMOVE.X fp0,fp1
FMUL.X fp1,fp1 ...fp1 IS S = R*R
FMOVE.S #"$3AB60B70",fp2 ...fp2 IS A5
* MOVE.W #0,2(a1) ...load 2^(J/64) in cache
FMUL.X fp1,fp2 ...fp2 IS S*A5
FMOVE.X fp1,fp3
FMUL.S #"$3C088895",fp3 ...fp3 IS S*A4
FADD.D EXPA3,fp2 ...fp2 IS A3+S*A5
FADD.D EXPA2,fp3 ...fp3 IS A2+S*A4
FMUL.X fp1,fp2 ...fp2 IS S*(A3+S*A5)
MOVE.W d0,SCALE(a6) ...SCALE is 2^(M) in extended
clr.w SCALE+2(a6)
move.l #$80000000,SCALE+4(a6)
clr.l SCALE+8(a6)
FMUL.X fp1,fp3 ...fp3 IS S*(A2+S*A4)
FADD.S #"$3F000000",fp2 ...fp2 IS A1+S*(A3+S*A5)
FMUL.X fp0,fp3 ...fp3 IS R*S*(A2+S*A4)
FMUL.X fp1,fp2 ...fp2 IS S*(A1+S*(A3+S*A5))
FADD.X fp3,fp0 ...fp0 IS R+R*S*(A2+S*A4),
* ...fp3 released
FMOVE.X (a1)+,fp1 ...fp1 is lead. pt. of 2^(J/64)
FADD.X fp2,fp0 ...fp0 is EXP(R) - 1
* ...fp2 released
*--Step 5
*--final reconstruction process
*--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
FMUL.X fp1,fp0 ...2^(J/64)*(Exp(R)-1)
fmovem.x (a7)+,fp2/fp3 ...fp2 restored
FADD.S (a1),fp0 ...accurate 2^(J/64)
FADD.X fp1,fp0 ...2^(J/64) + 2^(J/64)*...
MOVE.L ADJFLAG(a6),d0
*--Step 6
TST.L D0
BEQ.B NORMAL
ADJUST:
FMUL.X ADJSCALE(a6),fp0
NORMAL:
FMOVE.L d1,FPCR ...restore user FPCR
FMUL.X SCALE(a6),fp0 ...multiply 2^(M)
bra t_frcinx
EXPSM:
*--Step 7
FMOVEM.X (a0),fp0 ...in case X is denormalized
FMOVE.L d1,FPCR
FADD.S #"$3F800000",fp0 ...1+X in user mode
bra t_frcinx
EXPBIG:
*--Step 8
CMPI.L #$400CB27C,d0 ...16480 log2
BGT.B EXP2BIG
*--Steps 8.2 -- 8.6
FMOVE.X (a0),fp0 ...load input from (a0)
FMOVE.X fp0,fp1
FMUL.S #"$42B8AA3B",fp0 ...64/log2 * X
fmovem.x fp2/fp3,-(a7) ...save fp2
MOVE.L #1,ADJFLAG(a6)
FMOVE.L fp0,d0 ...N = int( X * 64/log2 )
LEA EXPTBL,a1
FMOVE.L d0,fp0 ...convert to floating-format
MOVE.L d0,L_SCR1(a6) ...save N temporarily
ANDI.L #$3F,d0 ...D0 is J = N mod 64
LSL.L #4,d0
ADDA.L d0,a1 ...address of 2^(J/64)
MOVE.L L_SCR1(a6),d0
ASR.L #6,d0 ...D0 is K
MOVE.L d0,L_SCR1(a6) ...save K temporarily
ASR.L #1,d0 ...D0 is M1
SUB.L d0,L_SCR1(a6) ...a1 is M
ADDI.W #$3FFF,d0 ...biased expo. of 2^(M1)
MOVE.W d0,ADJSCALE(a6) ...ADJSCALE := 2^(M1)
clr.w ADJSCALE+2(a6)
move.l #$80000000,ADJSCALE+4(a6)
clr.l ADJSCALE+8(a6)
MOVE.L L_SCR1(a6),d0 ...D0 is M
ADDI.W #$3FFF,d0 ...biased expo. of 2^(M)
BRA.W EXPCONT1 ...go back to Step 3
EXP2BIG:
*--Step 9
FMOVE.L d1,FPCR
MOVE.L (a0),d0
bclr.b #sign_bit,(a0) ...setox always returns positive
; CMPI.L #0,d0 ; DELETED <3/28/91, JPO> <T3>
; BLT t_unfl ; DELETED <3/28/91, JPO> <T3>
tst.l d0 ; <3/28/91, JPO> <T3>
bmi t_unfl ; <3/28/91, JPO> <T3>
BRA t_ovfl
setoxm1d:
*--entry point for EXPM1(X), here X is denormalized
*--Step 0.
