mirror of
https://github.com/classilla/tenfourfox.git
synced 2024-11-04 10:05:51 +00:00
548 lines
14 KiB
C
548 lines
14 KiB
C
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
||
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
||
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||
|
|
||
|
/* mfbt maths algorithms. */
|
||
|
|
||
|
#ifndef mozilla_MathAlgorithms_h
|
||
|
#define mozilla_MathAlgorithms_h
|
||
|
|
||
|
#include "mozilla/Assertions.h"
|
||
|
#include "mozilla/TypeTraits.h"
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <limits.h>
|
||
|
#include <stdint.h>
|
||
|
|
||
|
namespace mozilla {
|
||
|
|
||
|
// Greatest Common Divisor
|
||
|
template<typename IntegerType>
|
||
|
MOZ_ALWAYS_INLINE IntegerType
|
||
|
EuclidGCD(IntegerType aA, IntegerType aB)
|
||
|
{
|
||
|
// Euclid's algorithm; O(N) in the worst case. (There are better
|
||
|
// ways, but we don't need them for the current use of this algo.)
|
||
|
MOZ_ASSERT(aA > IntegerType(0));
|
||
|
MOZ_ASSERT(aB > IntegerType(0));
|
||
|
|
||
|
while (aA != aB) {
|
||
|
if (aA > aB) {
|
||
|
aA = aA - aB;
|
||
|
} else {
|
||
|
aB = aB - aA;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return aA;
|
||
|
}
|
||
|
|
||
|
// Least Common Multiple
|
||
|
template<typename IntegerType>
|
||
|
MOZ_ALWAYS_INLINE IntegerType
|
||
|
EuclidLCM(IntegerType aA, IntegerType aB)
|
||
|
{
|
||
|
// Divide first to reduce overflow risk.
|
||
|
return (aA / EuclidGCD(aA, aB)) * aB;
|
||
|
}
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
template<typename T>
|
||
|
struct AllowDeprecatedAbsFixed : FalseType {};
|
||
|
|
||
|
template<> struct AllowDeprecatedAbsFixed<int32_t> : TrueType {};
|
||
|
template<> struct AllowDeprecatedAbsFixed<int64_t> : TrueType {};
|
||
|
|
||
|
template<typename T>
|
||
|
struct AllowDeprecatedAbs : AllowDeprecatedAbsFixed<T> {};
|
||
|
|
||
|
template<> struct AllowDeprecatedAbs<int> : TrueType {};
|
||
|
template<> struct AllowDeprecatedAbs<long> : TrueType {};
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
// DO NOT USE DeprecatedAbs. It exists only until its callers can be converted
|
||
|
// to Abs below, and it will be removed when all callers have been changed.
|
||
|
template<typename T>
|
||
|
inline typename mozilla::EnableIf<detail::AllowDeprecatedAbs<T>::value, T>::Type
|
||
|
DeprecatedAbs(const T aValue)
|
||
|
{
|
||
|
// The absolute value of the smallest possible value of a signed-integer type
|
||
|
// won't fit in that type (on twos-complement systems -- and we're blithely
|
||
|
// assuming we're on such systems, for the non-<stdint.h> types listed above),
|
||
|
// so assert that the input isn't that value.
|
||
|
//
|
||
|
// This is the case if: the value is non-negative; or if adding one (giving a
|
||
|
// value in the range [-maxvalue, 0]), then negating (giving a value in the
|
||
|
// range [0, maxvalue]), doesn't produce maxvalue (because in twos-complement,
|
||
|
// (minvalue + 1) == -maxvalue).
|
||
|
MOZ_ASSERT(aValue >= 0 ||
|
||
|
-(aValue + 1) != T((1ULL << (CHAR_BIT * sizeof(T) - 1)) - 1),
|
||
|
"You can't negate the smallest possible negative integer!");
|
||
|
return aValue >= 0 ? aValue : -aValue;
|
||
|
}
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
// For now mozilla::Abs only takes intN_T, the signed natural types, and
|
||
|
// float/double/long double. Feel free to add overloads for other standard,
|
||
|
// signed types if you need them.
