mpw/toolbox/loader.cpp
2013-08-23 23:04:23 -04:00

555 lines
12 KiB
C++

/*
* Copyright (c) 2013, Kelvin W Sherlock
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <string>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <CoreServices/CoreServices.h>
#include <cpu/defs.h>
#include <cpu/CpuModule.h>
#include <cpu/fmem.h>
#include "loader.h"
#include "toolbox.h"
#include "stackframe.h"
#include "RM.h"
#include "MM.h"
#include <macos/sysequ.h>
using ToolBox::Log;
namespace Loader {
namespace {
const uint32_t kCODE = 0x434f4445;
struct SegmentInfo
{
SegmentInfo()
{}
SegmentInfo(uint32_t h, uint32_t a, uint32_t s, bool fm = false):
handle(h), address(a), size(s), farModel(fm)
{}
uint32_t handle = 0;
uint32_t address = 0;
uint32_t size = 0;
bool farModel = false;
// todo -- also add std::string segmentName?
};
struct Segment0Info
{
Segment0Info()
{}
uint32_t a5 = 0;
uint32_t jtOffset = 0;
uint32_t jtSize = 0;
uint32_t jtStart = 0;
uint32_t jtEnd = 0;
};
std::vector<SegmentInfo> Segments;
void reloc1(const uint8_t *r, uint32_t address, uint32_t offset)
{
// %00000000 00000000 -> break
// %0xxxxxxx -> 7-bit value
// %1xxxxxxx xxxxxxxx -> 15-bit value
// %00000000 1xxxxxxx x{8} x{8} x{8} -> 31 bit value
// ^ that's what the documentation says..
// that's how the 32-bit bootstrap works
// DumpCode ignores the high 2 bytes.
for(;;)
{
uint32_t x;
uint32_t value;
x = *r++;
if (x == 0x00)
{
x = *r++;
if (x == 0x00) break;
x = (x << 8) | *r++;
x = (x << 8) | *r++;
x = (x << 8) | *r++;
}
else if (x & 0x80)
{
x &= 0x7f;
x = (x << 8) | *r++;
}
x <<= 1; // * 2
address += x;
value = memoryReadLong(address);
memoryWriteLong(value + offset, address);
}
}
// relocate a far model segment.
void relocate(uint32_t address, uint32_t size, uint32_t a5)
{
// see MacOS RT Architecture, 10-23 .. 10-26
uint32_t offset;
offset = memoryReadLong(address + 0x14);
if (memoryReadLong(address + 0x18) != a5 && offset != 0)
{
memoryWriteLong(a5, address + 0x18); // current value of A5
reloc1(memoryPointer(address + offset), address, a5);
}
offset = memoryReadLong(address + 0x1c);
if (memoryReadLong(address + 0x20) != address && offset != 0)
{
memoryWriteLong(address, address + 0x20); // segment load address.
reloc1(memoryPointer(address + offset), address, address + 0x28);
}
}
// load code seg 0.
uint16_t LoadCode0(Segment0Info &rv)
{
uint16_t err;
uint32_t rHandle;
uint32_t size;
uint32_t address;
SegmentInfo si;
err = RM::Native::GetResource(kCODE, 0, rHandle);
if (err) return err;
MM::Native::HLock(rHandle);
MM::Native::GetHandleSize(rHandle, size);
address = memoryReadLong(rHandle);
uint32_t above = memoryReadLong(address);
uint32_t below = memoryReadLong(address + 4);
rv.jtSize = memoryReadLong(address + 8);
rv.jtOffset = memoryReadLong(address + 12);
si.size = above + below;
// create a new handle for the a5 segment.
err = MM::Native::NewHandle(si.size, true, si.handle, si.address);
if (err) return err;
MM::Native::HLock(si.handle);
rv.a5 = si.address + below;
// copy jump table data from the CODE segment
// to the new handle.