bra t_extdnrm
setoxm1:
*--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
*--Step 1.
*--Step 1.1
MOVE.L (a0),d0 ...load part of input X
ANDI.L #$7FFF0000,d0 ...biased expo. of X
CMPI.L #$3FFD0000,d0 ...1/4
BGE.B EM1CON1 ...|X| >= 1/4
BRA.W EM1SM
EM1CON1:
*--Step 1.3
*--The case |X| >= 1/4
MOVE.W 4(a0),d0 ...expo. and partial sig. of |X|
CMPI.L #$4004C215,d0 ...70log2 rounded up to 16 bits
BLE.B EM1MAIN ...1/4 <= |X| <= 70log2
BRA.W EM1BIG
EM1MAIN:
*--Step 2.
*--This is the case: 1/4 <= |X| <= 70 log2.
FMOVE.X (a0),fp0 ...load input from (a0)
FMOVE.X fp0,fp1
FMUL.S #"$42B8AA3B",fp0 ...64/log2 * X
fmovem.x fp2/fp3,-(a7) ...save fp2
* MOVE.W #$3F81,EM1A4 ...prefetch in CB mode
FMOVE.L fp0,d0 ...N = int( X * 64/log2 )
LEA EXPTBL,a1
FMOVE.L d0,fp0 ...convert to floating-format
MOVE.L d0,L_SCR1(a6) ...save N temporarily
ANDI.L #$3F,d0 ...D0 is J = N mod 64
LSL.L #4,d0
ADDA.L d0,a1 ...address of 2^(J/64)
MOVE.L L_SCR1(a6),d0
ASR.L #6,d0 ...D0 is M
MOVE.L d0,L_SCR1(a6) ...save a copy of M
* MOVE.W #$3FDC,L2 ...prefetch L2 in CB mode
*--Step 3.
*--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
*--a0 points to 2^(J/64), D0 and a1 both contain M
FMOVE.X fp0,fp2
FMUL.S #"$BC317218",fp0 ...N * L1, L1 = lead(-log2/64)
FMUL.X L2,fp2 ...N * L2, L1+L2 = -log2/64
FADD.X fp1,fp0 ...X + N*L1
FADD.X fp2,fp0 ...fp0 is R, reduced arg.
* MOVE.W #$3FC5,EM1A2 ...load EM1A2 in cache
ADDI.W #$3FFF,d0 ...D0 is biased expo. of 2^M
*--Step 4.