|
||
|
|
||
|
template<typename T>
|
||
|
struct AbsReturnTypeFixed;
|
||
|
|
||
|
template<> struct AbsReturnTypeFixed<int8_t> { typedef uint8_t Type; };
|
||
|
template<> struct AbsReturnTypeFixed<int16_t> { typedef uint16_t Type; };
|
||
|
template<> struct AbsReturnTypeFixed<int32_t> { typedef uint32_t Type; };
|
||
|
template<> struct AbsReturnTypeFixed<int64_t> { typedef uint64_t Type; };
|
||
|
|
||
|
template<typename T>
|
||
|
struct AbsReturnType : AbsReturnTypeFixed<T> {};
|
||
|
|
||
|
template<> struct AbsReturnType<char> :
|
||
|
EnableIf<char(-1) < char(0), unsigned char> {};
|
||
|
template<> struct AbsReturnType<signed char> { typedef unsigned char Type; };
|
||
|
template<> struct AbsReturnType<short> { typedef unsigned short Type; };
|
||
|
template<> struct AbsReturnType<int> { typedef unsigned int Type; };
|
||
|
template<> struct AbsReturnType<long> { typedef unsigned long Type; };
|
||
|
template<> struct AbsReturnType<long long> { typedef unsigned long long Type; };
|
||
|
template<> struct AbsReturnType<float> { typedef float Type; };
|
||
|
template<> struct AbsReturnType<double> { typedef double Type; };
|
||
|
template<> struct AbsReturnType<long double> { typedef long double Type; };
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
template<typename T>
|
||
|
inline typename detail::AbsReturnType<T>::Type
|
||
|
Abs(const T aValue)
|
||
|
{
|
||
|
typedef typename detail::AbsReturnType<T>::Type ReturnType;
|
||
|
return aValue >= 0 ? ReturnType(aValue) : ~ReturnType(aValue) + 1;
|
||
|
}
|
||
|
|
||
|
template<>
|
||
|
inline float
|
||
|
Abs<float>(const float aFloat)
|
||
|
{
|
||
|
return std::fabs(aFloat);
|
||
|
}
|
||
|
|
||
|
template<>
|
||
|
inline double
|
||
|
Abs<double>(const double aDouble)
|
||
|
{
|
||
|
return std::fabs(aDouble);
|
||
|
}
|
||
|
|
||
|
template<>
|
||
|
inline long double
|
||
|
Abs<long double>(const long double aLongDouble)
|
||
|
{
|
||
|
return std::fabs(aLongDouble);
|
||
|
}
|
||
|
|
||
|
} // namespace mozilla
|
||
|
|
||
|
#if defined(_MSC_VER) && \
|
||
|
(defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
|
||
|
# define MOZ_BITSCAN_WINDOWS
|
||
|
|
||
|
# include <intrin.h>
|
||
|
# pragma intrinsic(_BitScanForward, _BitScanReverse)
|
||
|
|
||
|
# if defined(_M_AMD64) || defined(_M_X64)
|
||
|
# define MOZ_BITSCAN_WINDOWS64
|
||
|
# pragma intrinsic(_BitScanForward64, _BitScanReverse64)
|
||
|
# endif
|
||
|
|
||
|
#endif
|
||
|
|
||
|
namespace mozilla {
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
#if defined(MOZ_BITSCAN_WINDOWS)
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountLeadingZeroes32(uint32_t aValue)
|
||
|
{
|
||
|
unsigned long index;
|
||
|
if (!_BitScanReverse(&index, static_cast<unsigned long>(aValue)))
|
||
|
return 32;
|
||
|
return uint_fast8_t(31 - index);
|
||
|
}
|
||
|
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountTrailingZeroes32(uint32_t aValue)
|
||
|
{
|
||
|
unsigned long index;
|
||
|
if (!_BitScanForward(&index, static_cast<unsigned long>(aValue)))
|
||
|
return 32;
|
||
|
return uint_fast8_t(index);
|
||
|
}
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountPopulation32(uint32_t aValue)
|
||
|
{
|
||
|
uint32_t x = aValue - ((aValue >> 1) & 0x55555555);
|
||
|
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
|
||
|
return (((x + (x >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24;
|
||
|
}
|
||
|
inline uint_fast8_t
|
||
|
CountPopulation64(uint64_t aValue)
|
||
|
{
|
||
|
return uint_fast8_t(CountPopulation32(aValue & 0xffffffff) +
|
||
|
CountPopulation32(aValue >> 32));
|
||
|
}
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountLeadingZeroes64(uint64_t aValue)
|
||
|
{
|
||
|
#if defined(MOZ_BITSCAN_WINDOWS64)
|
||
|
unsigned long index;