std::memcpy(memoryPointer(rv.a5 + rv.jtOffset), memoryPointer(address + 16), rv.jtSize);
if (Segments.size() <= 0)
Segments.resize(0 + 1);
Segments[0] = si;
rv.jtStart = rv.a5 + rv.jtOffset;
rv.jtEnd = rv.jtStart + rv.jtSize;
// TODO -- should ReleaseResource on rHandle.
return 0;
}
// load a standard code segment.
uint16_t LoadCode(uint16_t segment)
{
uint16_t err;
SegmentInfo si;
err = RM::Native::GetResource(kCODE, segment, si.handle);
if (err) return err;
MM::Native::HLock(si.handle);
MM::Native::GetHandleSize(si.handle, si.size);
si.address = memoryReadLong(si.handle);
if (memoryReadWord(si.address) == 0xffff)
si.farModel = true;
if (Segments.size() <= segment)
Segments.resize(segment + 1);
Segments[segment] = si;
return 0;
}
}
namespace Native
{
uint16_t LoadFile(const std::string &path)
{
HFSUniStr255 fork = {0,{0}};
ResFileRefNum refNum;
FSRef ref;
OSErr err;
// open the file
// load code seg 0
// iterate and load other segments
// TODO -- call RM::Native::OpenResourceFile(...);
err = FSPathMakeRef( (const UInt8 *)path.c_str(), &ref, NULL);
if (err) return err;
::FSGetResourceForkName(&fork);
err = ::FSOpenResourceFile(&ref,
fork.length,
fork.unicode,
fsRdPerm,
&refNum);
if (err) return err;
// in case of restart?
Segments.clear();
RM::Native::SetResLoad(true);
// load code 0.
Segment0Info seg0;
err = LoadCode0(seg0);
// iterate through the jump table to get the other
// code segments to load
bool farModel = false;
for (uint32_t jtEntry = seg0.jtStart; jtEntry < seg0.jtEnd; jtEntry += 8)
{
uint16_t seg;
uint32_t offset;
if (farModel)
{
seg = memoryReadWord(jtEntry + 0);
offset = memoryReadLong(jtEntry + 4);
assert(memoryReadWord(jtEntry + 2) == 0xA9F0);
}
else
{
if (memoryReadWord(jtEntry + 2) == 0xffff)
{
farModel = true;
continue;
}
offset = memoryReadWord(jtEntry + 0);
seg = memoryReadWord(jtEntry + 4);
assert(memoryReadWord(jtEntry + 2) == 0x3F3C);
assert(memoryReadWord(jtEntry + 6) == 0xA9F0);
}
// load, if necessary.
assert(seg);
if (seg >= Segments.size() || Segments[seg].address == 0)
{
err = LoadCode(seg);
if (err) return err;
const auto &p = Segments[seg];
if (p.farModel)
{
relocate(p.address, p.size, seg0.a5);
}
}
const auto &p = Segments[seg];
assert(p.address); // missing segment?!
assert(offset < p.size);
// +$4/$28 for the jump table info header.
uint32_t address = p.address + offset + (p.farModel ? 0x00 : 0x04); // was 0x28
if (!p.farModel)
memoryWriteWord(seg, jtEntry + 0);
memoryWriteWord(0x4EF9, jtEntry + 2);
memoryWriteLong(address, jtEntry + 4);
}
// seg:16, jmp:16, address:32
uint32_t pc = memoryReadLong(seg0.jtStart + 4);
cpuSetAReg(5, seg0.a5);
cpuInitializeFromNewPC(pc);
// 0x0934 - CurJTOffset (16-bit)
memoryWriteWord(seg0.jtOffset, MacOS::CurJTOffset);
// 0x0904 -- CurrentA5 (32-bit)
memoryWriteLong(seg0.a5, MacOS::CurrentA5);
// 0x0910 CurApName (31-char max pstring.)