*--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
*-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
*--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
*--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
FMOVE.X fp0,fp1
FMUL.X fp1,fp1 ...fp1 IS S = R*R
FMOVE.S #"$3950097B",fp2 ...fp2 IS a6
* MOVE.W #0,2(a1) ...load 2^(J/64) in cache
FMUL.X fp1,fp2 ...fp2 IS S*A6
FMOVE.X fp1,fp3
FMUL.S #"$3AB60B6A",fp3 ...fp3 IS S*A5
FADD.D EM1A4,fp2 ...fp2 IS A4+S*A6
FADD.D EM1A3,fp3 ...fp3 IS A3+S*A5
MOVE.W d0,SC(a6) ...SC is 2^(M) in extended
clr.w SC+2(a6)
move.l #$80000000,SC+4(a6)
clr.l SC+8(a6)
FMUL.X fp1,fp2 ...fp2 IS S*(A4+S*A6)
MOVE.L L_SCR1(a6),d0 ...D0 is M
NEG.W D0 ...D0 is -M
FMUL.X fp1,fp3 ...fp3 IS S*(A3+S*A5)
ADDI.W #$3FFF,d0 ...biased expo. of 2^(-M)
FADD.D EM1A2,fp2 ...fp2 IS A2+S*(A4+S*A6)
FADD.S #"$3F000000",fp3 ...fp3 IS A1+S*(A3+S*A5)
FMUL.X fp1,fp2 ...fp2 IS S*(A2+S*(A4+S*A6))
ORI.W #$8000,d0 ...signed/expo. of -2^(-M)
MOVE.W d0,ONEBYSC(a6) ...OnebySc is -2^(-M)
clr.w ONEBYSC+2(a6)
move.l #$80000000,ONEBYSC+4(a6)
clr.l ONEBYSC+8(a6)
FMUL.X fp3,fp1 ...fp1 IS S*(A1+S*(A3+S*A5))
* ...fp3 released
FMUL.X fp0,fp2 ...fp2 IS R*S*(A2+S*(A4+S*A6))
FADD.X fp1,fp0 ...fp0 IS R+S*(A1+S*(A3+S*A5))
* ...fp1 released
FADD.X fp2,fp0 ...fp0 IS EXP(R)-1
* ...fp2 released
fmovem.x (a7)+,fp2/fp3 ...fp2 restored
*--Step 5
*--Compute 2^(J/64)*p
FMUL.X (a1),fp0 ...2^(J/64)*(Exp(R)-1)
*--Step 6
*--Step 6.1
MOVE.L L_SCR1(a6),d0 ...retrieve M
CMPI.L #63,d0
BLE.B MLE63
*--Step 6.2 M >= 64
FMOVE.S 12(a1),fp1 ...fp1 is t
FADD.X ONEBYSC(a6),fp1 ...fp1 is t+OnebySc
FADD.X fp1,fp0 ...p+(t+OnebySc), fp1 released
FADD.X (a1),fp0 ...T+(p+(t+OnebySc))
BRA.B EM1SCALE
MLE63:
*--Step 6.3 M <= 63
CMPI.L #-3,d0
BGE.B MGEN3
MLTN3:
*--Step 6.4 M <= -4
FADD.S 12(a1),fp0 ...p+t
FADD.X (a1),fp0 ...T+(p+t)
FADD.X ONEBYSC(a6),fp0 ...OnebySc + (T+(p+t))
BRA.B EM1SCALE
MGEN3:
*--Step 6.5 -3 <= M <= 63
FMOVE.X (a1)+,fp1 ...fp1 is T
FADD.S (a1),fp0 ...fp0 is p+t
FADD.X ONEBYSC(a6),fp1 ...fp1 is T+OnebySc
FADD.X fp1,fp0 ...(T+OnebySc)+(p+t)
EM1SCALE:
*--Step 6.6
FMOVE.L d1,FPCR
FMUL.X SC(a6),fp0
bra t_frcinx
EM1SM:
*--Step 7 |X| < 1/4.
