mirror of
https://github.com/classilla/tenfourfox.git
synced 2024-11-04 10:05:51 +00:00
569 lines
17 KiB
C++
569 lines
17 KiB
C++
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
||
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
||
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||
|
|
||
|
// Implement TimeStamp::Now() with QueryPerformanceCounter() controlled with
|
||
|
// values of GetTickCount().
|
||
|
|
||
|
#include "mozilla/MathAlgorithms.h"
|
||
|
#include "mozilla/TimeStamp.h"
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <intrin.h>
|
||
|
#include <windows.h>
|
||
|
|
||
|
// To enable logging define to your favorite logging API
|
||
|
#define LOG(x)
|
||
|
|
||
|
class AutoCriticalSection
|
||
|
{
|
||
|
public:
|
||
|
AutoCriticalSection(LPCRITICAL_SECTION aSection)
|
||
|
: mSection(aSection)
|
||
|
{
|
||
|
::EnterCriticalSection(mSection);
|
||
|
}
|
||
|
~AutoCriticalSection()
|
||
|
{
|
||
|
::LeaveCriticalSection(mSection);
|
||
|
}
|
||
|
private:
|
||
|
LPCRITICAL_SECTION mSection;
|
||
|
};
|
||
|
|
||
|
// Estimate of the smallest duration of time we can measure.
|
||
|
static volatile ULONGLONG sResolution;
|
||
|
static volatile ULONGLONG sResolutionSigDigs;
|
||
|
static const double kNsPerSecd = 1000000000.0;
|
||
|
static const LONGLONG kNsPerMillisec = 1000000;
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Global constants
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
// Tolerance to failures settings.
|
||
|
//
|
||
|
// What is the interval we want to have failure free.
|
||
|
// in [ms]
|
||
|
static const uint32_t kFailureFreeInterval = 5000;
|
||
|
// How many failures we are willing to tolerate in the interval.
|
||
|
static const uint32_t kMaxFailuresPerInterval = 4;
|
||
|
// What is the threshold to treat fluctuations as actual failures.
|
||
|
// in [ms]
|
||
|
static const uint32_t kFailureThreshold = 50;
|
||
|
|
||
|
// If we are not able to get the value of GTC time increment, use this value
|
||
|
// which is the most usual increment.
|
||
|
static const DWORD kDefaultTimeIncrement = 156001;
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Global variables, not changing at runtime
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* The [mt] unit:
|
||
|
*
|
||
|
* Many values are kept in ticks of the Performance Coutner x 1000,
|
||
|
* further just referred as [mt], meaning milli-ticks.
|
||
|
*
|
||
|
* This is needed to preserve maximum precision of the performance frequency
|
||
|
* representation. GetTickCount values in milliseconds are multiplied with
|
||
|
* frequency per second. Therefor we need to multiply QPC value by 1000 to
|
||
|
* have the same units to allow simple arithmentic with both QPC and GTC.
|
||
|
*/
|
||
|
|
||
|
#define ms2mt(x) ((x) * sFrequencyPerSec)
|
||
|
#define mt2ms(x) ((x) / sFrequencyPerSec)
|
||
|
#define mt2ms_f(x) (double(x) / sFrequencyPerSec)
|
||
|
|
||
|
// Result of QueryPerformanceFrequency
|
||
|
static LONGLONG sFrequencyPerSec = 0;
|
||
|
|
||
|
// How much we are tolerant to GTC occasional loose of resoltion.
|
||
|
// This number says how many multiples of the minimal GTC resolution
|
||
|
// detected on the system are acceptable. This number is empirical.
|
||
|
static const LONGLONG kGTCTickLeapTolerance = 4;
|
||
|
|
||
|
// Base tolerance (more: "inability of detection" range) threshold is calculated
|
||
|
// dynamically, and kept in sGTCResulutionThreshold.
|
||
|
//
|
||
|
// Schematically, QPC worked "100%" correctly if ((GTC_now - GTC_epoch) -
|
||
|
// (QPC_now - QPC_epoch)) was in [-sGTCResulutionThreshold, sGTCResulutionThreshold]
|
||
|
// interval every time we'd compared two time stamps.
