; ; File: Power.a ; ; Contains: Routines to emulate exponential functions ; ; Originally Written by: Motorola Inc. ; Adapted to Apple/MPW: Jon Okada ; ; Copyright: © 1990,1991, 1993 by Apple Computer, Inc., all rights reserved. ; ; This file is used in these builds: Mac32 ; ; Change History (most recent first): ; ; 2/3/93 CSS Update from Horror: ;

12/21/91 jmp (BG,Z4) (for JOkada) Corrected three constants under labels ; "EM1TINY:" and "EM12TINY" to obtain correct rounding behavior ; for FETOXM1 with small arguments. ; ——————————————————————————————————————————————————————————————————————————————————————— ; Pre-Horror ROM comments begin here. ; ——————————————————————————————————————————————————————————————————————————————————————— ; <3> 4/13/91 BG Modified FTWOTOX emulation to not signal inexact on exact cases. ; <2> 3/30/91 BG Rolling in Jon Okada's latest changes. ; <1> 12/14/90 BG First checked into TERROR/BBS. ; ; power.a ; Based upon Motorola files 'setox.sa' and 'stwotox.sa'. ; setox ; CHANGE LOG: ; 07 Jan 91 JPO Deleted constants HUGE and TINY (not referenced). ; Moved constants and table EXPTBL to file ; 'constants.a'. ; 28 Mar 91 JPO Modified 'stwotox' to deliver exact results for ; integral input. Streamlined some instruction ; streams throughout the file. ; 11 Dec 91 JPO Corrected three constants under labels "EM1TINY:" ; and "EM12TINY" to obtain correct rounding behavior ; for FETOXM1 with small arguments. ; * * setox.sa 3.1 12/10/90 * * The entry point setox computes the exponential of a value. * setoxd does the same except the input value is a denormalized * number. setoxm1 computes exp(X)-1, and setoxm1d computes * exp(X)-1 for denormalized X. * * INPUT * ----- * Double-extended value in memory location pointed to by address * register a0. * * OUTPUT * ------ * exp(X) or exp(X)-1 returned in floating-point register fp0. * * ACCURACY and MONOTONICITY * ------------------------- * The returned result is within 0.85 ulps in 64 significant bit, i.e. * within 0.5001 ulp to 53 bits if the result is subsequently rounded * to double precision. The result is provably monotonic in double * precision. * * SPEED * ----- * Two timings are measured, both in the copy-back mode. The * first one is measured when the function is invoked the first time * (so the instructions and data are not in cache), and the * second one is measured when the function is reinvoked at the same * input argument. * * The program setox takes approximately 210/190 cycles for input * argument X whose magnitude is less than 16380 log2, which * is the usual situation. For the less common arguments, * depending on their values, the program may run faster or slower -- * but no worse than 10% slower even in the extreme cases. * * The program setoxm1 takes approximately ???/??? cycles for input * argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes * approximately ???/??? cycles. For the less common arguments, * depending on their values, the program may run faster or slower -- * but no worse than 10% slower even in the extreme cases. * * ALGORITHM and IMPLEMENTATION NOTES * ---------------------------------- * * setoxd * ------ * Step 1. Set ans := 1.0 * * Step 2. Return ans := ans + sign(X)*2^(-126). Exit. * Notes: This will always generate one exception -- inexact. * * * setox * ----- * * Step 1. Filter out extreme cases of input argument. * 1.1 If |X| >= 2^(-65), go to Step 1.3. * 1.2 Go to Step 7. * 1.3 If |X| < 16380 log(2), go to Step 2. * 1.4 Go to Step 8. * Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. * To avoid the use of floating-point comparisons, a * compact representation of |X| is used. This format is a * 32-bit integer, the upper (more significant) 16 bits are * the sign and biased exponent field of |X|; the lower 16 * bits are the 16 most significant fraction (including the * explicit bit) bits of |X|. Consequently, the comparisons * in Steps 1.1 and 1.3 can be performed by integer comparison. * Note also that the constant 16380 log(2) used in Step 1.3 * is also in the compact form. Thus taking the branch * to Step 2 guarantees |X| < 16380 log(2). There is no harm * to have a small number of cases where |X| is less than, * but close to, 16380 log(2) and the branch to Step 9 is * taken. * * Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). * 