|
||
|
if (!_BitScanReverse64(&index, static_cast<unsigned __int64>(aValue)))
|
||
|
return 64;
|
||
|
return uint_fast8_t(63 - index);
|
||
|
#else
|
||
|
uint32_t hi = uint32_t(aValue >> 32);
|
||
|
if (hi != 0) {
|
||
|
return CountLeadingZeroes32(hi);
|
||
|
}
|
||
|
return 32u + CountLeadingZeroes32(uint32_t(aValue));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountTrailingZeroes64(uint64_t aValue)
|
||
|
{
|
||
|
#if defined(MOZ_BITSCAN_WINDOWS64)
|
||
|
unsigned long index;
|
||
|
if (!_BitScanForward64(&index, static_cast<unsigned __int64>(aValue)))
|
||
|
return 64;
|
||
|
return uint_fast8_t(index);
|
||
|
#else
|
||
|
uint32_t lo = uint32_t(aValue);
|
||
|
if (lo != 0) {
|
||
|
return CountTrailingZeroes32(lo);
|
||
|
}
|
||
|
return 32u + CountTrailingZeroes32(uint32_t(aValue >> 32));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
# ifdef MOZ_HAVE_BITSCAN64
|
||
|
# undef MOZ_HAVE_BITSCAN64
|
||
|
# endif
|
||
|
|
||
|
#elif defined(__clang__) || defined(__GNUC__)
|
||
|
|
||
|
# if defined(__clang__)
|
||
|
# if !__has_builtin(__builtin_ctz) || !__has_builtin(__builtin_clz)
|
||
|
# error "A clang providing __builtin_c[lt]z is required to build"
|
||
|
# endif
|
||
|
# else
|
||
|
// gcc has had __builtin_clz and friends since 3.4: no need to check.
|
||
|
# endif
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountLeadingZeroes32(uint32_t aValue)
|
||
|
{
|
||
|
return __builtin_clz(aValue);
|
||
|
}
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountTrailingZeroes32(uint32_t aValue)
|
||
|
{
|
||
|
return __builtin_ctz(aValue);
|
||
|
}
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountPopulation32(uint32_t aValue)
|
||
|
{
|
||
|
return __builtin_popcount(aValue);
|
||
|
}
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountPopulation64(uint64_t aValue)
|
||
|
{
|
||
|
return __builtin_popcountll(aValue);
|
||
|
}
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountLeadingZeroes64(uint64_t aValue)
|
||
|
{
|
||
|
return __builtin_clzll(aValue);
|
||
|
}
|
||
|
|
||
|
inline uint_fast8_t
|
||
|
CountTrailingZeroes64(uint64_t aValue)
|
||
|
{
|
||
|
return __builtin_ctzll(aValue);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
# error "Implement these!"
|
||
|
inline uint_fast8_t CountLeadingZeroes32(uint32_t aValue) = delete;
|
||
|
inline uint_fast8_t CountTrailingZeroes32(uint32_t aValue) = delete;
|
||
|
inline uint_fast8_t CountPopulation32(uint32_t aValue) = delete;
|
||
|
inline uint_fast8_t CountPopulation64(uint64_t aValue) = delete;
|
||
|
inline uint_fast8_t CountLeadingZeroes64(uint64_t aValue) = delete;
|
||
|
inline uint_fast8_t CountTrailingZeroes64(uint64_t aValue) = delete;
|
||
|
#endif
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
/**
|
||
|
* Compute the number of high-order zero bits in the NON-ZERO number |aValue|.
|
||
|
* That is, looking at the bitwise representation of the number, with the
|
||
|
* highest- valued bits at the start, return the number of zeroes before the
|
||
|
* first one is observed.
|
||
|
*
|
||
|
* CountLeadingZeroes32(0xF0FF1000) is 0;
|
||
|
* CountLeadingZeroes32(0x7F8F0001) is 1;
|
||
|
* CountLeadingZeroes32(0x3FFF0100) is 2;
|
||
|
* CountLeadingZeroes32(0x1FF50010) is 3; and so on.
|
||
|
*/
|
||
|
inline uint_fast8_t
|
||
|
CountLeadingZeroes32(uint32_t aValue)
|
||
|
{
|
||
|
MOZ_ASSERT(aValue != 0);
|
||
|
return detail::CountLeadingZeroes32(aValue);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Compute the number of low-order zero bits in the NON-ZERO number |aValue|.
|
||
|
* That is, looking at the bitwise representation of the number, with the
|
||
|
* lowest- valued bits at the start, return the number of zeroes before the
|
||
|
* first one is observed.
