tenfourfox/gfx/thebes/gfxFontUtils.h
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

1011 lines
34 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_FONT_UTILS_H
#define GFX_FONT_UTILS_H
#include "gfxPlatform.h"
#include "nsComponentManagerUtils.h"
#include "nsTArray.h"
#include "nsAutoPtr.h"
#include "mozilla/Likely.h"
#include "mozilla/Endian.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/UniquePtr.h"
#include "zlib.h"
#include <algorithm>
/* Bug 341128 - w32api defines min/max which causes problems with <bitset> */
#ifdef __MINGW32__
#undef min
#undef max
#endif
typedef struct hb_blob_t hb_blob_t;
class gfxSparseBitSet {
private:
enum { BLOCK_SIZE = 32 }; // ==> 256 codepoints per block
enum { BLOCK_SIZE_BITS = BLOCK_SIZE * 8 };
enum { BLOCK_INDEX_SHIFT = 8 };
struct Block {
Block(const Block& aBlock) { memcpy(mBits, aBlock.mBits, sizeof(mBits)); }
explicit Block(unsigned char memsetValue = 0) { memset(mBits, memsetValue, BLOCK_SIZE); }
uint8_t mBits[BLOCK_SIZE];
};
public:
gfxSparseBitSet() { }
gfxSparseBitSet(const gfxSparseBitSet& aBitset) {
uint32_t len = aBitset.mBlocks.Length();
mBlocks.AppendElements(len);
for (uint32_t i = 0; i < len; ++i) {
Block *block = aBitset.mBlocks[i];
if (block)
mBlocks[i] = new Block(*block);
}
}
bool Equals(const gfxSparseBitSet *aOther) const {
if (mBlocks.Length() != aOther->mBlocks.Length()) {
return false;
}
size_t n = mBlocks.Length();
for (size_t i = 0; i < n; ++i) {
const Block *b1 = mBlocks[i];
const Block *b2 = aOther->mBlocks[i];
if (!b1 != !b2) {
return false;
}
if (!b1) {
continue;
}
if (memcmp(&b1->mBits, &b2->mBits, BLOCK_SIZE) != 0) {
return false;
}
}
return true;
}
bool test(uint32_t aIndex) const {
NS_ASSERTION(mBlocks.DebugGetHeader(), "mHdr is null, this is bad");
uint32_t blockIndex = aIndex/BLOCK_SIZE_BITS;
if (blockIndex >= mBlocks.Length())
return false;
Block *block = mBlocks[blockIndex];
if (!block)
return false;
return ((block->mBits[(aIndex>>3) & (BLOCK_SIZE - 1)]) & (1 << (aIndex & 0x7))) != 0;
}
// dump out contents of bitmap
void Dump(const char* aPrefix, eGfxLog aWhichLog) const;
bool TestRange(uint32_t aStart, uint32_t aEnd) {
uint32_t startBlock, endBlock, blockLen;
// start point is beyond the end of the block array? return false immediately
startBlock = aStart >> BLOCK_INDEX_SHIFT;
blockLen = mBlocks.Length();
if (startBlock >= blockLen) return false;
// check for blocks in range, if none, return false
uint32_t blockIndex;
bool hasBlocksInRange = false;
endBlock = aEnd >> BLOCK_INDEX_SHIFT;
for (blockIndex = startBlock; blockIndex <= endBlock; blockIndex++) {
if (blockIndex < blockLen && mBlocks[blockIndex])
hasBlocksInRange = true;
}
if (!hasBlocksInRange) return false;
Block *block;
uint32_t i, start, end;
// first block, check bits
if ((block = mBlocks[startBlock])) {
start = aStart;
end = std::min(aEnd, ((startBlock+1) << BLOCK_INDEX_SHIFT) - 1);
for (i = start; i <= end; i++) {
if ((block->mBits[(i>>3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7)))
return true;
}
}
if (endBlock == startBlock) return false;
// [2..n-1] blocks check bytes
for (blockIndex = startBlock + 1; blockIndex < endBlock; blockIndex++) {
uint32_t index;
if (blockIndex >= blockLen || !(block = mBlocks[blockIndex])) continue;
for (index = 0; index < BLOCK_SIZE; index++) {
if (block->mBits[index])
return true;
}
}
// last block, check bits
if (endBlock < blockLen && (block = mBlocks[endBlock])) {
start = endBlock << BLOCK_INDEX_SHIFT;
end = aEnd;
for (i = start; i <= end; i++) {
if ((block->mBits[(i>>3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7)))
return true;
}
}
return false;
}