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken) * 2.2 N := round-to-nearest-integer( X * 64/log2 ). * 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63. * 2.4 Calculate M = (N - J)/64; so N = 64M + J. * 2.5 Calculate the address of the stored value of 2^(J/64). * 2.6 Create the value Scale = 2^M. * Notes: The calculation in 2.2 is really performed by * * Z := X * constant * N := round-to-nearest-integer(Z) * * where * * constant := single-precision( 64/log 2 ). * * Using a single-precision constant avoids memory access. * Another effect of using a single-precision "constant" is * that the calculated value Z is * * Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). * * This error has to be considered later in Steps 3 and 4. * * Step 3. Calculate X - N*log2/64. * 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). * 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). * Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate * the value -log2/64 to 88 bits of accuracy. * b) N*L1 is exact because N is no longer than 22 bits and * L1 is no longer than 24 bits. * c) The calculation X+N*L1 is also exact due to cancellation. * Thus, R is practically X+N(L1+L2) to full 64 bits. * d) It is important to estimate how large can |R| be after * Step 3.2. * * N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) * X*64/log2 (1+eps) = N + f, |f| <= 0.5 * X*64/log2 - N = f - eps*X 64/log2 * X - N*log2/64 = f*log2/64 - eps*X * * * Now |X| <= 16446 log2, thus * * |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 * <= 0.57 log2/64. * This bound will be used in Step 4. * * Step 4. Approximate exp(R)-1 by a polynomial * p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) * Notes: a) In order to reduce memory access, the coefficients are * made as "short" as possible: A1 (which is 1/2), A4 and A5 * are single precision; A2 and A3 are double precision. * b) Even with the restrictions above, * |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. * Note that 0.0062 is slightly bigger than 0.57 log2/64. * c) To fully utilize the pipeline, p is separated into * two independent pieces of roughly equal complexities * p = [ R + R*S*(A2 + S*A4) ] + * [ S*(A1 + S*(A3 + S*A5)) ] * where S = R*R. * * Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by * ans := T + ( T*p + t) * where T and t are the stored values for 2^(J/64). * Notes: 2^(J/64) is stored as T and t where T+t approximates * 2^(J/64) to roughly 85 bits; T is in extended precision * and t is in single precision. Note also that T is rounded * to 62 bits so that the last two bits of T are zero. The * reason for such a special form is that T-1, T-2, and T-8 * will all be exact --- a property that will give much * more accurate computation of the function EXPM1. * * Step 6. Reconstruction of exp(X) * exp(X) = 2^M * 2^(J/64) * exp(R). * 6.1 If AdjFlag = 0, go to 6.3 * 6.2 ans := ans * AdjScale * 6.3 Restore the user FPCR * 6.4 Return ans := ans * Scale. Exit. * Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, * |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will * neither overflow nor underflow. If AdjFlag = 1, that * means that * X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. * Hence, exp(X) may overflow or underflow or neither. * When that is the case, AdjScale = 2^(M1) where M1 is * approximately M. Thus 6.2 will never cause over/underflow. * Possible exception in 6.4 is overflow or underflow. * The inexact exception is not generated in 6.4. Although * one can argue that the inexact flag should always be * raised, to simulate that exception cost to much than the * flag is worth in practical uses. * * Step 7. Return 1 + X. * 7.1 ans := X * 7.2 Restore user FPCR. * 7.3 Return ans := 1 + ans. Exit * Notes: For non-zero X, the inexact exception will always be * raised by 7.3. That is the only exception raised by 7.3. * Note also that we use the FMOVEM instruction to move X * in Step 7.1 to avoid unnecessary trapping. (Although * the FMOVEM may not seem relevant since X is normalized, * the precaution will be useful in the library version of * this code where the separate entry for denormalized inputs * will be done away with.) * * Step 8. Handle exp(X) where |X| >= 16380log2. * 8.1 If |X| > 16480 log2, go to Step 9. * (mimic 2.2 - 2.6) * 8.2 N := round-to-integer( X * 64/log2 ) * 8.3 Calculate