Retro68/gcc/gcc/basic-block.h

638 lines
19 KiB
C
Raw Normal View History

2012-03-27 23:13:14 +00:00
/* Define control flow data structures for the CFG.
2015-08-28 15:33:40 +00:00
Copyright (C) 1987-2015 Free Software Foundation, Inc.
2012-03-27 23:13:14 +00:00
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_BASIC_BLOCK_H
#define GCC_BASIC_BLOCK_H
2014-09-21 17:33:12 +00:00
/* Use gcov_type to hold basic block counters. Should be at least
2012-03-27 23:13:14 +00:00
64bit. Although a counter cannot be negative, we use a signed
type, because erroneous negative counts can be generated when the
flow graph is manipulated by various optimizations. A signed type
makes those easy to detect. */
/* Control flow edge information. */
2014-09-21 17:33:12 +00:00
struct GTY((user)) edge_def {
2012-03-27 23:13:14 +00:00
/* The two blocks at the ends of the edge. */
2014-09-21 17:33:12 +00:00
basic_block src;
basic_block dest;
2012-03-27 23:13:14 +00:00
/* Instructions queued on the edge. */
union edge_def_insns {
2014-09-21 17:33:12 +00:00
gimple_seq g;
2015-08-28 15:33:40 +00:00
rtx_insn *r;
2014-09-21 17:33:12 +00:00
} insns;
2012-03-27 23:13:14 +00:00
/* Auxiliary info specific to a pass. */
2014-09-21 17:33:12 +00:00
PTR aux;
2012-03-27 23:13:14 +00:00
2014-09-21 17:33:12 +00:00
/* Location of any goto implicit in the edge. */
2012-03-27 23:13:14 +00:00
location_t goto_locus;
/* The index number corresponding to this edge in the edge vector
dest->preds. */
unsigned int dest_idx;
2014-09-21 17:33:12 +00:00
int flags; /* see cfg-flags.def */
2012-03-27 23:13:14 +00:00
int probability; /* biased by REG_BR_PROB_BASE */
gcov_type count; /* Expected number of executions calculated
in profile.c */
};
2014-09-21 17:33:12 +00:00
/* Masks for edge.flags. */
#define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
enum cfg_edge_flags {
#include "cfg-flags.def"
LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
};
#undef DEF_EDGE_FLAG
/* Bit mask for all edge flags. */
#define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
/* The following four flags all indicate something special about an edge.
Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
control flow transfers. */
2012-03-27 23:13:14 +00:00
#define EDGE_COMPLEX \
(EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
2014-09-21 17:33:12 +00:00
struct GTY(()) rtl_bb_info {
/* The first insn of the block is embedded into bb->il.x. */
/* The last insn of the block. */
2015-08-28 15:33:40 +00:00
rtx_insn *end_;
2012-03-27 23:13:14 +00:00
2014-09-21 17:33:12 +00:00
/* In CFGlayout mode points to insn notes/jumptables to be placed just before
and after the block. */
2015-08-28 15:33:40 +00:00
rtx_insn *header_;
rtx_insn *footer_;
2014-09-21 17:33:12 +00:00
};
struct GTY(()) gimple_bb_info {
/* Sequence of statements in this block. */
gimple_seq seq;
/* PHI nodes for this block. */
gimple_seq phi_nodes;
};
/* A basic block is a sequence of instructions with only one entry and
2012-03-27 23:13:14 +00:00
only one exit. If any one of the instructions are executed, they
will all be executed, and in sequence from first to last.
There may be COND_EXEC instructions in the basic block. The
COND_EXEC *instructions* will be executed -- but if the condition
is false the conditionally executed *expressions* will of course
not be executed. We don't consider the conditionally executed
expression (which might have side-effects) to be in a separate
basic block because the program counter will always be at the same
location after the COND_EXEC instruction, regardless of whether the
condition is true or not.
Basic blocks need not start with a label nor end with a jump insn.
For example, a previous basic block may just "conditionally fall"
into the succeeding basic block, and the last basic block need not
end with a jump insn. Block 0 is a descendant of the entry block.
A basic block beginning with two labels cannot have notes between
the labels.