CMPI.L #$3FBE0000,d0 ...2^(-65)
BGE.B EM1POLY
EM1TINY:
*--Step 8 |X| < 2^(-65)
; CMPI.L #$00330000,d0 ...2^(-16312) - DELETED <12/11/91, JPO> <Z4><H2>
cmpi.l #$00470000,d0 ; compare |X| with 2^(-16312) <12/11/91, JPO> <Z4><H2>
BLT.B EM12TINY
*--Step 8.2
; MOVE.L #$80010000,SC(a6) ...SC is -2^(-16382) - DELETED <12/11/91, JPO> <Z4><H2>
move.l #$00010000,SC(a6) ; SC is +2^(-16382) <12/11/91, JPO> <Z4><H2>
move.l #$80000000,SC+4(a6)
clr.l SC+8(a6)
FMOVE.X (a0),fp0
FMOVE.L d1,FPCR
FADD.X SC(a6),fp0
bra t_frcinx
EM12TINY:
*--Step 8.3
FMOVE.X (a0),fp0
FMUL.D TWO140,fp0
; MOVE.L #$80010000,SC(a6) ; DELETED <12/11/91, JPO> <Z4><H2>
move.l #$00010000,SC(a6) ; SC is +2^(-16382) <12/11/91, JPO> <Z4><H2>
move.l #$80000000,SC+4(a6)
clr.l SC+8(a6)
FADD.X SC(a6),fp0
FMOVE.L d1,FPCR
FMUL.D TWON140,fp0
bra t_frcinx
EM1POLY:
*--Step 9 exp(X)-1 by a simple polynomial
FMOVE.X (a0),fp0 ...fp0 is X
FMUL.X fp0,fp0 ...fp0 is S := X*X
fmovem.x fp2/fp3,-(a7) ...save fp2
FMOVE.S #"$2F30CAA8",fp1 ...fp1 is B12
FMUL.X fp0,fp1 ...fp1 is S*B12
FMOVE.S #"$310F8290",fp2 ...fp2 is B11
FADD.S #"$32D73220",fp1 ...fp1 is B10+S*B12
FMUL.X fp0,fp2 ...fp2 is S*B11
FMUL.X fp0,fp1 ...fp1 is S*(B10 + ...
FADD.S #"$3493F281",fp2 ...fp2 is B9+S*...
FADD.D EM1B8,fp1 ...fp1 is B8+S*...
FMUL.X fp0,fp2 ...fp2 is S*(B9+...
FMUL.X fp0,fp1 ...fp1 is S*(B8+...
FADD.D EM1B7,fp2 ...fp2 is B7+S*...
FADD.D EM1B6,fp1 ...fp1 is B6+S*...
FMUL.X fp0,fp2 ...fp2 is S*(B7+...
FMUL.X fp0,fp1 ...fp1 is S*(B6+...
FADD.D EM1B5,fp2 ...fp2 is B5+S*...
FADD.D EM1B4,fp1 ...fp1 is B4+S*...
FMUL.X fp0,fp2 ...fp2 is S*(B5+...
FMUL.X fp0,fp1 ...fp1 is S*(B4+...
FADD.D EM1B3,fp2 ...fp2 is B3+S*...
FADD.X EM1B2,fp1 ...fp1 is B2+S*...
FMUL.X fp0,fp2 ...fp2 is S*(B3+...
FMUL.X fp0,fp1 ...fp1 is S*(B2+...
FMUL.X fp0,fp2 ...fp2 is S*S*(B3+...)
FMUL.X (a0),fp1 ...fp1 is X*S*(B2...
FMUL.S #"$3F000000",fp0 ...fp0 is S*B1
FADD.X fp2,fp1 ...fp1 is Q
* ...fp2 released
fmovem.x (a7)+,fp2/fp3 ...fp2 restored
FADD.X fp1,fp0 ...fp0 is S*B1+Q
* ...fp1 released
FMOVE.L d1,FPCR
FADD.X (a0),fp0
bra t_frcinx
EM1BIG:
*--Step 10 |X| > 70 log2
MOVE.L (a0),d0
; CMPI.L #0,d0 ; DELETED <3/28/91, JPO> <T3>
tst.l d0 ; <3/28/91, JPO> <T3>
BGT.W EXPC1
*--Step 10.2
FMOVE.S #"$BF800000",fp0 ...fp0 is -1
FMOVE.L d1,FPCR
FADD.S #"$00800000",fp0 ...-1 + 2^(-126)
bra t_frcinx
; stwotox
; CHANGE LOG:
; 07 Jan 91 JPO Deleted constants BOUNDS1, BOUNDS2, HUGE, and TINY
; (not referenced). Changed constant labels EXPA1-EXPA5
; to EXPT1-EXPT5 and table label EXPTBL to EXP2TBL.