|
||
|
*
|
||
|
* CountTrailingZeroes32(0x0100FFFF) is 0;
|
||
|
* CountTrailingZeroes32(0x7000FFFE) is 1;
|
||
|
* CountTrailingZeroes32(0x0080FFFC) is 2;
|
||
|
* CountTrailingZeroes32(0x0080FFF8) is 3; and so on.
|
||
|
*/
|
||
|
inline uint_fast8_t
|
||
|
CountTrailingZeroes32(uint32_t aValue)
|
||
|
{
|
||
|
MOZ_ASSERT(aValue != 0);
|
||
|
return detail::CountTrailingZeroes32(aValue);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Compute the number of one bits in the number |aValue|,
|
||
|
*/
|
||
|
inline uint_fast8_t
|
||
|
CountPopulation32(uint32_t aValue)
|
||
|
{
|
||
|
return detail::CountPopulation32(aValue);
|
||
|
}
|
||
|
|
||
|
/** Analogous to CoutPopulation32, but for 64-bit numbers */
|
||
|
inline uint_fast8_t
|
||
|
CountPopulation64(uint64_t aValue)
|
||
|
{
|
||
|
return detail::CountPopulation64(aValue);
|
||
|
}
|
||
|
|
||
|
/** Analogous to CountLeadingZeroes32, but for 64-bit numbers. */
|
||
|
inline uint_fast8_t
|
||
|
CountLeadingZeroes64(uint64_t aValue)
|
||
|
{
|
||
|
MOZ_ASSERT(aValue != 0);
|
||
|
return detail::CountLeadingZeroes64(aValue);
|
||
|
}
|
||
|
|
||
|
/** Analogous to CountTrailingZeroes32, but for 64-bit numbers. */
|
||
|
inline uint_fast8_t
|
||
|
CountTrailingZeroes64(uint64_t aValue)
|
||
|
{
|
||
|
MOZ_ASSERT(aValue != 0);
|
||
|
return detail::CountTrailingZeroes64(aValue);
|
||
|
}
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
template<typename T, size_t Size = sizeof(T)>
|
||
|
class CeilingLog2;
|
||
|
|
||
|
template<typename T>
|
||
|
class CeilingLog2<T, 4>
|
||
|
{
|
||
|
public:
|
||
|
static uint_fast8_t compute(const T aValue)
|
||
|
{
|
||
|
// Check for <= 1 to avoid the == 0 undefined case.
|
||
|
return aValue <= 1 ? 0u : 32u - CountLeadingZeroes32(aValue - 1);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename T>
|
||
|
class CeilingLog2<T, 8>
|
||
|
{
|
||
|
public:
|
||
|
static uint_fast8_t compute(const T aValue)
|
||
|
{
|
||
|
// Check for <= 1 to avoid the == 0 undefined case.
|
||
|
return aValue <= 1 ? 0u : 64u - CountLeadingZeroes64(aValue - 1);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
/**
|
||
|
* Compute the log of the least power of 2 greater than or equal to |aValue|.
|
||
|
*
|
||
|
* CeilingLog2(0..1) is 0;
|
||
|
* CeilingLog2(2) is 1;
|
||
|
* CeilingLog2(3..4) is 2;
|
||
|
* CeilingLog2(5..8) is 3;
|
||
|
* CeilingLog2(9..16) is 4; and so on.
|
||
|
*/
|
||
|
template<typename T>
|
||
|
inline uint_fast8_t
|
||
|
CeilingLog2(const T aValue)
|
||
|
{
|
||
|
return detail::CeilingLog2<T>::compute(aValue);
|
||
|
}
|
||
|
|
||
|
/** A CeilingLog2 variant that accepts only size_t. */
|
||
|
inline uint_fast8_t
|
||
|
CeilingLog2Size(size_t aValue)
|
||
|
{
|
||
|
return CeilingLog2(aValue);
|
||
|
}
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
template<typename T, size_t Size = sizeof(T)>
|
||
|
class FloorLog2;
|
||
|
|
||
|
template<typename T>
|
||
|
class FloorLog2<T, 4>
|
||
|
{
|
||
|
public:
|
||
|
static uint_fast8_t compute(const T aValue)
|
||
|
{
|
||
|
return 31u - CountLeadingZeroes32(aValue | 1);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename T>
|
||
|
class FloorLog2<T, 8>
|
||
|
{
|
||
|
public:
|
||
|
static uint_fast8_t compute(const T aValue)
|
||
|
{
|
||
|
return 63u - CountLeadingZeroes64(aValue | 1);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
/**
|
||
|
* Compute the log of the greatest power of 2 less than or equal to |aValue|.