J = N mod 64, J = 0,1,...,63 * 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1. * 8.5 Calculate the address of the stored value 2^(J/64). * 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. * 8.7 Go to Step 3. * Notes: Refer to notes for 2.2 - 2.6. * * Step 9. Handle exp(X), |X| > 16480 log2. * 9.1 If X < 0, go to 9.3 * 9.2 ans := Huge, go to 9.4 * 9.3 ans := Tiny. * 9.4 Restore user FPCR. * 9.5 Return ans := ans * ans. Exit. * Notes: Exp(X) will surely overflow or underflow, depending on * X's sign. "Huge" and "Tiny" are respectively large/tiny * extended-precision numbers whose square over/underflow * with an inexact result. Thus, 9.5 always raises the * inexact together with either overflow or underflow. * * * setoxm1d * -------- * * Step 1. Set ans := 0 * * Step 2. Return ans := X + ans. Exit. * Notes: This will return X with the appropriate rounding * precision prescribed by the user FPCR. * * setoxm1 * ------- * * Step 1. Check |X| * 1.1 If |X| >= 1/4, go to Step 1.3. * 1.2 Go to Step 7. * 1.3 If |X| < 70 log(2), go to Step 2. * 1.4 Go to Step 10. * Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. * However, it is conceivable |X| can be small very often * because EXPM1 is intended to evaluate exp(X)-1 accurately * when |X| is small. For further details on the comparisons, * see the notes on Step 1 of setox. * * Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). * 2.1 N := round-to-nearest-integer( X * 64/log2 ). * 2.2 Calculate J = N mod 64; so J = 0,1,2,..., or 63. * 2.3 Calculate M = (N - J)/64; so N = 64M + J. * 2.4 Calculate the address of the stored value of 2^(J/64). * 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M). * Notes: See the notes on Step 2 of setox. * * Step 3. Calculate X - N*log2/64. * 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). * 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). * Notes: Applying the analysis of Step 3 of setox in this case * shows that |R| <= 0.0055 (note that |X| <= 70 log2 in * this case). * * Step 4. Approximate exp(R)-1 by a polynomial * p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) * Notes: a) In order to reduce memory access, the coefficients are * made as "short" as possible: A1 (which is 1/2), A5 and A6 * are single precision; A2, A3 and A4 are double precision. * b) Even with the restriction above, * |p - (exp(R)-1)| < |R| * 2^(-72.7) * for all |R| <= 0.0055. * c) To fully utilize the pipeline, p is separated into * two independent pieces of roughly equal complexity * p = [ R*S*(A2 + S*(A4 + S*A6)) ] + * [ R + S*(A1 + S*(A3 + S*A5)) ] * where S = R*R. * * Step 5. Compute 2^(J/64)*p by * p := T*p * where T and t are the stored values for 2^(J/64). * Notes: 2^(J/64) is stored as T and t where T+t approximates * 2^(J/64) to roughly 85 bits; T is in extended precision * and t is in single precision. Note also that T is rounded * to 62 bits so that the last two bits of T are zero. The * reason for such a special form is that T-1, T-2, and T-8 * will all be exact --- a property that will be exploited * in Step 6 below. The total relative error in p is no * bigger than 2^(-67.7) compared to the final result. * * Step 6. Reconstruction of exp(X)-1 * exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). * 6.1 If M <= 63, go to Step 6.3. * 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 * 6.3 If M >= -3, go to 6.5. * 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 * 6.5 ans := (T + OnebySc) + (p + t). * 6.6 Restore user FPCR. * 6.7 Return ans := Sc * ans. Exit. * Notes: The various arrangements of the expressions give accurate * evaluations. * * Step 7. exp(X)-1 for |X| < 1/4. * 7.1 If |X| >= 2^(-65), go to Step 9. * 7.2 Go to Step 8. * * Step 8. Calculate exp(X)-1, |X| < 2^(-65). * 8.1 If |X| < 2^(-16312), goto 8.3 * 8.2 Restore FPCR; return ans := X - 2^(-16382). Exit. * 8.3 X := X * 2^(140). * 8.4 Restore FPCR; ans := ans - 2^(-16382). * Return ans := ans*2^(140). Exit * Notes: The idea is to return "X - tiny" under the user * precision and rounding modes. To avoid unnecessary * inefficiency, we stay away from denormalized numbers the * best we can. For |X| >= 2^(-16312), the straightforward * 8.2 generates the inexact exception as the case warrants. * * Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial * p = X + X*X*(B1 + X*(B2 + ... + X*B12)) * Notes: a) In order to reduce memory access, the coefficients are * made as "short" as possible: B1 (which is 1/2), B9 to B12 * are single precision; B3 to B8 are double precision; and * B2 is double extended. * b) Even with the restriction above, * |p - (exp(X)-1)| < |X| 2^(-70.6) * for all |X| <= 0.251. * Note that 0.251 is slightly bigger than 1/4. * c) To fully preserve accuracy, the polynomial is computed * as X + ( S*B1 + Q ) where S = X*X and * Q = X*S*(B2 + X*(B3 + ... + X*B12)) * d) To fully utilize the pipeline, Q is separated into * two independent pieces of roughly equal complexity * Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + * [ S*S*(B3 + S*(B5 + ... + S*B11)) ] * * Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. * 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical * purposes. Therefore, go to Step 1 of setox. * 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes. * ans := -1 * Restore user FPCR * Return ans := ans + 2^(-126). Exit. * Notes: 10.2 will always create an inexact and return -1 + tiny * in the user rounding precision and mode. * * * Copyright (C) Motorola, Inc. 1990 * All Rights Reserved * * THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA * The copyright notice above does not evidence any * actual or intended publication of such source code. * setox IDNT 2,1 Motorola 040 Floating Point Software Package ADJFLAG equ L_SCR2 SCALE equ FP_SCR1 ADJSCALE equ FP_SCR2 SC equ FP_SCR3 ONEBYSC equ FP_SCR4 setoxd: *--entry point for EXP(X), X is denormalized MOVE.L (a0),d0 ANDI.L #$80000000,d0 ORI.L #$00800000,d0 ...sign(X)*2^(-126) MOVE.L d0,-(sp) FMOVE.S #"$3F800000",fp0 fmove.l d1,fpcr FADD.S (sp)+,fp0 bra t_frcinx setox: *--entry point for EXP(X), here X is finite, non-zero, and not NaN's *--Step 1. MOVE.L (a0),d0 ...load part of input X ANDI.L #$7FFF0000,d0 ...biased expo. of X CMPI.L #$3FBE0000,d0 ...2^(-65) BGE.B EXPC1 ...normal case BRA.W EXPSM EXPC1: *--The case |X| >= 2^(-65) MOVE.W 4(a0),d0 ...expo. and partial sig. of |X| CMPI.L #$400CB167,d0 ...16380 log2 trunc. 16 bits BLT.B EXPMAIN ...normal case BRA.W EXPBIG EXPMAIN: *--Step 2. *--This is the normal branch: 2^(-65) <= |X| < 16380 log2. FMOVE.X (a0),fp0 ...load input from (a0) FMOVE.X fp0,fp1 FMUL.S #"$42B8AA3B",fp0 ...64/log2 * X fmovem.x fp2/fp3,-(a7) ...save fp2 ; MOVE.L #0,ADJFLAG(a6) ; DELETED <3/28/91, JPO> clr.l ADJFLAG(a6) ; <3/28/91, JPO> FMOVE.L fp0,d0 ...N = int( X * 64/log2 ) LEA EXPTBL,a1 FMOVE.L d0,fp0 ...convert to floating-format MOVE.L d0,L_SCR1(a6) ...save N temporarily ANDI.L #$3F,d0 ...D0 is J = N mod 64 LSL.L #4,d0 ADDA.L d0,a1 ...address of 2^(J/64) MOVE.L L_SCR1(a6),d0 ASR.L #6,d0 ...D0 is M ADDI.W #$3FFF,d0 ...biased expo. of 2^(M) MOVE.W L2,L_SCR1(a6) ...prefetch L2, no need in CB EXPCONT1: *--Step 3. *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, *--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) FMOVE.X fp0,fp2 FMUL.S #"$BC317218",fp0 ...N * L1, L1 = lead(-log2/64) FMUL.X L2,fp2 ...N * L2, L1+L2 = -log2/64 FADD.X fp1,fp0 ...X + N*L1 FADD.X fp2,fp0 ...fp0 is R, reduced arg. * MOVE.W #$3FA5,EXPA3 ...load EXPA3 in cache *--Step 4. *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) *--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R *--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] FMOVE.X fp0,fp1 FMUL.X fp1,fp1 ...fp1 IS S = R*R FMOVE.S #"$3AB60B70",fp2 ...fp2 IS A5 * MOVE.W #0,2(a1) ...load 2^(J/64) in cache FMUL.X fp1,fp2 ...fp2 IS S*A5 FMOVE.X fp1,fp3 FMUL.S #"$3C088895",fp3 ...fp3 IS S*A4 FADD.D EXPA3,fp2 ...fp2 IS A3+S*A5 FADD.D EXPA2,fp3 ...fp3 IS A2+S*A4 FMUL.X fp1,fp2 ...fp2 IS S*(A3+S*A5) MOVE.W d0,SCALE(a6) ...SCALE is 2^(M) in extended clr.w SCALE+2(a6) move.l #$80000000,SCALE+4(a6) clr.l SCALE+8(a6) FMUL.X fp1,fp3 ...fp3 IS S*(A2+S*A4) FADD.S #"$3F000000",fp2 ...fp2 IS A1+S*(A3+S*A5) FMUL.X fp0,fp3 ...fp3 IS R*S*(A2+S*A4) FMUL.X fp1,fp2 ...fp2 IS S*(A1+S*(A3+S*A5)) FADD.X fp3,fp0 ...fp0 IS R+R*S*(A2+S*A4), * ...fp3 released FMOVE.X (a1)+,fp1 ...fp1 is lead. pt. of 2^(J/64) FADD.X fp2,fp0 ...fp0 is EXP(R) - 1 * ...fp2 released *--Step 5 *--final reconstruction process *--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) FMUL.X fp1,fp0 ...2^(J/64)*(Exp(R)-1) fmovem.x (a7)+,fp2/fp3 ...fp2 restored FADD.S (a1),fp0 ...accurate 2^(J/64) FADD.X fp1,fp0 ...2^(J/64) + 