|
||
|
// If not, then we check the overflow behind this basic threshold
|
||
|
// is in kFailureThreshold. If not, we condider it as a QPC failure. If too many
|
||
|
// failures in short time are detected, QPC is considered faulty and disabled.
|
||
|
//
|
||
|
// Kept in [mt]
|
||
|
static LONGLONG sGTCResulutionThreshold;
|
||
|
|
||
|
// If QPC is found faulty for two stamps in this interval, we engage
|
||
|
// the fault detection algorithm. For duration larger then this limit
|
||
|
// we bypass using durations calculated from QPC when jitter is detected,
|
||
|
// but don't touch the sUseQPC flag.
|
||
|
//
|
||
|
// Value is in [ms].
|
||
|
static const uint32_t kHardFailureLimit = 2000;
|
||
|
// Conversion to [mt]
|
||
|
static LONGLONG sHardFailureLimit;
|
||
|
|
||
|
// Conversion of kFailureFreeInterval and kFailureThreshold to [mt]
|
||
|
static LONGLONG sFailureFreeInterval;
|
||
|
static LONGLONG sFailureThreshold;
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Systemm status flags
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
// Flag for stable TSC that indicates platform where QPC is stable.
|
||
|
static bool sHasStableTSC = false;
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Global state variables, changing at runtime
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
// Initially true, set to false when QPC is found unstable and never
|
||
|
// returns back to true since that time.
|
||
|
static bool volatile sUseQPC = true;
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Global lock
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
// Thread spin count before entering the full wait state for sTimeStampLock.
|
||
|
// Inspired by Rob Arnold's work on PRMJ_Now().
|
||
|
static const DWORD kLockSpinCount = 4096;
|
||
|
|
||
|
// Common mutex (thanks the relative complexity of the logic, this is better
|
||
|
// then using CMPXCHG8B.)
|
||
|
// It is protecting the globals bellow.
|
||
|
static CRITICAL_SECTION sTimeStampLock;
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Global lock protected variables
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
// Timestamp in future until QPC must behave correctly.
|
||
|
// Set to now + kFailureFreeInterval on first QPC failure detection.
|
||
|
// Set to now + E * kFailureFreeInterval on following errors,
|
||
|
// where E is number of errors detected during last kFailureFreeInterval
|
||
|
// milliseconds, calculated simply as:
|
||
|
// E = (sFaultIntoleranceCheckpoint - now) / kFailureFreeInterval + 1.
|
||
|
// When E > kMaxFailuresPerInterval -> disable QPC.
|
||
|
//
|
||
|
// Kept in [mt]
|
||
|
static ULONGLONG sFaultIntoleranceCheckpoint = 0;
|
||
|
|
||
|
// Used only when GetTickCount64 is not available on the platform.
|
||
|
// Last result of GetTickCount call.
|
||
|
//
|
||
|
// Kept in [ms]
|
||
|
static DWORD sLastGTCResult = 0;
|
||
|
|
||
|
// Higher part of the 64-bit value of MozGetTickCount64,
|
||
|
// incremented atomically.