{
std::string s;
auto ix = path.rfind('/');
if (ix == path.npos)
{
s = path.substr(0, 31);
}
else
{
s = path.substr(ix + 1, 31);
}
ToolBox::WritePString(MacOS::CurApName, s);
}
return 0;
}
//
void LoadDebugNames(DebugNameTable &table)
{
if (Segments.empty()) return;
// skip segment 0 since that's the dispatch table.
for (unsigned seg = 1; seg < Segments.size(); ++seg)
{
const auto &si = Segments[seg];
const uint8_t *memory = memoryPointer(si.address);
unsigned size = si.size;
// store entry for start?
// SEG_## = pc ?
// See MacsBugs appendix D.
/*
* format is:
* (optional) LINK A6, [$4e56]
* opcodes...
* RTS/JMP (A0)/RTD
* procedure name
* procedure constants
*
* name is fixed at 8 or 16 bytes or variable length.
* valid characters = [a-zA-Z0-9_%.] and space, to pad fixed length names.
*
*/
uint32_t start = 0;
for (unsigned pc = 0; pc < size; )
{
bool eof = false; // end of function
uint32_t oldpc = pc;
uint16_t opcode = (memory[pc + 0] << 8) | memory[pc + 1];
pc += 2;
switch(opcode)
{
case 0x4E56:
// link A6,#
start = oldpc;
break;
case 0x4E75: // rts
case 0x4ED0: // jmp (a0)
eof = true;
break;
case 0x4E74: // rtd #
pc += 2; // skip the argument.
eof = true;
break;
default:
break;
}
if (!eof) continue;
std::string s;
unsigned length = memory[pc];
// variable length.
if (length >= 0x80 && length <= 0x9f)
{
length &= 0x7f;
++pc;
if (length == 0)
length = memory[++pc];
s.assign((const char *)memory + pc, length);
// align to word boundary
pc = (pc + length + 1) & ~1;
}
else
{
// fixed length. high byte may or may not be set.
// if high byte of second char is set, it's a 16-char string.
length = 8;
s.assign((const char *)memory + pc, 8);
s[0] &= 0x7f;
while (s.length() && s.back() == ' ') s.pop_back();
if ((s.length() >= 2) && (s[1] & 0x80))
{
s[1] &= 0x7f;
length = 16;
std::string tmp((const char *)memory + pc + 8, 8);
while (tmp.length() && tmp.back() == ' ') tmp.pop_back();
tmp.push_back('.');
tmp.append(s);
s = std::move(tmp);
}
pc += length;
}
// verify name is legal.
bool ok = std::all_of(s.begin(), s.end(),
[](char c) {
if (c >= 'A' && c <= 'Z') return true;
if (c >= 'a' && c <= 'z') return true;
if (c >= '0' && c <= '9') return true;
if (c == '.') return true;
if (c == '_') return true;
if (c == '%') return true;
return false;
});
if (!ok)
{
// also set start.
start = pc = oldpc + 2;
if (opcode == 0x4E74) start += 2;
continue;
}
// constant data
length = (memory[pc + 0] << 8) | memory[pc + 1];
pc += 2;
if (length)
{
pc = (pc + length + 1) & ~1;
}
// TODO -- should this include the name and data?
table.emplace(std::move(s), std::make_pair(start + si.address, pc + si.address));
// in case no link instruction...
start = pc;
}
}
}
} // Internal namespace
/*
* struct { uint32_t a5; uint32_t pc; };
* future state: Native::LoadFile(const std::string &path, a5pc) ->
* load file, set global page variables, set A5, return PC.
*
*/
uint16_t UnloadSeg(uint16_t trap)
{
// UnloadSeg (routineAddr: Ptr);
/*
* ------------
* +0 routineAddr
* ------------
*
*/
uint32_t sp;
uint32_t routineAddr;
sp = StackFrame<4>(routineAddr);
Log("%04x UnloadSeg(%08x)\n", trap, routineAddr);
return 0;
}
}