2^(J/64)*... MOVE.L ADJFLAG(a6),d0 *--Step 6 TST.L D0 BEQ.B NORMAL ADJUST: FMUL.X ADJSCALE(a6),fp0 NORMAL: FMOVE.L d1,FPCR ...restore user FPCR FMUL.X SCALE(a6),fp0 ...multiply 2^(M) bra t_frcinx EXPSM: *--Step 7 FMOVEM.X (a0),fp0 ...in case X is denormalized FMOVE.L d1,FPCR FADD.S #"$3F800000",fp0 ...1+X in user mode bra t_frcinx EXPBIG: *--Step 8 CMPI.L #$400CB27C,d0 ...16480 log2 BGT.B EXP2BIG *--Steps 8.2 -- 8.6 FMOVE.X (a0),fp0 ...load input from (a0) FMOVE.X fp0,fp1 FMUL.S #"$42B8AA3B",fp0 ...64/log2 * X fmovem.x fp2/fp3,-(a7) ...save fp2 MOVE.L #1,ADJFLAG(a6) FMOVE.L fp0,d0 ...N = int( X * 64/log2 ) LEA EXPTBL,a1 FMOVE.L d0,fp0 ...convert to floating-format MOVE.L d0,L_SCR1(a6) ...save N temporarily ANDI.L #$3F,d0 ...D0 is J = N mod 64 LSL.L #4,d0 ADDA.L d0,a1 ...address of 2^(J/64) MOVE.L L_SCR1(a6),d0 ASR.L #6,d0 ...D0 is K MOVE.L d0,L_SCR1(a6) ...save K temporarily ASR.L #1,d0 ...D0 is M1 SUB.L d0,L_SCR1(a6) ...a1 is M ADDI.W #$3FFF,d0 ...biased expo. of 2^(M1) MOVE.W d0,ADJSCALE(a6) ...ADJSCALE := 2^(M1) clr.w ADJSCALE+2(a6) move.l #$80000000,ADJSCALE+4(a6) clr.l ADJSCALE+8(a6) MOVE.L L_SCR1(a6),d0 ...D0 is M ADDI.W #$3FFF,d0 ...biased expo. of 2^(M) BRA.W EXPCONT1 ...go back to Step 3 EXP2BIG: *--Step 9 FMOVE.L d1,FPCR MOVE.L (a0),d0 bclr.b #sign_bit,(a0) ...setox always returns positive ; CMPI.L #0,d0 ; DELETED <3/28/91, JPO> ; BLT t_unfl ; DELETED <3/28/91, JPO> tst.l d0 ; <3/28/91, JPO> bmi t_unfl ; <3/28/91, JPO> BRA t_ovfl setoxm1d: *--entry point for EXPM1(X), here X is denormalized *--Step 0. bra t_extdnrm setoxm1: *--entry point for EXPM1(X), here X is finite, non-zero, non-NaN *--Step 1. *--Step 1.1 MOVE.L (a0),d0 ...load part of input X ANDI.L #$7FFF0000,d0 ...biased expo. of X CMPI.L #$3FFD0000,d0 ...1/4 BGE.B EM1CON1 ...|X| >= 1/4 BRA.W EM1SM EM1CON1: *--Step 1.3 *--The case |X| >= 1/4 MOVE.W 4(a0),d0 ...expo. and partial sig. of |X| CMPI.L #$4004C215,d0 ...70log2 rounded up to 16 bits BLE.B EM1MAIN ...1/4 <= |X| <= 70log2 BRA.W EM1BIG EM1MAIN: *--Step 2. *--This is the case: 1/4 <= |X| <= 70 log2. FMOVE.X (a0),fp0 ...load input from (a0) FMOVE.X fp0,fp1 FMUL.S #"$42B8AA3B",fp0 ...64/log2 * X fmovem.x fp2/fp3,-(a7) ...save fp2 * MOVE.W #$3F81,EM1A4 ...prefetch in CB mode FMOVE.L fp0,d0 ...N = int( X * 64/log2 ) LEA EXPTBL,a1 FMOVE.L d0,fp0 ...convert to floating-format MOVE.L d0,L_SCR1(a6) ...save N temporarily ANDI.L #$3F,d0 ...D0 is J = N mod 64 LSL.L #4,d0 ADDA.L d0,a1 ...address of 2^(J/64) MOVE.L L_SCR1(a6),d0 ASR.L #6,d0 ...D0 is M MOVE.L d0,L_SCR1(a6) ...save a copy of M * MOVE.W #$3FDC,L2 ...prefetch L2 in CB mode *--Step 3. *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, *--a0 points to 2^(J/64), D0 and a1 both contain M FMOVE.X fp0,fp2 FMUL.S #"$BC317218",fp0 ...N * L1, L1 = lead(-log2/64) FMUL.X L2,fp2 ...N * L2, L1+L2 = -log2/64 FADD.X fp1,fp0 ...X + N*L1 FADD.X fp2,fp0 ...fp0 is R, reduced arg. * MOVE.W #$3FC5,EM1A2 ...load EM1A2 in cache ADDI.W #$3FFF,d0 ...D0 is biased expo. of 2^M *--Step 4. *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) *--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R *--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] FMOVE.X fp0,fp1 FMUL.X fp1,fp1 ...fp1 IS S = R*R FMOVE.S #"$3950097B",fp2 ...fp2 IS a6 * MOVE.W #0,2(a1) ...load 2^(J/64) in cache FMUL.X fp1,fp2 ...fp2 IS S*A6 FMOVE.X fp1,fp3 FMUL.S #"$3AB60B6A",fp3 ...fp3 IS S*A5 FADD.D EM1A4,fp2 ...fp2 IS A4+S*A6 FADD.D EM1A3,fp3 ...fp3 IS A3+S*A5 MOVE.W d0,SC(a6) ...SC is 2^(M) in extended clr.w SC+2(a6) move.l #$80000000,SC+4(a6) clr.l SC+8(a6) FMUL.X fp1,fp2 ...fp2 IS S*(A4+S*A6) MOVE.L L_SCR1(a6),d0 ...D0 is M NEG.W D0 ...D0 is -M FMUL.X fp1,fp3 ...fp3 IS S*(A3+S*A5) ADDI.W #$3FFF,d0 ...biased expo. of 2^(-M) FADD.D EM1A2,fp2 ...fp2 IS A2+S*(A4+S*A6) FADD.S #"$3F000000",fp3 ...fp3 IS A1+S*(A3+S*A5) FMUL.X fp1,fp2 ...fp2 IS S*(A2+S*(A4+S*A6)) ORI.W #$8000,d0 ...signed/expo. of -2^(-M) MOVE.W d0,ONEBYSC(a6) ...OnebySc is -2^(-M) clr.w ONEBYSC+2(a6) move.l #$80000000,ONEBYSC+4(a6) clr.l ONEBYSC+8(a6) FMUL.X fp3,fp1 ...fp1 IS S*(A1+S*(A3+S*A5)) * ...fp3 released FMUL.X fp0,fp2 ...fp2 IS R*S*(A2+S*(A4+S*A6)) FADD.X fp1,fp0 ...fp0 IS R+S*(A1+S*(A3+S*A5)) * ...fp1 released FADD.X fp2,fp0 ...fp0 IS EXP(R)-1 * ...fp2 released fmovem.x (a7)+,fp2/fp3 ...fp2 restored *--Step 5 *--Compute 2^(J/64)*p FMUL.X (a1),fp0 ...2^(J/64)*(Exp(R)-1) *--Step 6 *--Step 6.1 MOVE.L L_SCR1(a6),d0 ...retrieve M CMPI.L #63,d0 BLE.B MLE63 *--Step 6.2 M >= 64 FMOVE.S 12(a1),fp1 ...fp1 is t FADD.X ONEBYSC(a6),fp1 ...fp1 is t+OnebySc FADD.X fp1,fp0 ...p+(t+OnebySc), fp1 released FADD.X (a1),fp0 ...T+(p+(t+OnebySc)) BRA.B EM1SCALE MLE63: *--Step 6.3 M <= 63 CMPI.L #-3,d0 BGE.B MGEN3 MLTN3: *--Step 6.4 M <= -4 FADD.S 12(a1),fp0 ...p+t FADD.X (a1),fp0 ...T+(p+t) FADD.X ONEBYSC(a6),fp0 ...OnebySc + (T+(p+t)) BRA.B EM1SCALE MGEN3: *--Step 6.5 -3 <= M <= 63 FMOVE.X (a1)+,fp1 ...fp1 is T FADD.S (a1),fp0 ...fp0 is p+t FADD.X ONEBYSC(a6),fp1 ...fp1 is T+OnebySc FADD.X fp1,fp0 ...