|
||
|
static DWORD sLastGTCRollover = 0;
|
||
|
|
||
|
namespace mozilla {
|
||
|
|
||
|
typedef ULONGLONG (WINAPI* GetTickCount64_t)();
|
||
|
static GetTickCount64_t sGetTickCount64 = nullptr;
|
||
|
|
||
|
// Function protecting GetTickCount result from rolling over,
|
||
|
// result is in [ms]
|
||
|
static ULONGLONG WINAPI
|
||
|
MozGetTickCount64()
|
||
|
{
|
||
|
DWORD GTC = ::GetTickCount();
|
||
|
|
||
|
// Cheaper then CMPXCHG8B
|
||
|
AutoCriticalSection lock(&sTimeStampLock);
|
||
|
|
||
|
// Pull the rollover counter forward only if new value of GTC goes way
|
||
|
// down under the last saved result
|
||
|
if ((sLastGTCResult > GTC) && ((sLastGTCResult - GTC) > (1UL << 30))) {
|
||
|
++sLastGTCRollover;
|
||
|
}
|
||
|
|
||
|
sLastGTCResult = GTC;
|
||
|
return ULONGLONG(sLastGTCRollover) << 32 | sLastGTCResult;
|
||
|
}
|
||
|
|
||
|
// Result is in [mt]
|
||
|
static inline ULONGLONG
|
||
|
PerformanceCounter()
|
||
|
{
|
||
|
LARGE_INTEGER pc;
|
||
|
::QueryPerformanceCounter(&pc);
|
||
|
return pc.QuadPart * 1000ULL;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
InitThresholds()
|
||
|
{
|
||
|
DWORD timeAdjustment = 0, timeIncrement = 0;
|
||
|
BOOL timeAdjustmentDisabled;
|
||
|
GetSystemTimeAdjustment(&timeAdjustment,
|
||
|
&timeIncrement,
|
||
|
&timeAdjustmentDisabled);
|
||
|
|
||
|
LOG(("TimeStamp: timeIncrement=%d [100ns]", timeIncrement));
|
||
|
|
||
|
if (!timeIncrement) {
|
||
|
timeIncrement = kDefaultTimeIncrement;
|
||
|
}
|
||
|
|
||
|
// Ceiling to a millisecond
|
||
|
// Example values: 156001, 210000
|
||
|
DWORD timeIncrementCeil = timeIncrement;
|
||
|
// Don't want to round up if already rounded, values will be: 156000, 209999
|
||
|
timeIncrementCeil -= 1;
|
||
|
// Convert to ms, values will be: 15, 20
|
||
|
timeIncrementCeil /= 10000;
|
||
|
// Round up, values will be: 16, 21
|
||
|
timeIncrementCeil += 1;
|
||
|
// Convert back to 100ns, values will be: 160000, 210000
|
||
|
timeIncrementCeil *= 10000;
|
||
|
|
||
|
// How many milli-ticks has the interval rounded up
|
||
|
LONGLONG ticksPerGetTickCountResolutionCeiling =
|
||
|
(int64_t(timeIncrementCeil) * sFrequencyPerSec) / 10000LL;
|
||
|
|
||
|
// GTC may jump by 32 (2*16) ms in two steps, therefor use the ceiling value.
|
||
|
sGTCResulutionThreshold =
|
||
|
LONGLONG(kGTCTickLeapTolerance * ticksPerGetTickCountResolutionCeiling);
|
||
|
|
||
|
sHardFailureLimit = ms2mt(kHardFailureLimit);
|
||
|
sFailureFreeInterval = ms2mt(kFailureFreeInterval);
|
||
|
sFailureThreshold = ms2mt(kFailureThreshold);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
InitResolution()
|
||
|
{
|
||
|
// 10 total trials is arbitrary: what we're trying to avoid by
|
||
|
// looping is getting unlucky and being interrupted by a context
|
||
|
// switch or signal, or being bitten by paging/cache effects
|
||
|
|
||
|
ULONGLONG minres = ~0ULL;
|
||
|
int loops = 10;
|
||
|
do {
|
||
|
ULONGLONG start = PerformanceCounter();
|
||
|
ULONGLONG end = PerformanceCounter();
|
||
|
|
||
|
ULONGLONG candidate = (end - start);
|
||
|
if (candidate < minres) {
|
||
|
minres = candidate;
|
||
|
}
|
||
|
} while (--loops && minres);
|
||
|
|
||
|
if (0 == minres) {
|
||
|
minres = 1;
|
||
|
}
|
||
|
|
||
|
// Converting minres that is in [mt] to nanosecods, multiplicating
|
||
|
// the argument to preserve resolution.