void set(uint32_t aIndex) {
uint32_t blockIndex = aIndex/BLOCK_SIZE_BITS;
if (blockIndex >= mBlocks.Length()) {
nsAutoPtr<Block> *blocks = mBlocks.AppendElements(blockIndex + 1 - mBlocks.Length());
if (MOZ_UNLIKELY(!blocks)) // OOM
return;
}
Block *block = mBlocks[blockIndex];
if (!block) {
block = new Block;
mBlocks[blockIndex] = block;
}
block->mBits[(aIndex>>3) & (BLOCK_SIZE - 1)] |= 1 << (aIndex & 0x7);
}
void set(uint32_t aIndex, bool aValue) {
if (aValue)
set(aIndex);
else
clear(aIndex);
}
void SetRange(uint32_t aStart, uint32_t aEnd) {
const uint32_t startIndex = aStart/BLOCK_SIZE_BITS;
const uint32_t endIndex = aEnd/BLOCK_SIZE_BITS;
if (endIndex >= mBlocks.Length()) {
uint32_t numNewBlocks = endIndex + 1 - mBlocks.Length();
nsAutoPtr<Block> *blocks = mBlocks.AppendElements(numNewBlocks);
if (MOZ_UNLIKELY(!blocks)) // OOM
return;
}
for (uint32_t i = startIndex; i <= endIndex; ++i) {
const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS;
const uint32_t blockLastBit = blockFirstBit + BLOCK_SIZE_BITS - 1;
Block *block = mBlocks[i];
if (!block) {
bool fullBlock = false;
if (aStart <= blockFirstBit && aEnd >= blockLastBit)
fullBlock = true;
block = new Block(fullBlock ? 0xFF : 0);
mBlocks[i] = block;
if (fullBlock)
continue;
}
const uint32_t start = aStart > blockFirstBit ? aStart - blockFirstBit : 0;
const uint32_t end = std::min<uint32_t>(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1);
for (uint32_t bit = start; bit <= end; ++bit) {
block->mBits[bit>>3] |= 1 << (bit & 0x7);
}
}
}
void clear(uint32_t aIndex) {
uint32_t blockIndex = aIndex/BLOCK_SIZE_BITS;
if (blockIndex >= mBlocks.Length()) {
nsAutoPtr<Block> *blocks = mBlocks.AppendElements(blockIndex + 1 - mBlocks.Length());
if (MOZ_UNLIKELY(!blocks)) // OOM
return;
}
Block *block = mBlocks[blockIndex];
if (!block) {
return;
}
block->mBits[(aIndex>>3) & (BLOCK_SIZE - 1)] &= ~(1 << (aIndex & 0x7));
}
void ClearRange(uint32_t aStart, uint32_t aEnd) {
const uint32_t startIndex = aStart/BLOCK_SIZE_BITS;
const uint32_t endIndex = aEnd/BLOCK_SIZE_BITS;
if (endIndex >= mBlocks.Length()) {
uint32_t numNewBlocks = endIndex + 1 - mBlocks.Length();
nsAutoPtr<Block> *blocks = mBlocks.AppendElements(numNewBlocks);
if (MOZ_UNLIKELY(!blocks)) // OOM
return;
}
for (uint32_t i = startIndex; i <= endIndex; ++i) {
const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS;
Block *block = mBlocks[i];
if (!block) {
// any nonexistent block is implicitly all clear,
// so there's no need to even create it
continue;
}
const uint32_t start = aStart > blockFirstBit ? aStart - blockFirstBit : 0;
const uint32_t end = std::min<uint32_t>(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1);
for (uint32_t bit = start; bit <= end; ++bit) {
block->mBits[bit>>3] &= ~(1 << (bit & 0x7));
}
}
}
size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
size_t total = mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (uint32_t i = 0; i < mBlocks.Length(); i++) {
if (mBlocks[i]) {
total += aMallocSizeOf(mBlocks[i]);
}
}
return total;
}
size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
// clear out all blocks in the array
void reset() {
uint32_t i;
for (i = 0; i < mBlocks.Length(); i++)
mBlocks[i] = nullptr;
}
// set this bitset to the union of its current contents and another
void Union(const gfxSparseBitSet& aBitset) {
// ensure mBlocks is large enough
uint32_t blockCount = aBitset.mBlocks.Length();
if (blockCount > mBlocks.Length()) {
uint32_t needed = blockCount - mBlocks.Length();
nsAutoPtr<Block> *blocks = mBlocks.AppendElements(needed);
if (MOZ_UNLIKELY(!blocks)) { // OOM
return;
}
}
// for each block that may be present in aBitset...