; Moved constants and table EXP2TBL to file 'constants.a'.
; Changed local variable names X and N to XPWR and NPWR,
; respectively. Deleted local variable names XDCARE and
; XFRAC (not referenced). Renamed label "EXPBIG" to
; "EXPBIG2". Deleted unreferenced label "EXPSM".
;
*
* stwotox.sa 3.1 12/10/90
*
* stwotox --- 2**X
* stwotoxd --- 2**X for denormalized X
* stentox --- 10**X
* stentoxd --- 10**X for denormalized X
*
* Input: Double-extended number X in location pointed to
* by address register a0.
*
* Output: The function values are returned in Fp0.
*
* Accuracy and Monotonicity: The returned result is within 2 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program stwotox takes approximately 190 cycles and the
* program stentox takes approximately 200 cycles.
*
* Algorithm:
*
* twotox
* 1. If |X| > 16480, go to ExpBig2.
*
* 2. If |X| < 2**(-70), go to Exp2Sm.
*
* 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore
* decompose N as
* N = 64(M + M') + j, j = 0,1,2,...,63.
*
* 4. Overwrite r := r * log2. Then
* 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).
* Go to expr to compute that expression.
*
* tentox
* 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig2.
*
* 2. If |X| < 2**(-70), go to Exp2Sm.
*
* 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set
* N := round-to-int(y). Decompose N as
* N = 64(M + M') + j, j = 0,1,2,...,63.
*
* 4. Define r as
* r := ((X - N*L1)-N*L2) * L10
* where L1, L2 are the leading and trailing parts of log_10(2)/64
* and L10 is the natural log of 10. Then
* 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).
* Go to expr to compute that expression.
*
* expr
* 1. Fetch 2**(j/64) from table as Fact1 and Fact2.
*
* 2. Overwrite Fact1 and Fact2 by
* Fact1 := 2**(M) * Fact1
* Fact2 := 2**(M) * Fact2
* Thus Fact1 + Fact2 = 2**(M) * 2**(j/64).
*
* 3. Calculate P where 1 + P approximates exp(r):
* P = r + r*r*(A1+r*(A2+...+r*A5)).
*
* 4. Let AdjFact := 2**(M'). Return
* AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ).
* Exit.
*
* ExpBig2
* 1. Generate overflow by Huge * Huge if X > 0; otherwise, generate
* underflow by Tiny * Tiny.
*
* Exp2Sm
* 1. Return 1 + X.
*
* Copyright (C) Motorola, Inc. 1990
* All Rights Reserved
*
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
* The copyright notice above does not evidence any
* actual or intended publication of such source code.
* STWOTOX IDNT 2,1 Motorola 040 Floating Point Software Package
;N equ L_SCR1 ; renamed <1/7/91, JPO>
NPWR equ L_SCR1 ; <1/7/91, JPO>
;X equ FP_SCR1 ; renamed <1/7/91, JPO>
XPWR equ FP_SCR1 ; <1/7/91, JPO>
;XDCARE equ X+2 ; removed <1/7/91, JPO>
;XFRAC equ X+4 ; removed <1/7/91, JPO>
ADJFACT equ FP_SCR2
FACT1 equ FP_SCR3
FACT1HI equ FACT1+4
FACT1LOW equ FACT1+8
FACT2 equ FP_SCR4
FACT2HI equ FACT2+4
FACT2LOW equ FACT2+8
stwotoxd:
*--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
fmove.l d1,fpcr ...set user's rounding mode/precision
Fmove.S #"$3F800000",FP0 ...RETURN 1 + X
move.l (a0),d0
or.l #$00800001,d0
fadd.s d0,fp0
bra t_frcinx
stwotox:
*--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
FMOVEM.X (a0),FP0 ...LOAD INPUT, do not set cc's
MOVE.L (A0),D0
MOVE.W 4(A0),D0
FMOVE.X FP0,XPWR(a6) ; <1/7/91, JPO>
ANDI.L #$7FFFFFFF,D0
CMPI.L #$3FB98000,D0 ...|X| >= 2**(-70)?