|
||
|
ULONGLONG result = mt2ms(minres * kNsPerMillisec);
|
||
|
if (0 == result) {
|
||
|
result = 1;
|
||
|
}
|
||
|
|
||
|
sResolution = result;
|
||
|
|
||
|
// find the number of significant digits in mResolution, for the
|
||
|
// sake of ToSecondsSigDigits()
|
||
|
ULONGLONG sigDigs;
|
||
|
for (sigDigs = 1;
|
||
|
!(sigDigs == result || 10 * sigDigs > result);
|
||
|
sigDigs *= 10);
|
||
|
|
||
|
sResolutionSigDigs = sigDigs;
|
||
|
}
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// TimeStampValue implementation
|
||
|
// ----------------------------------------------------------------------------
|
||
|
MFBT_API
|
||
|
TimeStampValue::TimeStampValue(ULONGLONG aGTC, ULONGLONG aQPC, bool aHasQPC)
|
||
|
: mGTC(aGTC)
|
||
|
, mQPC(aQPC)
|
||
|
, mHasQPC(aHasQPC)
|
||
|
, mIsNull(false)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
MFBT_API TimeStampValue&
|
||
|
TimeStampValue::operator+=(const int64_t aOther)
|
||
|
{
|
||
|
mGTC += aOther;
|
||
|
mQPC += aOther;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
MFBT_API TimeStampValue&
|
||
|
TimeStampValue::operator-=(const int64_t aOther)
|
||
|
{
|
||
|
mGTC -= aOther;
|
||
|
mQPC -= aOther;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// If the duration is less then two seconds, perform check of QPC stability
|
||
|
// by comparing both GTC and QPC calculated durations of this and aOther.
|
||
|
MFBT_API uint64_t
|
||
|
TimeStampValue::CheckQPC(const TimeStampValue& aOther) const
|
||
|
{
|
||
|
uint64_t deltaGTC = mGTC - aOther.mGTC;
|
||
|
|
||
|
if (!mHasQPC || !aOther.mHasQPC) { // Both not holding QPC
|
||
|
return deltaGTC;
|
||
|
}
|
||
|
|
||
|
uint64_t deltaQPC = mQPC - aOther.mQPC;
|
||
|
|
||
|
if (sHasStableTSC) { // For stable TSC there is no need to check
|
||
|
return deltaQPC;
|
||
|
}
|
||
|
|
||
|
// Check QPC is sane before using it.
|
||
|
int64_t diff = DeprecatedAbs(int64_t(deltaQPC) - int64_t(deltaGTC));
|
||
|
if (diff <= sGTCResulutionThreshold) {
|
||
|
return deltaQPC;
|
||
|
}
|
||
|
|
||
|
// Treat absolutely for calibration purposes
|
||
|
int64_t duration = DeprecatedAbs(int64_t(deltaGTC));
|
||
|
int64_t overflow = diff - sGTCResulutionThreshold;
|
||
|
|
||
|
LOG(("TimeStamp: QPC check after %llums with overflow %1.4fms",
|
||
|
mt2ms(duration), mt2ms_f(overflow)));
|
||
|
|
||
|
if (overflow <= sFailureThreshold) { // We are in the limit, let go.
|
||
|
return deltaQPC;
|
||
|
}
|
||
|
|
||
|
// QPC deviates, don't use it, since now this method may only return deltaGTC.
|
||
|
|
||
|
if (!sUseQPC) { // QPC already disabled, no need to run the fault tolerance algorithm.
|
||
|
return deltaGTC;
|
||
|
}
|
||
|
|
||
|
LOG(("TimeStamp: QPC jittered over failure threshold"));
|
||
|
|
||
|
if (duration < sHardFailureLimit) {
|
||
|
// Interval between the two time stamps is very short, consider
|
||
|
// QPC as unstable and record a failure.
|
||
|
uint64_t now = ms2mt(sGetTickCount64());
|
||
|
|
||
|
AutoCriticalSection lock(&sTimeStampLock);
|
||
|
|
||
|
if (sFaultIntoleranceCheckpoint && sFaultIntoleranceCheckpoint > now) {
|
||
|
// There's already been an error in the last fault intollerant interval.
|
||
|
// Time since now to the checkpoint actually holds information on how many
|
||
|
// failures there were in the failure free interval we have defined.