for (uint32_t i = 0; i < blockCount; ++i) {
// if it is missing (implicitly empty), just skip
if (!aBitset.mBlocks[i]) {
continue;
}
// if the block is missing in this set, just copy the other
if (!mBlocks[i]) {
mBlocks[i] = new Block(*aBitset.mBlocks[i]);
continue;
}
// else set existing block to the union of both
uint32_t *dst = reinterpret_cast<uint32_t*>(mBlocks[i]->mBits);
const uint32_t *src =
reinterpret_cast<const uint32_t*>(aBitset.mBlocks[i]->mBits);
for (uint32_t j = 0; j < BLOCK_SIZE / 4; ++j) {
dst[j] |= src[j];
}
}
}
void Compact() {
mBlocks.Compact();
}
uint32_t GetChecksum() const {
uint32_t check = adler32(0, Z_NULL, 0);
for (uint32_t i = 0; i < mBlocks.Length(); i++) {
if (mBlocks[i]) {
const Block *block = mBlocks[i];
check = adler32(check, (uint8_t*) (&i), 4);
check = adler32(check, (uint8_t*) block, sizeof(Block));
}
}
return check;
}
private:
nsTArray< nsAutoPtr<Block> > mBlocks;
};
#define TRUETYPE_TAG(a, b, c, d) ((a) << 24 | (b) << 16 | (c) << 8 | (d))
namespace mozilla {
// Byte-swapping types and name table structure definitions moved from
// gfxFontUtils.cpp to .h file so that gfxFont.cpp can also refer to them
#pragma pack(1)
struct AutoSwap_PRUint16 {
#ifdef __SUNPRO_CC
AutoSwap_PRUint16& operator = (const uint16_t aValue)
{
this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
return *this;
}
#else
MOZ_IMPLICIT AutoSwap_PRUint16(uint16_t aValue)
{
value = mozilla::NativeEndian::swapToBigEndian(aValue);
}
#endif
operator uint16_t() const
{
return mozilla::NativeEndian::swapFromBigEndian(value);
}
operator uint32_t() const
{
return mozilla::NativeEndian::swapFromBigEndian(value);
}
operator uint64_t() const
{
return mozilla::NativeEndian::swapFromBigEndian(value);
}
private:
uint16_t value;
};
struct AutoSwap_PRInt16 {
#ifdef __SUNPRO_CC
AutoSwap_PRInt16& operator = (const int16_t aValue)
{
this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
return *this;
}
#else
MOZ_IMPLICIT AutoSwap_PRInt16(int16_t aValue)
{
value = mozilla::NativeEndian::swapToBigEndian(aValue);
}
#endif
operator int16_t() const
{
return mozilla::NativeEndian::swapFromBigEndian(value);
}
operator uint32_t() const
{
return mozilla::NativeEndian::swapFromBigEndian(value);
}
private:
int16_t value;
};
struct AutoSwap_PRUint32 {
#ifdef __SUNPRO_CC
AutoSwap_PRUint32& operator = (const uint32_t aValue)
{
this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
return *this;
}
#else
MOZ_IMPLICIT AutoSwap_PRUint32(uint32_t aValue)
{
value = mozilla::NativeEndian::swapToBigEndian(aValue);
}
#endif
operator uint32_t() const
{
return mozilla::NativeEndian::swapFromBigEndian(value);
}
private:
uint32_t value;
};
struct AutoSwap_PRInt32 {
#ifdef __SUNPRO_CC
AutoSwap_PRInt32& operator = (const int32_t aValue)
{
this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
return *this;
}
#else
MOZ_IMPLICIT AutoSwap_PRInt32(int32_t aValue)
{
value = mozilla::NativeEndian::swapToBigEndian(aValue);
}
#endif
operator int32_t() const
{
return mozilla::NativeEndian::swapFromBigEndian(value);
}
private:
int32_t value;
};
struct AutoSwap_PRUint64 {
#ifdef __SUNPRO_CC
AutoSwap_PRUint64& operator = (const uint64_t aValue)
{
this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
return *this;
}
#else
MOZ_IMPLICIT AutoSwap_PRUint64(uint64_t aValue)
{
value = mozilla::NativeEndian::swapToBigEndian(aValue);
}
#endif
operator uint64_t() const
{
return mozilla::NativeEndian::swapFromBigEndian(value);
}
private:
uint64_t value;
};
struct AutoSwap_PRUint24 {
operator uint32_t() const { return value[0] << 16 | value[1] << 8 | value[2]; }
private:
AutoSwap_PRUint24() { }
uint8_t value[3];
};
struct SFNTHeader {
AutoSwap_PRUint32 sfntVersion; // Fixed, 0x00010000 for version 1.0.
AutoSwap_PRUint16 numTables; // Number of tables.