(T+OnebySc)+(p+t) EM1SCALE: *--Step 6.6 FMOVE.L d1,FPCR FMUL.X SC(a6),fp0 bra t_frcinx EM1SM: *--Step 7 |X| < 1/4. CMPI.L #$3FBE0000,d0 ...2^(-65) BGE.B EM1POLY EM1TINY: *--Step 8 |X| < 2^(-65) ; CMPI.L #$00330000,d0 ...2^(-16312) - DELETED <12/11/91, JPO>

cmpi.l #$00470000,d0 ; compare |X| with 2^(-16312) <12/11/91, JPO>

BLT.B EM12TINY *--Step 8.2 ; MOVE.L #$80010000,SC(a6) ...SC is -2^(-16382) - DELETED <12/11/91, JPO>

move.l #$00010000,SC(a6) ; SC is +2^(-16382) <12/11/91, JPO>

move.l #$80000000,SC+4(a6) clr.l SC+8(a6) FMOVE.X (a0),fp0 FMOVE.L d1,FPCR FADD.X SC(a6),fp0 bra t_frcinx EM12TINY: *--Step 8.3 FMOVE.X (a0),fp0 FMUL.D TWO140,fp0 ; MOVE.L #$80010000,SC(a6) ; DELETED <12/11/91, JPO>

move.l #$00010000,SC(a6) ; SC is +2^(-16382) <12/11/91, JPO>

move.l #$80000000,SC+4(a6) clr.l SC+8(a6) FADD.X SC(a6),fp0 FMOVE.L d1,FPCR FMUL.D TWON140,fp0 bra t_frcinx EM1POLY: *--Step 9 exp(X)-1 by a simple polynomial FMOVE.X (a0),fp0 ...fp0 is X FMUL.X fp0,fp0 ...fp0 is S := X*X fmovem.x fp2/fp3,-(a7) ...save fp2 FMOVE.S #"$2F30CAA8",fp1 ...fp1 is B12 FMUL.X fp0,fp1 ...fp1 is S*B12 FMOVE.S #"$310F8290",fp2 ...fp2 is B11 FADD.S #"$32D73220",fp1 ...fp1 is B10+S*B12 FMUL.X fp0,fp2 ...fp2 is S*B11 FMUL.X fp0,fp1 ...fp1 is S*(B10 + ... FADD.S #"$3493F281",fp2 ...fp2 is B9+S*... FADD.D EM1B8,fp1 ...fp1 is B8+S*... FMUL.X fp0,fp2 ...fp2 is S*(B9+... FMUL.X fp0,fp1 ...fp1 is S*(B8+... FADD.D EM1B7,fp2 ...fp2 is B7+S*... FADD.D EM1B6,fp1 ...fp1 is B6+S*... FMUL.X fp0,fp2 ...fp2 is S*(B7+... FMUL.X fp0,fp1 ...fp1 is S*(B6+... FADD.D EM1B5,fp2 ...fp2 is B5+S*... FADD.D EM1B4,fp1 ...fp1 is B4+S*... FMUL.X fp0,fp2 ...fp2 is S*(B5+... FMUL.X fp0,fp1 ...fp1 is S*(B4+... FADD.D EM1B3,fp2 ...fp2 is B3+S*... FADD.X EM1B2,fp1 ...fp1 is B2+S*... FMUL.X fp0,fp2 ...fp2 is S*(B3+... FMUL.X fp0,fp1 ...fp1 is S*(B2+... FMUL.X fp0,fp2 ...fp2 is S*S*(B3+...) FMUL.X (a0),fp1 ...fp1 is X*S*(B2... FMUL.S #"$3F000000",fp0 ...fp0 is S*B1 FADD.X fp2,fp1 ...fp1 is Q * ...fp2 released fmovem.x (a7)+,fp2/fp3 ...fp2 restored FADD.X fp1,fp0 ...fp0 is S*B1+Q * ...fp1 released FMOVE.L d1,FPCR FADD.X (a0),fp0 bra t_frcinx EM1BIG: *--Step 10 |X| > 70 log2 MOVE.L (a0),d0 ; CMPI.L #0,d0 ; DELETED <3/28/91, JPO> tst.l d0 ; <3/28/91, JPO> BGT.W EXPC1 *--Step 10.2 FMOVE.S #"$BF800000",fp0 ...fp0 is -1 FMOVE.L d1,FPCR FADD.S #"$00800000",fp0 ...-1 + 2^(-126) bra t_frcinx ; stwotox ; CHANGE LOG: ; 07 Jan 91 JPO Deleted constants BOUNDS1, BOUNDS2, HUGE, and TINY ; (not referenced). Changed constant labels EXPA1-EXPA5 ; to EXPT1-EXPT5 and table label EXPTBL to EXP2TBL. ; Moved constants and table EXP2TBL to file 'constants.a'. ; Changed local variable names X and N to XPWR and NPWR, ; respectively. Deleted local variable names XDCARE and ; XFRAC (not referenced). Renamed label "EXPBIG" to ; "EXPBIG2". Deleted unreferenced label "EXPSM". ; * * stwotox.sa 3.1 12/10/90 * * stwotox --- 2**X * stwotoxd --- 2**X for denormalized X * stentox --- 10**X * stentoxd --- 10**X for denormalized X * * Input: Double-extended number X in location pointed to * by address register a0. * * Output: The function values are returned in Fp0. * * Accuracy and Monotonicity: The returned result is within 2 ulps in * 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the * result is subsequently rounded to double precision. The * result is provably monotonic in double precision. * * Speed: The program stwotox takes approximately 190 cycles and the * program stentox takes approximately 200 cycles. * * Algorithm: * * twotox * 1. If |X| > 16480, go to ExpBig2. * * 2. If |X| < 2**(-70), go to Exp2Sm. * * 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore * decompose N as * N = 64(M + M') + j, j = 0,1,2,...,63. * * 4. Overwrite