|
||
|
uint64_t failureCount =
|
||
|
(sFaultIntoleranceCheckpoint - now + sFailureFreeInterval - 1) /
|
||
|
sFailureFreeInterval;
|
||
|
if (failureCount > kMaxFailuresPerInterval) {
|
||
|
sUseQPC = false;
|
||
|
LOG(("TimeStamp: QPC disabled"));
|
||
|
} else {
|
||
|
// Move the fault intolerance checkpoint more to the future, prolong it
|
||
|
// to reflect the number of detected failures.
|
||
|
++failureCount;
|
||
|
sFaultIntoleranceCheckpoint = now + failureCount * sFailureFreeInterval;
|
||
|
LOG(("TimeStamp: recording %dth QPC failure", failureCount));
|
||
|
}
|
||
|
} else {
|
||
|
// Setup fault intolerance checkpoint in the future for first detected error.
|
||
|
sFaultIntoleranceCheckpoint = now + sFailureFreeInterval;
|
||
|
LOG(("TimeStamp: recording 1st QPC failure"));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return deltaGTC;
|
||
|
}
|
||
|
|
||
|
MFBT_API uint64_t
|
||
|
TimeStampValue::operator-(const TimeStampValue& aOther) const
|
||
|
{
|
||
|
if (mIsNull && aOther.mIsNull) {
|
||
|
return uint64_t(0);
|
||
|
}
|
||
|
|
||
|
return CheckQPC(aOther);
|
||
|
}
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// TimeDuration and TimeStamp implementation
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
MFBT_API double
|
||
|
BaseTimeDurationPlatformUtils::ToSeconds(int64_t aTicks)
|
||
|
{
|
||
|
// Converting before arithmetic avoids blocked store forward
|
||
|
return double(aTicks) / (double(sFrequencyPerSec) * 1000.0);
|
||
|
}
|
||
|
|
||
|
MFBT_API double
|
||
|
BaseTimeDurationPlatformUtils::ToSecondsSigDigits(int64_t aTicks)
|
||
|
{
|
||
|
// don't report a value < mResolution ...
|
||
|
LONGLONG resolution = sResolution;
|
||
|
LONGLONG resolutionSigDigs = sResolutionSigDigs;
|
||
|
LONGLONG valueSigDigs = resolution * (aTicks / resolution);
|
||
|
// and chop off insignificant digits
|
||
|
valueSigDigs = resolutionSigDigs * (valueSigDigs / resolutionSigDigs);
|
||
|
return double(valueSigDigs) / kNsPerSecd;
|
||
|
}
|
||
|
|
||
|
MFBT_API int64_t
|
||
|
BaseTimeDurationPlatformUtils::TicksFromMilliseconds(double aMilliseconds)
|
||
|
{
|
||
|
double result = ms2mt(aMilliseconds);
|
||
|
if (result > INT64_MAX) {
|
||
|
return INT64_MAX;
|
||
|
} else if (result < INT64_MIN) {
|
||
|
return INT64_MIN;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
MFBT_API int64_t
|
||
|
BaseTimeDurationPlatformUtils::ResolutionInTicks()
|
||
|
{
|
||
|
return static_cast<int64_t>(sResolution);
|
||
|
}
|
||
|
|
||
|
static bool
|
||
|
HasStableTSC()
|
||
|
{
|
||
|
union
|
||
|
{
|
||
|
int regs[4];
|
||
|
struct
|
||
|
{
|
||
|
int nIds;
|
||
|
char cpuString[12];
|
||
|
};
|
||
|
} cpuInfo;
|
||
|
|
||
|
__cpuid(cpuInfo.regs, 0);
|
||
|
// Only allow Intel CPUs for now
|
||
|
// The order of the registers is reg[1], reg[3], reg[2]. We just adjust the
|
||
|
// string so that we can compare in one go.