AutoSwap_PRUint16 searchRange; // (Maximum power of 2 <= numTables) x 16.
AutoSwap_PRUint16 entrySelector; // Log2(maximum power of 2 <= numTables).
AutoSwap_PRUint16 rangeShift; // NumTables x 16-searchRange.
};
struct TableDirEntry {
AutoSwap_PRUint32 tag; // 4 -byte identifier.
AutoSwap_PRUint32 checkSum; // CheckSum for this table.
AutoSwap_PRUint32 offset; // Offset from beginning of TrueType font file.
AutoSwap_PRUint32 length; // Length of this table.
};
struct HeadTable {
enum {
HEAD_VERSION = 0x00010000,
HEAD_MAGIC_NUMBER = 0x5F0F3CF5,
HEAD_CHECKSUM_CALC_CONST = 0xB1B0AFBA
};
AutoSwap_PRUint32 tableVersionNumber; // Fixed, 0x00010000 for version 1.0.
AutoSwap_PRUint32 fontRevision; // Set by font manufacturer.
AutoSwap_PRUint32 checkSumAdjustment; // To compute: set it to 0, sum the entire font as ULONG, then store 0xB1B0AFBA - sum.
AutoSwap_PRUint32 magicNumber; // Set to 0x5F0F3CF5.
AutoSwap_PRUint16 flags;
AutoSwap_PRUint16 unitsPerEm; // Valid range is from 16 to 16384. This value should be a power of 2 for fonts that have TrueType outlines.
AutoSwap_PRUint64 created; // Number of seconds since 12:00 midnight, January 1, 1904. 64-bit integer
AutoSwap_PRUint64 modified; // Number of seconds since 12:00 midnight, January 1, 1904. 64-bit integer
AutoSwap_PRInt16 xMin; // For all glyph bounding boxes.
AutoSwap_PRInt16 yMin; // For all glyph bounding boxes.
AutoSwap_PRInt16 xMax; // For all glyph bounding boxes.
AutoSwap_PRInt16 yMax; // For all glyph bounding boxes.
AutoSwap_PRUint16 macStyle; // Bit 0: Bold (if set to 1);
AutoSwap_PRUint16 lowestRecPPEM; // Smallest readable size in pixels.
AutoSwap_PRInt16 fontDirectionHint;
AutoSwap_PRInt16 indexToLocFormat;
AutoSwap_PRInt16 glyphDataFormat;
};
struct OS2Table {
AutoSwap_PRUint16 version; // 0004 = OpenType 1.5
AutoSwap_PRInt16 xAvgCharWidth;
AutoSwap_PRUint16 usWeightClass;
AutoSwap_PRUint16 usWidthClass;
AutoSwap_PRUint16 fsType;
AutoSwap_PRInt16 ySubscriptXSize;
AutoSwap_PRInt16 ySubscriptYSize;
AutoSwap_PRInt16 ySubscriptXOffset;
AutoSwap_PRInt16 ySubscriptYOffset;
AutoSwap_PRInt16 ySuperscriptXSize;
AutoSwap_PRInt16 ySuperscriptYSize;
AutoSwap_PRInt16 ySuperscriptXOffset;
AutoSwap_PRInt16 ySuperscriptYOffset;
AutoSwap_PRInt16 yStrikeoutSize;
AutoSwap_PRInt16 yStrikeoutPosition;
AutoSwap_PRInt16 sFamilyClass;
uint8_t panose[10];
AutoSwap_PRUint32 unicodeRange1;
AutoSwap_PRUint32 unicodeRange2;
AutoSwap_PRUint32 unicodeRange3;
AutoSwap_PRUint32 unicodeRange4;
uint8_t achVendID[4];
AutoSwap_PRUint16 fsSelection;
AutoSwap_PRUint16 usFirstCharIndex;
AutoSwap_PRUint16 usLastCharIndex;
AutoSwap_PRInt16 sTypoAscender;
AutoSwap_PRInt16 sTypoDescender;
AutoSwap_PRInt16 sTypoLineGap;
AutoSwap_PRUint16 usWinAscent;
AutoSwap_PRUint16 usWinDescent;
AutoSwap_PRUint32 codePageRange1;
AutoSwap_PRUint32 codePageRange2;
AutoSwap_PRInt16 sxHeight;
AutoSwap_PRInt16 sCapHeight;
AutoSwap_PRUint16 usDefaultChar;
AutoSwap_PRUint16 usBreakChar;
AutoSwap_PRUint16 usMaxContext;
};
struct PostTable {
AutoSwap_PRUint32 version;
AutoSwap_PRInt32 italicAngle;
AutoSwap_PRInt16 underlinePosition;
AutoSwap_PRUint16 underlineThickness;
AutoSwap_PRUint32 isFixedPitch;
AutoSwap_PRUint32 minMemType42;
AutoSwap_PRUint32 maxMemType42;
AutoSwap_PRUint32 minMemType1;
AutoSwap_PRUint32 maxMemType1;
};
// This structure is used for both 'hhea' and 'vhea' tables.