BGE.B TWOOK1
BRA.W EXPBORS
TWOOK1:
CMPI.L #$400D80C0,D0 ...|X| > 16480?
BLE.B TWOMAIN
BRA.W EXPBORS
TWOMAIN:
*--USUAL CASE, 2^(-70) <= |X| <= 16480
FMOVE.X FP0,FP1
FMUL.S #"$42800000",FP1 ...64 * X
FMOVE.L FP1,NPWR(a6) ...N = ROUND-TO-INT(64 X) <1/7/91, JPO>
; filter out case where X is integral <3/28/91, JPO> <T3> thru next <T3>
fmove.l fpsr,d0 ; check for inexact conversion <3/28/91, JPO>
andi.w #$0200,d0 ; <3/28/91, JPO>
bne.b TWOMAIN1 ; inexact <3/28/91, JPO>
move.l NPWR(a6),d0 ; check if conversion result is a multiple of 64 <3/28/91, JPO>
bftst d0{26:6} ; <3/28/91, JPO>
bne.b TWOMAIN1 ; no <3/28/91, JPO>
asr.l #6,d0 ; yes. get integer equivalent of X <3/28/91, JPO>
add.l #$3fff,d0 ; add bias <3/28/91, JPO>
bmi.b @1 ; extended subnormal <3/28/91, JPO>
cmp.l #$7fff,d0 ; overflow? <3/28/91, JPO>
bge.b TWOMAIN1 ; yes <3/28/91, JPO>
move.w d0,XPWR(a6) ; normal exact result <3/28/91, JPO>
move.w #$3fff,ADJFACT(a6) ; adjust factor is unity <3/28/91, JPO>
bra.b @2 ; continue below <3/28/91, JPO>
@1: ; subnormal result (may underflow) <3/28/91, JPO>
add.l #$3fff,d0 ; second bias <3/28/91, JPO>
clr.l XPWR(a6) ; result is smallest positive normal <3/28/91, JPO>
move.w d0,ADJFACT(a6) ; adjust factor is denorm factor <3/28/91, JPO>
@2: ; result may depend on rounding modes <3/28/91, JPO>
move.l #$80000000,XPWR+4(a6) ; prepare rest of result <3/28/91, JPO>
clr.l XPWR+8(a6) ; <3/28/91, JPO>
fmove.x XPWR(a6),fp0 ; fp0 <- result <3/28/91, JPO>
move.l #$80000000,ADJFACT+4(a6) ; prepare rest of adjust factor <3/28/91, JPO>
clr.l ADJFACT+8(a6) ; <3/28/91, JPO>
fmove.l d1,FPCR ; restore user's rounding <3/28/91, JPO>
fmul.x ADJFACT(a6),fp0 ; final result to fp0 <3/28/91, JPO>
rts ; return <3/28/91, JPO>
TWOMAIN1: ; label ADDED <3/28/91, JPO> <T3>
MOVE.L d2,-(sp)
LEA EXP2TBL,a1 ...LOAD ADDRESS OF TABLE OF 2^(J/64) <1/7/91, JPO>
FMOVE.L NPWR(a6),FP1 ...N --> FLOATING FMT <1/7/91, JPO>
MOVE.L NPWR(a6),D0 ; <1/7/91, JPO>
MOVE.L D0,d2
ANDI.L #$3F,D0 ...D0 IS J
ASL.L #4,D0 ...DISPLACEMENT FOR 2^(J/64)
ADDA.L D0,a1 ...ADDRESS FOR 2^(J/64)
ASR.L #6,d2 ...d2 IS L, N = 64L + J
MOVE.L d2,D0
ASR.L #1,D0 ...D0 IS M
SUB.L D0,d2 ...d2 IS M', N = 64(M+M') + J
ADDI.L #$3FFF,d2
MOVE.W d2,ADJFACT(a6) ...ADJFACT IS 2^(M')
MOVE.L (sp)+,d2
*--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
*--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
*--ADJFACT = 2^(M').