|
||
|
if (_strnicmp(cpuInfo.cpuString, "GenuntelineI",
|
||
|
sizeof(cpuInfo.cpuString))) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int regs[4];
|
||
|
|
||
|
// detect if the Advanced Power Management feature is supported
|
||
|
__cpuid(regs, 0x80000000);
|
||
|
if (regs[0] < 0x80000007) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
__cpuid(regs, 0x80000007);
|
||
|
// if bit 8 is set than TSC will run at a constant rate
|
||
|
// in all ACPI P-state, C-states and T-states
|
||
|
return regs[3] & (1 << 8);
|
||
|
}
|
||
|
|
||
|
MFBT_API void
|
||
|
TimeStamp::Startup()
|
||
|
{
|
||
|
// Decide which implementation to use for the high-performance timer.
|
||
|
|
||
|
HMODULE kernelDLL = GetModuleHandleW(L"kernel32.dll");
|
||
|
sGetTickCount64 = reinterpret_cast<GetTickCount64_t>(
|
||
|
GetProcAddress(kernelDLL, "GetTickCount64"));
|
||
|
if (!sGetTickCount64) {
|
||
|
// If the platform does not support the GetTickCount64 (Windows XP doesn't),
|
||
|
// then use our fallback implementation based on GetTickCount.
|
||
|
sGetTickCount64 = MozGetTickCount64;
|
||
|
}
|
||
|
|
||
|
InitializeCriticalSectionAndSpinCount(&sTimeStampLock, kLockSpinCount);
|
||
|
|
||
|
sHasStableTSC = HasStableTSC();
|
||
|
LOG(("TimeStamp: HasStableTSC=%d", sHasStableTSC));
|
||
|
|
||
|
LARGE_INTEGER freq;
|
||
|
sUseQPC = ::QueryPerformanceFrequency(&freq);
|
||
|
if (!sUseQPC) {
|
||
|
// No Performance Counter. Fall back to use GetTickCount.
|
||
|
InitResolution();
|
||
|
|
||
|
LOG(("TimeStamp: using GetTickCount"));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
sFrequencyPerSec = freq.QuadPart;
|
||
|
LOG(("TimeStamp: QPC frequency=%llu", sFrequencyPerSec));
|
||
|
|
||
|
InitThresholds();
|
||
|
InitResolution();
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
MFBT_API void
|
||
|
TimeStamp::Shutdown()
|
||
|
{
|
||
|
DeleteCriticalSection(&sTimeStampLock);
|
||
|
}
|
||
|
|
||
|
MFBT_API TimeStamp
|
||
|
TimeStamp::Now(bool aHighResolution)
|
||
|
{
|
||
|
// sUseQPC is volatile
|
||
|
bool useQPC = (aHighResolution && sUseQPC);
|
||
|
|
||
|
// Both values are in [mt] units.
|
||
|
ULONGLONG QPC = useQPC ? PerformanceCounter() : uint64_t(0);
|
||
|
ULONGLONG GTC = ms2mt(sGetTickCount64());
|
||
|
return TimeStamp(TimeStampValue(GTC, QPC, useQPC));
|
||
|
}
|
||
|
|
||
|
// Computes and returns the process uptime in microseconds.
|
||
|
// Returns 0 if an error was encountered.
|
||
|
|
||
|
MFBT_API uint64_t
|
||
|
TimeStamp::ComputeProcessUptime()
|
||
|
{
|
||
|
SYSTEMTIME nowSys;
|
||
|
GetSystemTime(&nowSys);
|
||
|
|
||
|
FILETIME now;
|
||
|
bool success = SystemTimeToFileTime(&nowSys, &now);
|
||
|
|
||
|
if (!success) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
FILETIME start, foo, bar, baz;
|
||
|
success = GetProcessTimes(GetCurrentProcess(), &start, &foo, &bar, &baz);
|
||
|
|
||
|
if (!success) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ULARGE_INTEGER startUsec = {{
|
||
|
start.dwLowDateTime,
|
||
|
start.dwHighDateTime
|
||
|
}};
|
||
|
ULARGE_INTEGER nowUsec = {{
|
||
|
now.dwLowDateTime,
|
||
|
now.dwHighDateTime
|
||
|
}};
|
||
|
|
||
|
return (nowUsec.QuadPart - startUsec.QuadPart) / 10ULL;
|
||
|
}
|
||
|
|
||
|
} // namespace mozilla
|