r := r * log2. Then * 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). * Go to expr to compute that expression. * * tentox * 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig2. * * 2. If |X| < 2**(-70), go to Exp2Sm. * * 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set * N := round-to-int(y). Decompose N as * N = 64(M + M') + j, j = 0,1,2,...,63. * * 4. Define r as * r := ((X - N*L1)-N*L2) * L10 * where L1, L2 are the leading and trailing parts of log_10(2)/64 * and L10 is the natural log of 10. Then * 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). * Go to expr to compute that expression. * * expr * 1. Fetch 2**(j/64) from table as Fact1 and Fact2. * * 2. Overwrite Fact1 and Fact2 by * Fact1 := 2**(M) * Fact1 * Fact2 := 2**(M) * Fact2 * Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). * * 3. Calculate P where 1 + P approximates exp(r): * P = r + r*r*(A1+r*(A2+...+r*A5)). * * 4. Let AdjFact := 2**(M'). Return * AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). * Exit. * * ExpBig2 * 1. Generate overflow by Huge * Huge if X > 0; otherwise, generate * underflow by Tiny * Tiny. * * Exp2Sm * 1. Return 1 + X. * * Copyright (C) Motorola, Inc. 1990 * All Rights Reserved * * THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA * The copyright notice above does not evidence any * actual or intended publication of such source code. * STWOTOX IDNT 2,1 Motorola 040 Floating Point Software Package ;N equ L_SCR1 ; renamed <1/7/91, JPO> NPWR equ L_SCR1 ; <1/7/91, JPO> ;X equ FP_SCR1 ; renamed <1/7/91, JPO> XPWR equ FP_SCR1 ; <1/7/91, JPO> ;XDCARE equ X+2 ; removed <1/7/91, JPO> ;XFRAC equ X+4 ; removed <1/7/91, JPO> ADJFACT equ FP_SCR2 FACT1 equ FP_SCR3 FACT1HI equ FACT1+4 FACT1LOW equ FACT1+8 FACT2 equ FP_SCR4 FACT2HI equ FACT2+4 FACT2LOW equ FACT2+8 stwotoxd: *--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT fmove.l d1,fpcr ...set user's rounding mode/precision Fmove.S #"$3F800000",FP0 ...RETURN 1 + X move.l (a0),d0 or.l #$00800001,d0 fadd.s d0,fp0 bra t_frcinx stwotox: *--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S FMOVEM.X (a0),FP0 ...LOAD INPUT, do not set cc's MOVE.L (A0),D0 MOVE.W 4(A0),D0 FMOVE.X FP0,XPWR(a6) ; <1/7/91, JPO> ANDI.L #$7FFFFFFF,D0 CMPI.L #$3FB98000,D0 ...|X| >= 2**(-70)? BGE.B TWOOK1 BRA.W EXPBORS TWOOK1: CMPI.L #$400D80C0,D0 ...|X| > 16480? BLE.B TWOMAIN BRA.W EXPBORS TWOMAIN: *--USUAL CASE, 2^(-70) <= |X| <= 16480 FMOVE.X FP0,FP1 FMUL.S #"$42800000",FP1 ...64 * X FMOVE.L FP1,NPWR(a6) ...N = ROUND-TO-INT(64 X) <1/7/91, JPO> ; filter out case where X is integral <3/28/91, JPO> thru next fmove.l fpsr,d0 ; check for inexact conversion <3/28/91, JPO> andi.w #$0200,d0 ; <3/28/91, JPO> bne.b TWOMAIN1 ; inexact <3/28/91, JPO> move.l NPWR(a6),d0 ; check if conversion result is a multiple of 64 <3/28/91, JPO> bftst d0{26:6} ; <3/28/91, JPO> bne.b TWOMAIN1 ; no <3/28/91, JPO> asr.l #6,d0 ; yes. get integer equivalent of X <3/28/91, JPO> add.l #$3fff,d0 ; add bias <3/28/91, JPO> bmi.b @1 ; extended subnormal <3/28/91, JPO> cmp.l #$7fff,d0 ; overflow? <3/28/91, JPO> bge.b TWOMAIN1 ; yes <3/28/91, JPO> move.w d0,XPWR(a6) ; normal exact result <3/28/91, JPO> move.w #$3fff,ADJFACT(a6) ; adjust factor is unity <3/28/91, JPO> bra.b @2 ; continue below <3/28/91, JPO> @1: ; subnormal result (may underflow) <3/28/91, JPO> add.l #$3fff,d0 ; second bias <3/28/91, JPO> clr.l XPWR(a6) ; result is smallest positive normal <3/28/91, JPO> move.w d0,ADJFACT(a6) ; adjust factor is denorm factor <3/28/91, JPO> @2: ; result may depend on rounding modes <3/28/91, JPO> move.l #$80000000,XPWR+4(a6) ; prepare rest of result <3/28/91, JPO> clr.l XPWR+8(a6) ; <3/28/91, JPO> fmove.x XPWR(a6),fp0 ; fp0 <- result <3/28/91, JPO> move.l #$80000000,ADJFACT+4(a6) ; prepare rest of adjust factor <3/28/91, JPO> clr.l ADJFACT+8(a6) ; <3/28/91, JPO> fmove.l d1,FPCR ; restore user's rounding <3/28/91, JPO> fmul.x ADJFACT(a6),fp0 ; final result to fp0 <3/28/91, JPO> rts ; return <3/28/91, JPO> TWOMAIN1: ; label ADDED <3/28/91, JPO> MOVE.L d2,-(sp) LEA EXP2TBL,a1 ...LOAD ADDRESS OF TABLE OF 2^(J/64) <1/7/91, JPO> FMOVE.L NPWR(a6),FP1 ...N --> FLOATING FMT <1/7/91, JPO> MOVE.L NPWR(a6),D0 ; <1/7/91, JPO> MOVE.L D0,d2 ANDI.L #$3F,D0 ...D0 IS J ASL.L #4,D0 ...DISPLACEMENT FOR 2^(J/64) ADDA.L D0,a1 ...ADDRESS FOR 2^(J/64) ASR.L #6,d2 ...d2 IS L, N = 64L + J MOVE.L d2,D0 ASR.L #1,D0 ...D0 IS M SUB.L D0,d2 ...d2 IS M', N = 64(M+M') + J ADDI.L #$3FFF,d2 MOVE.W d2,ADJFACT(a6) ...ADJFACT IS 2^(M') MOVE.L (sp)+,d2 *--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), *--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. *--ADJFACT = 2^(M'). *--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. FMUL.S #"$3C800000",FP1 ...