*--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
FMUL.S #"$3C800000",FP1 ...(1/64)*N
MOVE.L (a1)+,FACT1(a6)
MOVE.L (a1)+,FACT1HI(a6)
MOVE.L (a1)+,FACT1LOW(a6)
MOVE.W (a1)+,FACT2(a6)
clr.w FACT2+2(a6)
FSUB.X FP1,FP0 ...X - (1/64)*INT(64 X)
MOVE.W (a1)+,FACT2HI(a6)
clr.w FACT2HI+2(a6)
clr.l FACT2LOW(a6)
ADD.W D0,FACT1(a6)
FMUL.X LOG2,FP0 ...FP0 IS R
ADD.W D0,FACT2(a6)
BRA.W expr
EXPBORS:
*--FPCR, D0 SAVED
CMPI.L #$3FFF8000,D0
BGT.B EXPBIG2 ; label RENAMED <1/7/91, JPO>
;EXPSM: ; label DELETED <1/7/91, JPO>
*--|X| IS SMALL, RETURN 1 + X
FMOVE.L d1,FPCR ;restore users exceptions
FADD.S #"$3F800000",FP0 ...RETURN 1 + X
bra t_frcinx
EXPBIG2: ; label RENAMED <1/7/91, JPO>
*--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW
*--REGISTERS SAVE SO FAR ARE FPCR AND D0
MOVE.L XPWR(a6),D0 ; <1/7/91, JPO>
; CMPI.L #0,D0 ; DELETED <3/28/91, JPO> <T3>
; BLT.B EXPNEG ; DELETED <3/28/91, JPO> <T3>
tst.l d0 ; <3/28/91, JPO> <T3>
bmi.b EXPNEG ; <3/28/91, JPO> <T3>
bclr.b #7,(a0) ;t_ovfl expects positive value
bra t_ovfl
EXPNEG:
bclr.b #7,(a0) ;t_unfl expects positive value
bra t_unfl
stentoxd:
*--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
fmove.l d1,fpcr ...set user's rounding mode/precision
Fmove.S #"$3F800000",FP0 ...RETURN 1 + X
move.l (a0),d0
or.l #$00800001,d0
fadd.s d0,fp0
bra t_frcinx
stentox:
*--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
FMOVEM.X (a0),FP0 ...LOAD INPUT, do not set cc's
MOVE.L (A0),D0
MOVE.W 4(A0),D0
FMOVE.X FP0,XPWR(a6) ; <1/7/91, JPO>
ANDI.L #$7FFFFFFF,D0
CMPI.L #$3FB98000,D0 ...|X| >= 2**(-70)?
BGE.B TENOK1
BRA.B EXPBORS
TENOK1:
CMPI.L #$400B9B07,D0 ...|X| <= 16480*log2/log10 ?