|
||
|
*
|
||
|
* FloorLog2(0..1) is 0;
|
||
|
* FloorLog2(2..3) is 1;
|
||
|
* FloorLog2(4..7) is 2;
|
||
|
* FloorLog2(8..15) is 3; and so on.
|
||
|
*/
|
||
|
template<typename T>
|
||
|
inline uint_fast8_t
|
||
|
FloorLog2(const T aValue)
|
||
|
{
|
||
|
return detail::FloorLog2<T>::compute(aValue);
|
||
|
}
|
||
|
|
||
|
/** A FloorLog2 variant that accepts only size_t. */
|
||
|
inline uint_fast8_t
|
||
|
FloorLog2Size(size_t aValue)
|
||
|
{
|
||
|
return FloorLog2(aValue);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute the smallest power of 2 greater than or equal to |x|. |x| must not
|
||
|
* be so great that the computed value would overflow |size_t|.
|
||
|
*/
|
||
|
inline size_t
|
||
|
RoundUpPow2(size_t aValue)
|
||
|
{
|
||
|
MOZ_ASSERT(aValue <= (size_t(1) << (sizeof(size_t) * CHAR_BIT - 1)),
|
||
|
"can't round up -- will overflow!");
|
||
|
return size_t(1) << CeilingLog2(aValue);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Rotates the bits of the given value left by the amount of the shift width.
|
||
|
*/
|
||
|
template<typename T>
|
||
|
inline T
|
||
|
RotateLeft(const T aValue, uint_fast8_t aShift)
|
||
|
{
|
||
|
MOZ_ASSERT(aShift < sizeof(T) * CHAR_BIT, "Shift value is too large!");
|
||
|
MOZ_ASSERT(aShift > 0,
|
||
|
"Rotation by value length is undefined behavior, but compilers "
|
||
|
"do not currently fold a test into the rotate instruction. "
|
||
|
"Please remove this restriction when compilers optimize the "
|
||
|
"zero case (http://blog.regehr.org/archives/1063).");
|
||
|
static_assert(IsUnsigned<T>::value, "Rotates require unsigned values");
|
||
|
return (aValue << aShift) | (aValue >> (sizeof(T) * CHAR_BIT - aShift));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Rotates the bits of the given value right by the amount of the shift width.
|
||
|
*/
|
||
|
template<typename T>
|
||
|
inline T
|
||
|
RotateRight(const T aValue, uint_fast8_t aShift)
|
||
|
{
|
||
|
MOZ_ASSERT(aShift < sizeof(T) * CHAR_BIT, "Shift value is too large!");
|
||
|
MOZ_ASSERT(aShift > 0,
|
||
|
"Rotation by value length is undefined behavior, but compilers "
|
||
|
"do not currently fold a test into the rotate instruction. "
|
||
|
"Please remove this restriction when compilers optimize the "
|
||
|
"zero case (http://blog.regehr.org/archives/1063).");
|
||
|
static_assert(IsUnsigned<T>::value, "Rotates require unsigned values");
|
||
|
return (aValue >> aShift) | (aValue << (sizeof(T) * CHAR_BIT - aShift));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns true if |x| is a power of two.
|
||
|
* Zero is not an integer power of two. (-Inf is not an integer)
|
||
|
*/
|
||
|
template<typename T>
|
||
|
inline bool
|
||
|
IsPowerOfTwo(T x)
|
||
|
{
|
||
|
static_assert(IsUnsigned<T>::value,
|
||
|
"IsPowerOfTwo requires unsigned values");
|
||
|
return x && (x & (x - 1)) == 0;
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
inline T
|
||
|
Clamp(const T aValue, const T aMin, const T aMax)
|
||
|
{
|
||
|
static_assert(IsIntegral<T>::value,
|
||
|
"Clamp accepts only integral types, so that it doesn't have"
|
||
|
" to distinguish differently-signed zeroes (which users may"
|
||
|
" or may not care to distinguish, likely at a perf cost) or"
|
||
|
" to decide how to clamp NaN or a range with a NaN"
|
||
|
" endpoint.");
|
||
|
MOZ_ASSERT(aMin <= aMax);
|
||
|
|
||
|
if (aValue <= aMin)
|
||
|
return aMin;
|
||
|
if (aValue >= aMax)
|
||
|
return aMax;
|
||
|
return aValue;
|
||
|
}
|
||
|
|
||
|
} /* namespace mozilla */
|
||
|
|
||
|
#endif /* mozilla_MathAlgorithms_h */
|