Data for jump tables are stored in jump_insns that occur in no
basic block even though these insns can follow or precede insns in
basic blocks. */
/* Basic block information indexed by block number. */
struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
/* The edges into and out of the block. */
2014-09-21 17:33:12 +00:00
vec<edge, va_gc> *preds;
vec<edge, va_gc> *succs;
2012-03-27 23:13:14 +00:00
/* Auxiliary info specific to a pass. */
PTR GTY ((skip (""))) aux;
/* Innermost loop containing the block. */
struct loop *loop_father;
/* The dominance and postdominance information node. */
struct et_node * GTY ((skip (""))) dom[2];
/* Previous and next blocks in the chain. */
2014-09-21 17:33:12 +00:00
basic_block prev_bb;
basic_block next_bb;
2012-03-27 23:13:14 +00:00
union basic_block_il_dependent {
2014-09-21 17:33:12 +00:00
struct gimple_bb_info GTY ((tag ("0"))) gimple;
struct {
2015-08-28 15:33:40 +00:00
rtx_insn *head_;
2014-09-21 17:33:12 +00:00
struct rtl_bb_info * rtl;
} GTY ((tag ("1"))) x;
2012-03-27 23:13:14 +00:00
} GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
2014-09-21 17:33:12 +00:00
/* Various flags. See cfg-flags.def. */
int flags;
2012-03-27 23:13:14 +00:00
/* The index of this block. */
int index;
2014-09-21 17:33:12 +00:00
/* Expected number of executions: calculated in profile.c. */
gcov_type count;
2012-03-27 23:13:14 +00:00
/* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
int frequency;
2014-09-21 17:33:12 +00:00
/* The discriminator for this block. The discriminator distinguishes
among several basic blocks that share a common locus, allowing for
more accurate sample-based profiling. */
2012-03-27 23:13:14 +00:00
int discriminator;
};
2014-09-21 17:33:12 +00:00
/* This ensures that struct gimple_bb_info is smaller than
struct rtl_bb_info, so that inlining the former into basic_block_def
is the better choice. */
typedef int __assert_gimple_bb_smaller_rtl_bb
[(int) sizeof (struct rtl_bb_info)
- (int) sizeof (struct gimple_bb_info)];
2012-03-27 23:13:14 +00:00
#define BB_FREQ_MAX 10000
2014-09-21 17:33:12 +00:00
/* Masks for basic_block.flags. */
#define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
enum cfg_bb_flags
2012-03-27 23:13:14 +00:00
{
2014-09-21 17:33:12 +00:00
#include "cfg-flags.def"
LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
};
#undef DEF_BASIC_BLOCK_FLAG
2012-03-27 23:13:14 +00:00
2014-09-21 17:33:12 +00:00
/* Bit mask for all basic block flags. */
#define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
2012-03-27 23:13:14 +00:00
2014-09-21 17:33:12 +00:00
/* Bit mask for all basic block flags that must be preserved. These are
the bit masks that are *not* cleared by clear_bb_flags. */
#define BB_FLAGS_TO_PRESERVE \
(BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
| BB_HOT_PARTITION | BB_COLD_PARTITION)
2012-03-27 23:13:14 +00:00
2014-09-21 17:33:12 +00:00
/* Dummy bitmask for convenience in the hot/cold partitioning code. */
2012-03-27 23:13:14 +00:00
#define BB_UNPARTITIONED 0
/* Partitions, to be used when partitioning hot and cold basic blocks into
separate sections. */
#define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
#define BB_SET_PARTITION(bb, part) do { \
basic_block bb_ = (bb); \
bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
| (part)); \
} while (0)
#define BB_COPY_PARTITION(dstbb, srcbb) \
BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
/* Defines for accessing the fields of the CFG structure for function FN. */
2014-09-21 17:33:12 +00:00
#define ENTRY_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_entry_block_ptr)
#define EXIT_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_exit_block_ptr)
#define basic_block_info_for_fn(FN) ((FN)->cfg->x_basic_block_info)
#define n_basic_blocks_for_fn(FN) ((FN)->cfg->x_n_basic_blocks)
#define n_edges_for_fn(FN) ((FN)->cfg->x_n_edges)
#define last_basic_block_for_fn(FN) ((FN)->cfg->x_last_basic_block)
#define label_to_block_map_for_fn(FN) ((FN)->cfg->x_label_to_block_map)
#define profile_status_for_fn(FN) ((FN)->cfg->x_profile_status)
#define BASIC_BLOCK_FOR_FN(FN,N) \
((*basic_block_info_for_fn (FN))[(N)])
#define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
((*basic_block_info_for_fn (FN))[(N)] = (BB))
2012-03-27 23:13:14 +00:00
/* For iterating over basic blocks. */
#define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
for (BB = FROM; BB != TO; BB = BB->DIR)
#define FOR_EACH_BB_FN(BB, FN) \
FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
#define FOR_EACH_BB_REVERSE_FN(BB, FN) \
FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
/* For iterating over insns in basic block. */
#define FOR_BB_INSNS(BB, INSN) \
for ((INSN) = BB_HEAD (BB); \
(INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
(INSN) = NEXT_INSN (INSN))
/* For iterating over insns in basic block when we might remove the
current insn. */
#define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
(INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
(INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
#define FOR_BB_INSNS_REVERSE(BB, INSN) \
for ((INSN) = BB_END (BB); \
(INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
(INSN) = PREV_INSN (INSN))
#define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
(INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
(INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
/* Cycles through _all_ basic blocks, even the fake ones (entry and
exit block). */
#define FOR_ALL_BB_FN(BB, FN) \
2014-09-21 17:33:12 +00:00
for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
2012-03-27 23:13:14 +00:00
/* Stuff for recording basic block info. */
2015-08-28 15:33:40 +00:00
/* For now, these will be functions (so that they can include checked casts
to rtx_insn. Once the underlying fields are converted from rtx
to rtx_insn, these can be converted back to macros. */
2014-09-21 17:33:12 +00:00
#define BB_HEAD(B) (B)->il.x.head_
#define BB_END(B) (B)->il.x.rtl->end_
#define BB_HEADER(B) (B)->il.x.rtl->header_
#define BB_FOOTER(B) (B)->il.x.rtl->footer_
2012-03-27 23:13:14 +00:00
/* Special block numbers [markers] for entry and exit.