// The field names here are those of the horizontal version; the
// vertical table just exchanges vertical and horizontal coordinates.
struct MetricsHeader {
AutoSwap_PRUint32 version;
AutoSwap_PRInt16 ascender;
AutoSwap_PRInt16 descender;
AutoSwap_PRInt16 lineGap;
AutoSwap_PRUint16 advanceWidthMax;
AutoSwap_PRInt16 minLeftSideBearing;
AutoSwap_PRInt16 minRightSideBearing;
AutoSwap_PRInt16 xMaxExtent;
AutoSwap_PRInt16 caretSlopeRise;
AutoSwap_PRInt16 caretSlopeRun;
AutoSwap_PRInt16 caretOffset;
AutoSwap_PRInt16 reserved1;
AutoSwap_PRInt16 reserved2;
AutoSwap_PRInt16 reserved3;
AutoSwap_PRInt16 reserved4;
AutoSwap_PRInt16 metricDataFormat;
AutoSwap_PRUint16 numOfLongMetrics;
};
struct MaxpTableHeader {
AutoSwap_PRUint32 version; // CFF: 0x00005000; TrueType: 0x00010000
AutoSwap_PRUint16 numGlyphs;
// truetype version has additional fields that we don't currently use
};
// old 'kern' table, supported on Windows
// see http://www.microsoft.com/typography/otspec/kern.htm
struct KernTableVersion0 {
AutoSwap_PRUint16 version; // 0x0000
AutoSwap_PRUint16 nTables;
};
struct KernTableSubtableHeaderVersion0 {
AutoSwap_PRUint16 version;
AutoSwap_PRUint16 length;
AutoSwap_PRUint16 coverage;
};
// newer Mac-only 'kern' table, ignored by Windows
// see http://developer.apple.com/textfonts/TTRefMan/RM06/Chap6kern.html
struct KernTableVersion1 {
AutoSwap_PRUint32 version; // 0x00010000
AutoSwap_PRUint32 nTables;
};
struct KernTableSubtableHeaderVersion1 {
AutoSwap_PRUint32 length;
AutoSwap_PRUint16 coverage;
AutoSwap_PRUint16 tupleIndex;
};
struct COLRHeader {
AutoSwap_PRUint16 version;
AutoSwap_PRUint16 numBaseGlyphRecord;
AutoSwap_PRUint32 offsetBaseGlyphRecord;
AutoSwap_PRUint32 offsetLayerRecord;
AutoSwap_PRUint16 numLayerRecords;
};
struct CPALHeaderVersion0 {
AutoSwap_PRUint16 version;
AutoSwap_PRUint16 numPaletteEntries;
AutoSwap_PRUint16 numPalettes;
AutoSwap_PRUint16 numColorRecords;
AutoSwap_PRUint32 offsetFirstColorRecord;
};
#pragma pack()
// Return just the highest bit of the given value, i.e., the highest
// power of 2 that is <= value, or zero if the input value is zero.