(1/64)*N MOVE.L (a1)+,FACT1(a6) MOVE.L (a1)+,FACT1HI(a6) MOVE.L (a1)+,FACT1LOW(a6) MOVE.W (a1)+,FACT2(a6) clr.w FACT2+2(a6) FSUB.X FP1,FP0 ...X - (1/64)*INT(64 X) MOVE.W (a1)+,FACT2HI(a6) clr.w FACT2HI+2(a6) clr.l FACT2LOW(a6) ADD.W D0,FACT1(a6) FMUL.X LOG2,FP0 ...FP0 IS R ADD.W D0,FACT2(a6) BRA.W expr EXPBORS: *--FPCR, D0 SAVED CMPI.L #$3FFF8000,D0 BGT.B EXPBIG2 ; label RENAMED <1/7/91, JPO> ;EXPSM: ; label DELETED <1/7/91, JPO> *--|X| IS SMALL, RETURN 1 + X FMOVE.L d1,FPCR ;restore users exceptions FADD.S #"$3F800000",FP0 ...RETURN 1 + X bra t_frcinx EXPBIG2: ; label RENAMED <1/7/91, JPO> *--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW *--REGISTERS SAVE SO FAR ARE FPCR AND D0 MOVE.L XPWR(a6),D0 ; <1/7/91, JPO> ; CMPI.L #0,D0 ; DELETED <3/28/91, JPO> ; BLT.B EXPNEG ; DELETED <3/28/91, JPO> tst.l d0 ; <3/28/91, JPO> bmi.b EXPNEG ; <3/28/91, JPO> bclr.b #7,(a0) ;t_ovfl expects positive value bra t_ovfl EXPNEG: bclr.b #7,(a0) ;t_unfl expects positive value bra t_unfl stentoxd: *--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT fmove.l d1,fpcr ...set user's rounding mode/precision Fmove.S #"$3F800000",FP0 ...RETURN 1 + X move.l (a0),d0 or.l #$00800001,d0 fadd.s d0,fp0 bra t_frcinx stentox: *--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S FMOVEM.X (a0),FP0 ...LOAD INPUT, do not set cc's MOVE.L (A0),D0 MOVE.W 4(A0),D0 FMOVE.X FP0,XPWR(a6) ; <1/7/91, JPO> ANDI.L #$7FFFFFFF,D0 CMPI.L #$3FB98000,D0 ...|X| >= 2**(-70)? BGE.B TENOK1 BRA.B EXPBORS TENOK1: CMPI.L #$400B9B07,D0 ...|X| <= 16480*log2/log10 ? BLE.B TENMAIN BRA.B EXPBORS TENMAIN: *--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 FMOVE.X FP0,FP1 FMUL.D L2TEN64,FP1 ...X*64*LOG10/LOG2 FMOVE.L FP1,NPWR(a6) ...N=INT(X*64*LOG10/LOG2) <1/7/91, JPO> MOVE.L d2,-(sp) LEA EXP2TBL,a1 ...LOAD ADDRESS OF TABLE OF 2^(J/64) <1/7/91, JPO> FMOVE.L NPWR(a6),FP1 ...N --> FLOATING FMT <1/7/91, JPO> MOVE.L NPWR(a6),D0 ; <1/7/91, JPO> MOVE.L D0,d2 ANDI.L #$3F,D0 ...D0 IS J ASL.L #4,D0 ...DISPLACEMENT FOR 2^(J/64) ADDA.L D0,a1 ...ADDRESS FOR 2^(J/64) ASR.L #6,d2 ...d2 IS L, N = 64L + J MOVE.L d2,D0 ASR.L #1,D0 ...D0 IS M SUB.L D0,d2 ...d2 IS M', N = 64(M+M') + J ADDI.L #$3FFF,d2 MOVE.W d2,ADJFACT(a6) ...ADJFACT IS 2^(M') MOVE.L (sp)+,d2 *--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), *--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. *--ADJFACT = 2^(M'). *--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. FMOVE.X FP1,FP2 FMUL.D L10TWO1,FP1 ...N*(LOG2/64LOG10)_LEAD MOVE.L (a1)+,FACT1(a6) FMUL.X L10TWO2,FP2 ...N*(LOG2/64LOG10)_TRAIL MOVE.L (a1)+,FACT1HI(a6) MOVE.L (a1)+,FACT1LOW(a6) FSUB.X FP1,FP0 ...X - N L_LEAD MOVE.W (a1)+,FACT2(a6) FSUB.X FP2,FP0 ...X - N L_TRAIL clr.w FACT2+2(a6) MOVE.W (a1)+,FACT2HI(a6) clr.w FACT2HI+2(a6) clr.l FACT2LOW(a6) FMUL.X LOG10,FP0 ...FP0 IS R ADD.W D0,FACT1(a6) ADD.W D0,FACT2(a6) expr: *--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. *--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). *--FP0 IS R. THE FOLLOWING CODE COMPUTES *-- 2**(M'+M) * 2**(J/64) * EXP(R) FMOVE.X FP0,FP1 FMUL.X FP1,FP1 ...FP1 IS S = R*R FMOVE.D EXPT5,FP2 ...FP2 IS A5 <1/7/91, JPO> FMOVE.D EXPT4,FP3 ...FP3 IS A4 <1/7/91, JPO> FMUL.X FP1,FP2 ...FP2 IS S*A5 FMUL.X FP1,FP3 ...FP3 IS S*A4 FADD.D EXPT3,FP2 ...FP2 IS A3+S*A5 <1/7/91, JPO> FADD.D EXPT2,FP3 ...FP3 IS A2+S*A4 <1/7/91, JPO> FMUL.X FP1,FP2 ...FP2 IS S*(A3+S*A5) FMUL.X FP1,FP3 ...FP3 IS S*(A2+S*A4) FADD.D EXPT1,FP2 ...FP2 IS A1+S*(A3+S*A5) <1/7/91, JPO> FMUL.X FP0,FP3 ...FP3 IS R*S*(A2+S*A4) FMUL.X FP1,FP2 ...FP2 IS S*(A1+S*(A3+S*A5)) FADD.X FP3,FP0 ...FP0 IS R+R*S*(A2+S*A4) FADD.X FP2,FP0 ...FP0 IS EXP(R) - 1 *--FINAL RECONSTRUCTION PROCESS *--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) FMUL.X FACT1(a6),FP0 FADD.X FACT2(a6),FP0 FADD.X FACT1(a6),FP0 FMOVE.L d1,FPCR ;restore users exceptions clr.w ADJFACT+2(a6) move.l #$80000000,ADJFACT+4(a6) clr.l ADJFACT+8(a6) FMUL.X ADJFACT(a6),FP0 ...FINAL ADJUSTMENT bra t_frcinx