Neither of them is supposed to hold actual statements. */
#define ENTRY_BLOCK (0)
#define EXIT_BLOCK (1)
/* The two blocks that are always in the cfg. */
#define NUM_FIXED_BLOCKS (2)
/* The base value for branch probability notes and edge probabilities. */
#define REG_BR_PROB_BASE 10000
/* This is the value which indicates no edge is present. */
#define EDGE_INDEX_NO_EDGE -1
/* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
if there is no edge between the 2 basic blocks. */
#define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
/* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
block which is either the pred or succ end of the indexed edge. */
#define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
#define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
/* INDEX_EDGE returns a pointer to the edge. */
#define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
/* Number of edges in the compressed edge list. */
#define NUM_EDGES(el) ((el)->num_edges)
/* BB is assumed to contain conditional jump. Return the fallthru edge. */
#define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
/* BB is assumed to contain conditional jump. Return the branch edge. */
#define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
2014-09-21 17:33:12 +00:00
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
2012-03-27 23:13:14 +00:00
/* Return expected execution frequency of the edge E. */
2014-09-21 17:33:12 +00:00
#define EDGE_FREQUENCY(e) RDIV ((e)->src->frequency * (e)->probability, \
REG_BR_PROB_BASE)
/* Compute a scale factor (or probability) suitable for scaling of
gcov_type values via apply_probability() and apply_scale(). */
#define GCOV_COMPUTE_SCALE(num,den) \
((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
2012-03-27 23:13:14 +00:00
/* Return nonzero if edge is critical. */
#define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
&& EDGE_COUNT ((e)->dest->preds) >= 2)
2014-09-21 17:33:12 +00:00
#define EDGE_COUNT(ev) vec_safe_length (ev)
#define EDGE_I(ev,i) (*ev)[(i)]
#define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
#define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
2012-03-27 23:13:14 +00:00
/* Returns true if BB has precisely one successor. */
static inline bool
single_succ_p (const_basic_block bb)
{
return EDGE_COUNT (bb->succs) == 1;
}
/* Returns true if BB has precisely one predecessor. */
static inline bool
single_pred_p (const_basic_block bb)
{
return EDGE_COUNT (bb->preds) == 1;
}
/* Returns the single successor edge of basic block BB. Aborts if
BB does not have exactly one successor. */
static inline edge
single_succ_edge (const_basic_block bb)
{
gcc_checking_assert (single_succ_p (bb));
return EDGE_SUCC (bb, 0);
}
/* Returns the single predecessor edge of basic block BB. Aborts
if BB does not have exactly one predecessor. */
static inline edge
single_pred_edge (const_basic_block bb)
{
gcc_checking_assert (single_pred_p (bb));
return EDGE_PRED (bb, 0);
}
/* Returns the single successor block of basic block BB. Aborts
if BB does not have exactly one successor. */
static inline basic_block
single_succ (const_basic_block bb)
{
return single_succ_edge (bb)->dest;
}
/* Returns the single predecessor block of basic block BB. Aborts
if BB does not have exactly one predecessor.*/
static inline basic_block
single_pred (const_basic_block bb)
{
return single_pred_edge (bb)->src;
}
/* Iterator object for edges. */
2014-09-21 17:33:12 +00:00
struct edge_iterator {
2012-03-27 23:13:14 +00:00
unsigned index;
2014-09-21 17:33:12 +00:00
vec<edge, va_gc> **container;
};
2012-03-27 23:13:14 +00:00
2014-09-21 17:33:12 +00:00
static inline vec<edge, va_gc> *
2012-03-27 23:13:14 +00:00
ei_container (edge_iterator i)
{
gcc_checking_assert (i.container);
return *i.container;
}
#define ei_start(iter) ei_start_1 (&(iter))
#define ei_last(iter) ei_last_1 (&(iter))
/* Return an iterator pointing to the start of an edge vector. */
static inline edge_iterator
2014-09-21 17:33:12 +00:00
ei_start_1 (vec<edge, va_gc> **ev)
2012-03-27 23:13:14 +00:00
{
edge_iterator i;
i.index = 0;
i.container = ev;
return i;
}
/* Return an iterator pointing to the last element of an edge
vector. */
static inline edge_iterator
2014-09-21 17:33:12 +00:00
ei_last_1 (vec<edge, va_gc> **ev)
2012-03-27 23:13:14 +00:00
{
edge_iterator i;
i.index = EDGE_COUNT (*ev) - 1;
i.container = ev;
return i;
}
/* Is the iterator `i' at the end of the sequence? */
static inline bool
ei_end_p (edge_iterator i)
{