inline uint32_t
FindHighestBit(uint32_t value)
{
// propagate highest bit into all lower bits of the value
value |= (value >> 1);
value |= (value >> 2);
value |= (value >> 4);
value |= (value >> 8);
value |= (value >> 16);
// isolate the leftmost bit
return (value & ~(value >> 1));
}
} // namespace mozilla
// used for overlaying name changes without touching original font data
struct FontDataOverlay {
// overlaySrc != 0 ==> use overlay
uint32_t overlaySrc; // src offset from start of font data
uint32_t overlaySrcLen; // src length
uint32_t overlayDest; // dest offset from start of font data
};
enum gfxUserFontType {
GFX_USERFONT_UNKNOWN = 0,
GFX_USERFONT_OPENTYPE = 1,
GFX_USERFONT_SVG = 2,
GFX_USERFONT_WOFF = 3,
GFX_USERFONT_WOFF2 = 4
};
#define GFX_PREF_WOFF2_ENABLED "gfx.downloadable_fonts.woff2.enabled"
extern const uint8_t sCJKCompatSVSTable[];
class gfxFontUtils {
public:
// these are public because gfxFont.cpp also looks into the name table
enum {
NAME_ID_FAMILY = 1,
NAME_ID_STYLE = 2,
NAME_ID_UNIQUE = 3,
NAME_ID_FULL = 4,
NAME_ID_VERSION = 5,
NAME_ID_POSTSCRIPT = 6,
NAME_ID_PREFERRED_FAMILY = 16,
NAME_ID_PREFERRED_STYLE = 17,
PLATFORM_ALL = -1,
PLATFORM_ID_UNICODE = 0, // Mac OS uses this typically
PLATFORM_ID_MAC = 1,
PLATFORM_ID_ISO = 2,
PLATFORM_ID_MICROSOFT = 3,
ENCODING_ID_MAC_ROMAN = 0, // traditional Mac OS script manager encodings
ENCODING_ID_MAC_JAPANESE = 1, // (there are others defined, but some were never
ENCODING_ID_MAC_TRAD_CHINESE = 2, // implemented by Apple, and I have never seen them
ENCODING_ID_MAC_KOREAN = 3, // used in font names)
ENCODING_ID_MAC_ARABIC = 4,
ENCODING_ID_MAC_HEBREW = 5,
ENCODING_ID_MAC_GREEK = 6,
ENCODING_ID_MAC_CYRILLIC = 7,
ENCODING_ID_MAC_DEVANAGARI = 9,
ENCODING_ID_MAC_GURMUKHI = 10,
ENCODING_ID_MAC_GUJARATI = 11,
ENCODING_ID_MAC_SIMP_CHINESE = 25,
ENCODING_ID_MICROSOFT_SYMBOL = 0, // Microsoft platform encoding IDs
ENCODING_ID_MICROSOFT_UNICODEBMP = 1,
ENCODING_ID_MICROSOFT_SHIFTJIS = 2,
ENCODING_ID_MICROSOFT_PRC = 3,
ENCODING_ID_MICROSOFT_BIG5 = 4,
ENCODING_ID_MICROSOFT_WANSUNG = 5,
ENCODING_ID_MICROSOFT_JOHAB = 6,
ENCODING_ID_MICROSOFT_UNICODEFULL = 10,
LANG_ALL = -1,
LANG_ID_MAC_ENGLISH = 0, // many others are defined, but most don't affect
LANG_ID_MAC_HEBREW = 10, // the charset; should check all the central/eastern
LANG_ID_MAC_JAPANESE = 11, // european codes, though
LANG_ID_MAC_ARABIC = 12,
LANG_ID_MAC_ICELANDIC = 15,
LANG_ID_MAC_TURKISH = 17,
LANG_ID_MAC_TRAD_CHINESE = 19,
LANG_ID_MAC_URDU = 20,
LANG_ID_MAC_KOREAN = 23,
LANG_ID_MAC_POLISH = 25,
LANG_ID_MAC_FARSI = 31,
LANG_ID_MAC_SIMP_CHINESE = 33,
LANG_ID_MAC_ROMANIAN = 37,
LANG_ID_MAC_CZECH = 38,
LANG_ID_MAC_SLOVAK = 39,
LANG_ID_MICROSOFT_EN_US = 0x0409, // with Microsoft platformID, EN US lang code
CMAP_MAX_CODEPOINT = 0x10ffff // maximum possible Unicode codepoint
// contained in a cmap
};
// name table has a header, followed by name records, followed by string data
struct NameHeader {
mozilla::AutoSwap_PRUint16 format; // Format selector (=0).
mozilla::AutoSwap_PRUint16 count; // Number of name records.
mozilla::AutoSwap_PRUint16 stringOffset; // Offset to start of string storage
// (from start of table)
};
struct NameRecord {
mozilla::AutoSwap_PRUint16 platformID; // Platform ID
mozilla::AutoSwap_PRUint16 encodingID; // Platform-specific encoding ID
mozilla::AutoSwap_PRUint16 languageID; // Language ID
mozilla::AutoSwap_PRUint16 nameID; // Name ID.
mozilla::AutoSwap_PRUint16 length; // String length (in bytes).
mozilla::AutoSwap_PRUint16 offset; // String offset from start of storage
// (in bytes).