BLE.B TENMAIN
BRA.B EXPBORS
TENMAIN:
*--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10
FMOVE.X FP0,FP1
FMUL.D L2TEN64,FP1 ...X*64*LOG10/LOG2
FMOVE.L FP1,NPWR(a6) ...N=INT(X*64*LOG10/LOG2) <1/7/91, JPO>
MOVE.L d2,-(sp)
LEA EXP2TBL,a1 ...LOAD ADDRESS OF TABLE OF 2^(J/64) <1/7/91, JPO>
FMOVE.L NPWR(a6),FP1 ...N --> FLOATING FMT <1/7/91, JPO>
MOVE.L NPWR(a6),D0 ; <1/7/91, JPO>
MOVE.L D0,d2
ANDI.L #$3F,D0 ...D0 IS J
ASL.L #4,D0 ...DISPLACEMENT FOR 2^(J/64)
ADDA.L D0,a1 ...ADDRESS FOR 2^(J/64)
ASR.L #6,d2 ...d2 IS L, N = 64L + J
MOVE.L d2,D0
ASR.L #1,D0 ...D0 IS M
SUB.L D0,d2 ...d2 IS M', N = 64(M+M') + J
ADDI.L #$3FFF,d2
MOVE.W d2,ADJFACT(a6) ...ADJFACT IS 2^(M')
MOVE.L (sp)+,d2
*--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
*--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
*--ADJFACT = 2^(M').
*--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
FMOVE.X FP1,FP2
FMUL.D L10TWO1,FP1 ...N*(LOG2/64LOG10)_LEAD
MOVE.L (a1)+,FACT1(a6)
FMUL.X L10TWO2,FP2 ...N*(LOG2/64LOG10)_TRAIL
MOVE.L (a1)+,FACT1HI(a6)
MOVE.L (a1)+,FACT1LOW(a6)
FSUB.X FP1,FP0 ...X - N L_LEAD
MOVE.W (a1)+,FACT2(a6)
FSUB.X FP2,FP0 ...X - N L_TRAIL
clr.w FACT2+2(a6)
MOVE.W (a1)+,FACT2HI(a6)
clr.w FACT2HI+2(a6)
clr.l FACT2LOW(a6)
FMUL.X LOG10,FP0 ...FP0 IS R
ADD.W D0,FACT1(a6)
ADD.W D0,FACT2(a6)
expr:
*--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN.
*--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64).
*--FP0 IS R. THE FOLLOWING CODE COMPUTES
*-- 2**(M'+M) * 2**(J/64) * EXP(R)
FMOVE.X FP0,FP1
FMUL.X FP1,FP1 ...FP1 IS S = R*R
FMOVE.D EXPT5,FP2 ...FP2 IS A5 <1/7/91, JPO>
FMOVE.D EXPT4,FP3 ...FP3 IS A4 <1/7/91, JPO>
FMUL.X FP1,FP2 ...FP2 IS S*A5
FMUL.X FP1,FP3 ...FP3 IS S*A4
FADD.D EXPT3,FP2 ...FP2 IS A3+S*A5 <1/7/91, JPO>
FADD.D EXPT2,FP3 ...FP3 IS A2+S*A4 <1/7/91, JPO>
FMUL.X FP1,FP2 ...FP2 IS S*(A3+S*A5)
FMUL.X FP1,FP3 ...FP3 IS S*(A2+S*A4)
FADD.D EXPT1,FP2 ...FP2 IS A1+S*(A3+S*A5) <1/7/91, JPO>
FMUL.X FP0,FP3 ...FP3 IS R*S*(A2+S*A4)
FMUL.X FP1,FP2 ...FP2 IS S*(A1+S*(A3+S*A5))
FADD.X FP3,FP0 ...FP0 IS R+R*S*(A2+S*A4)
FADD.X FP2,FP0 ...FP0 IS EXP(R) - 1
*--FINAL RECONSTRUCTION PROCESS
*--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
FMUL.X FACT1(a6),FP0
FADD.X FACT2(a6),FP0
FADD.X FACT1(a6),FP0
FMOVE.L d1,FPCR ;restore users exceptions
clr.w ADJFACT+2(a6)
move.l #$80000000,ADJFACT+4(a6)
clr.l ADJFACT+8(a6)
FMUL.X ADJFACT(a6),FP0 ...FINAL ADJUSTMENT
bra t_frcinx