return (i.index == EDGE_COUNT (ei_container (i)));
}
/* Is the iterator `i' at one position before the end of the
sequence? */
static inline bool
ei_one_before_end_p (edge_iterator i)
{
return (i.index + 1 == EDGE_COUNT (ei_container (i)));
}
/* Advance the iterator to the next element. */
static inline void
ei_next (edge_iterator *i)
{
gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
i->index++;
}
/* Move the iterator to the previous element. */
static inline void
ei_prev (edge_iterator *i)
{
gcc_checking_assert (i->index > 0);
i->index--;
}
/* Return the edge pointed to by the iterator `i'. */
static inline edge
ei_edge (edge_iterator i)
{
return EDGE_I (ei_container (i), i.index);
}
/* Return an edge pointed to by the iterator. Do it safely so that
NULL is returned when the iterator is pointing at the end of the
sequence. */
static inline edge
ei_safe_edge (edge_iterator i)
{
return !ei_end_p (i) ? ei_edge (i) : NULL;
}
/* Return 1 if we should continue to iterate. Return 0 otherwise.
*Edge P is set to the next edge if we are to continue to iterate
and NULL otherwise. */
static inline bool
ei_cond (edge_iterator ei, edge *p)
{
if (!ei_end_p (ei))
{
*p = ei_edge (ei);
return 1;
}
else
{
*p = NULL;
return 0;
}
}
/* This macro serves as a convenient way to iterate each edge in a
vector of predecessor or successor edges. It must not be used when
an element might be removed during the traversal, otherwise
elements will be missed. Instead, use a for-loop like that shown
in the following pseudo-code:
FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
{
IF (e != taken_edge)
remove_edge (e);
ELSE
ei_next (&ei);
}
*/
#define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
for ((ITER) = ei_start ((EDGE_VEC)); \
ei_cond ((ITER), &(EDGE)); \
ei_next (&(ITER)))
#define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
except for edge forwarding */
#define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
#define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
to care REG_DEAD notes. */
#define CLEANUP_THREADING 8 /* Do jump threading. */
#define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
insns. */
#define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
2014-09-21 17:33:12 +00:00
#define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
2012-03-27 23:13:14 +00:00
#include "cfghooks.h"
2014-09-21 17:33:12 +00:00
/* Return true if BB is in a transaction. */
static inline bool
bb_in_transaction (basic_block bb)
{
return bb->flags & BB_IN_TRANSACTION;
}
2012-03-27 23:13:14 +00:00
/* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
static inline bool
bb_has_eh_pred (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->flags & EDGE_EH)
return true;
}
return false;
}
/* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
static inline bool
bb_has_abnormal_pred (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->flags & EDGE_ABNORMAL)
return true;
}
return false;
}
/* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
static inline edge
2014-09-21 17:33:12 +00:00
find_fallthru_edge (vec<edge, va_gc> *edges)
2012-03-27 23:13:14 +00:00
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, edges)
if (e->flags & EDGE_FALLTHRU)
break;
return e;
}
2014-09-21 17:33:12 +00:00
/* Check tha probability is sane. */
static inline void
check_probability (int prob)
{
gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
}
/* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
Used to combine BB probabilities. */
static inline int
combine_probabilities (int prob1, int prob2)
{
check_probability (prob1);
check_probability (prob2);
return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
}
/* Apply scale factor SCALE on frequency or count FREQ. Use this
interface when potentially scaling up, so that SCALE is not
constrained to be < REG_BR_PROB_BASE. */
static inline gcov_type
apply_scale (gcov_type freq, gcov_type scale)
{
return RDIV (freq * scale, REG_BR_PROB_BASE);
}
/* Apply probability PROB on frequency or count FREQ. */
static inline gcov_type
apply_probability (gcov_type freq, int prob)
{
check_probability (prob);
return apply_scale (freq, prob);
}
/* Return inverse probability for PROB. */
static inline int
inverse_probability (int prob1)
{
check_probability (prob1);
return REG_BR_PROB_BASE - prob1;
}
/* Return true if BB has at least one abnormal outgoing edge. */
static inline bool
has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
return true;
return false;
}
2012-03-27 23:13:14 +00:00
#endif /* GCC_BASIC_BLOCK_H */