};
// for reading big-endian font data on either big or little-endian platforms
static inline uint16_t
ReadShortAt(const uint8_t *aBuf, uint32_t aIndex)
{
return (aBuf[aIndex] << 8) | aBuf[aIndex + 1];
}
static inline uint16_t
ReadShortAt16(const uint16_t *aBuf, uint32_t aIndex)
{
const uint8_t *buf = reinterpret_cast<const uint8_t*>(aBuf);
uint32_t index = aIndex << 1;
return (buf[index] << 8) | buf[index+1];
}
static inline uint32_t
ReadUint24At(const uint8_t *aBuf, uint32_t aIndex)
{
return ((aBuf[aIndex] << 16) | (aBuf[aIndex + 1] << 8) |
(aBuf[aIndex + 2]));
}
static inline uint32_t
ReadLongAt(const uint8_t *aBuf, uint32_t aIndex)
{
return ((aBuf[aIndex] << 24) | (aBuf[aIndex + 1] << 16) |
(aBuf[aIndex + 2] << 8) | (aBuf[aIndex + 3]));
}
static nsresult
ReadCMAPTableFormat10(const uint8_t *aBuf, uint32_t aLength,
gfxSparseBitSet& aCharacterMap);
static nsresult
ReadCMAPTableFormat12(const uint8_t *aBuf, uint32_t aLength,
gfxSparseBitSet& aCharacterMap);
static nsresult
ReadCMAPTableFormat4(const uint8_t *aBuf, uint32_t aLength,
gfxSparseBitSet& aCharacterMap);
static nsresult
ReadCMAPTableFormat14(const uint8_t *aBuf, uint32_t aLength,
mozilla::UniquePtr<uint8_t[]>& aTable);
static uint32_t
FindPreferredSubtable(const uint8_t *aBuf, uint32_t aBufLength,
uint32_t *aTableOffset, uint32_t *aUVSTableOffset,
bool *aSymbolEncoding);
static nsresult
ReadCMAP(const uint8_t *aBuf, uint32_t aBufLength,
gfxSparseBitSet& aCharacterMap,
uint32_t& aUVSOffset,
bool& aUnicodeFont, bool& aSymbolFont);
static uint32_t
MapCharToGlyphFormat4(const uint8_t *aBuf, char16_t aCh);
static uint32_t
MapCharToGlyphFormat10(const uint8_t *aBuf, uint32_t aCh);
static uint32_t
MapCharToGlyphFormat12(const uint8_t *aBuf, uint32_t aCh);
static uint16_t
MapUVSToGlyphFormat14(const uint8_t *aBuf, uint32_t aCh, uint32_t aVS);
// sCJKCompatSVSTable is a 'cmap' format 14 subtable that maps
// <char + var-selector> pairs to the corresponding Unicode
// compatibility ideograph codepoints.
static MOZ_ALWAYS_INLINE uint32_t
GetUVSFallback(uint32_t aCh, uint32_t aVS) {
aCh = MapUVSToGlyphFormat14(sCJKCompatSVSTable, aCh, aVS);
return aCh >= 0xFB00 ? aCh + (0x2F800 - 0xFB00) : aCh;
}
static uint32_t
MapCharToGlyph(const uint8_t *aCmapBuf, uint32_t aBufLength,
uint32_t aUnicode, uint32_t aVarSelector = 0);
#ifdef XP_WIN
// determine whether a font (which has already been sanitized, so is known
// to be a valid sfnt) is CFF format rather than TrueType
static bool
IsCffFont(const uint8_t* aFontData);
#endif
// determine the format of font data
static gfxUserFontType
DetermineFontDataType(const uint8_t *aFontData, uint32_t aFontDataLength);
// Read the fullname from the sfnt data (used to save the original name
// prior to renaming the font for installation).
// This is called with sfnt data that has already been validated,
// so it should always succeed in finding the name table.
static nsresult
GetFullNameFromSFNT(const uint8_t* aFontData, uint32_t aLength,
nsAString& aFullName);
// helper to get fullname from name table, constructing from family+style
// if no explicit fullname is present
static nsresult
GetFullNameFromTable(hb_blob_t *aNameTable,
nsAString& aFullName);
// helper to get family name from name table
static nsresult
GetFamilyNameFromTable(hb_blob_t *aNameTable,
nsAString& aFamilyName);
// create a new name table and build a new font with that name table
// appended on the end, returns true on success
static nsresult
RenameFont(const nsAString& aName, const uint8_t *aFontData,
uint32_t aFontDataLength, FallibleTArray<uint8_t> *aNewFont);
// read all names matching aNameID, returning in aNames array
static nsresult
ReadNames(const char *aNameData, uint32_t aDataLen, uint32_t aNameID,
int32_t aPlatformID, nsTArray<nsString>& aNames);
// reads English or first name matching aNameID, returning in aName
// platform based on OS
static nsresult
ReadCanonicalName(hb_blob_t *aNameTable, uint32_t aNameID,
nsString& aName);
static nsresult
ReadCanonicalName(const char *aNameData, uint32_t aDataLen,
uint32_t aNameID, nsString& aName);
// convert a name from the raw name table data into an nsString,
// provided we know how; return true if successful, or false
// if we can't handle the encoding
static bool
DecodeFontName(const char *aBuf, int32_t aLength,
uint32_t aPlatformCode, uint32_t aScriptCode,
uint32_t aLangCode, nsAString& dest);
static inline bool IsJoinCauser(uint32_t ch) {
return (ch == 0x200D);
}
static inline bool IsJoinControl(uint32_t ch) {
return (ch == 0x200C || ch == 0x200D);
}
enum {
kUnicodeVS1 = 0xFE00,
kUnicodeVS16 = 0xFE0F,
kUnicodeVS17 = 0xE0100,
kUnicodeVS256 = 0xE01EF
};
static inline bool IsVarSelector(uint32_t ch) {
return (ch >= kUnicodeVS1 && ch <= kUnicodeVS16) ||
(ch >= kUnicodeVS17 && ch <= kUnicodeVS256);
}
enum {
kUnicodeRegionalIndicatorA = 0x1F1E6,
kUnicodeRegionalIndicatorZ = 0x1F1FF
};
static inline bool IsRegionalIndicator(uint32_t aCh) {
return aCh >= kUnicodeRegionalIndicatorA &&
aCh <= kUnicodeRegionalIndicatorZ;
}
static inline bool IsInvalid(uint32_t ch) {
return (ch == 0xFFFD);
}
// Font code may want to know if there is the potential for bidi behavior
// to be triggered by any of the characters in a text run; this can be
// used to test that possibility.
enum {
kUnicodeBidiScriptsStart = 0x0590,
kUnicodeBidiScriptsEnd = 0x08FF,
kUnicodeBidiPresentationStart = 0xFB1D,
kUnicodeBidiPresentationEnd = 0xFEFC,
kUnicodeFirstHighSurrogateBlock = 0xD800,
kUnicodeRLM = 0x200F,
kUnicodeRLE = 0x202B,
kUnicodeRLO = 0x202E
};
static inline bool PotentialRTLChar(char16_t aCh) {
if (aCh >= kUnicodeBidiScriptsStart && aCh <= kUnicodeBidiScriptsEnd)
// bidi scripts Hebrew, Arabic, Syriac, Thaana, N'Ko are all encoded together
return true;
if (aCh == kUnicodeRLM || aCh == kUnicodeRLE || aCh == kUnicodeRLO)
// directional controls that trigger bidi layout
return true;
if (aCh >= kUnicodeBidiPresentationStart &&
aCh <= kUnicodeBidiPresentationEnd)
// presentation forms of Arabic and Hebrew letters
return true;
if ((aCh & 0xFF00) == kUnicodeFirstHighSurrogateBlock)
// surrogate that could be part of a bidi supplementary char
// (Cypriot, Aramaic, Phoenecian, etc)
return true;
// otherwise we know this char cannot trigger bidi reordering
return false;
}
// parse a simple list of font family names into
// an array of strings
static void ParseFontList(const nsAString& aFamilyList,
nsTArray<nsString>& aFontList);
// for a given font list pref name, append list of font names
static void AppendPrefsFontList(const char *aPrefName,
nsTArray<nsString>& aFontList);
// for a given font list pref name, initialize a list of font names
static void GetPrefsFontList(const char *aPrefName,
nsTArray<nsString>& aFontList);
// generate a unique font name
static nsresult MakeUniqueUserFontName(nsAString& aName);
// for color layer from glyph using COLR and CPAL tables
static bool ValidateColorGlyphs(hb_blob_t* aCOLR, hb_blob_t* aCPAL);
static bool GetColorGlyphLayers(hb_blob_t* aCOLR,
hb_blob_t* aCPAL,
uint32_t aGlyphId,
nsTArray<uint16_t> &aGlyphs,
nsTArray<mozilla::gfx::Color> &aColors);
protected:
friend struct MacCharsetMappingComparator;
static nsresult
ReadNames(const char *aNameData, uint32_t aDataLen, uint32_t aNameID,
int32_t aLangID, int32_t aPlatformID, nsTArray<nsString>& aNames);
// convert opentype name-table platform/encoding/language values to a charset name
// we can use to convert the name data to unicode, or "" if data is UTF16BE
static const char*
GetCharsetForFontName(uint16_t aPlatform, uint16_t aScript, uint16_t aLanguage);
struct MacFontNameCharsetMapping {
uint16_t mEncoding;
uint16_t mLanguage;
const char *mCharsetName;
bool operator<(const MacFontNameCharsetMapping& rhs) const {
return (mEncoding < rhs.mEncoding) ||
((mEncoding == rhs.mEncoding) && (mLanguage < rhs.mLanguage));
}
};
static const MacFontNameCharsetMapping gMacFontNameCharsets[];
static const char* gISOFontNameCharsets[];
static const char* gMSFontNameCharsets[];
};
#endif /* GFX_FONT_UTILS_H */