2014-09-21 17:33:12 +00:00
|
|
|
/* os-unix.c -*-C-*-
|
|
|
|
*
|
|
|
|
*************************************************************************
|
|
|
|
*
|
|
|
|
* @copyright
|
|
|
|
* Copyright (C) 2009-2013, Intel Corporation
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* @copyright
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* @copyright
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
|
|
|
|
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
#ifdef __linux__
|
|
|
|
// define _GNU_SOURCE before *any* #include.
|
|
|
|
// Even <stdint.h> will break later #includes if this macro is not
|
|
|
|
// already defined when it is #included.
|
|
|
|
# define _GNU_SOURCE
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "os.h"
|
|
|
|
#include "bug.h"
|
|
|
|
#include "cilk_malloc.h"
|
|
|
|
#include <internal/abi.h>
|
|
|
|
|
|
|
|
#if defined __linux__
|
|
|
|
# include <sys/sysinfo.h>
|
|
|
|
# include <sys/syscall.h>
|
|
|
|
#elif defined __APPLE__
|
|
|
|
# include <sys/sysctl.h>
|
|
|
|
// Uses sysconf(_SC_NPROCESSORS_ONLN) in verbose output
|
2015-08-28 15:33:40 +00:00
|
|
|
#elif defined __DragonFly__
|
|
|
|
// No additional include files
|
2014-09-21 17:33:12 +00:00
|
|
|
#elif defined __FreeBSD__
|
|
|
|
// No additional include files
|
|
|
|
#elif defined __CYGWIN__
|
|
|
|
// Cygwin on Windows - no additional include files
|
|
|
|
#elif defined __VXWORKS__
|
|
|
|
# include <vxWorks.h>
|
|
|
|
# include <vxCpuLib.h>
|
|
|
|
# include <taskLib.h>
|
|
|
|
// Solaris
|
|
|
|
#elif defined __sun__ && defined __svr4__
|
|
|
|
# include <sched.h>
|
|
|
|
#else
|
|
|
|
# error "Unsupported OS"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <pthread.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// /* Thread-local storage */
|
|
|
|
// #ifdef _WIN32
|
|
|
|
// typedef unsigned cilkos_tls_key_t;
|
|
|
|
// #else
|
|
|
|
// typedef pthread_key_t cilkos_tls_key_t;
|
|
|
|
// #endif
|
|
|
|
// cilkos_tls_key_t cilkos_allocate_tls_key();
|
|
|
|
// void cilkos_set_tls_pointer(cilkos_tls_key_t key, void* ptr);
|
|
|
|
// void* cilkos_get_tls_pointer(cilkos_tls_key_t key);
|
|
|
|
|
|
|
|
#if !defined CILK_WORKER_TLS
|
|
|
|
static int cilk_keys_defined;
|
|
|
|
static pthread_key_t worker_key, pedigree_leaf_key, tbb_interop_key;
|
|
|
|
|
|
|
|
#if SUPPORT_GET_CURRENT_FIBER > 0
|
|
|
|
static pthread_key_t fiber_key;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void *serial_worker;
|
|
|
|
|
|
|
|
|
|
|
|
// This destructor is called when a pthread dies to deallocate the
|
|
|
|
// pedigree node.
|
|
|
|
static void __cilkrts_pedigree_leaf_destructor(void* pedigree_tls_ptr)
|
|
|
|
{
|
|
|
|
__cilkrts_pedigree* pedigree_tls
|
|
|
|
= (__cilkrts_pedigree*)pedigree_tls_ptr;
|
|
|
|
if (pedigree_tls) {
|
|
|
|
// Assert that we have either one or two nodes
|
|
|
|
// left in the pedigree chain.
|
|
|
|
// If we have more, then something is going wrong...
|
|
|
|
CILK_ASSERT(!pedigree_tls->parent || !pedigree_tls->parent->parent);
|
|
|
|
__cilkrts_free(pedigree_tls);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void __cilkrts_init_tls_variables(void)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
/* This will be called once in serial execution before any
|
|
|
|
Cilk parallelism so we do not need to worry about races
|
|
|
|
on cilk_keys_defined. */
|
|
|
|
if (cilk_keys_defined)
|
|
|
|
return;
|
|
|
|
status = pthread_key_create(&worker_key, NULL);
|
|
|
|
CILK_ASSERT (status == 0);
|
|
|
|
status = pthread_key_create(&pedigree_leaf_key,
|
|
|
|
__cilkrts_pedigree_leaf_destructor);
|
|
|
|
CILK_ASSERT (status == 0);
|
|
|
|
status = pthread_key_create(&tbb_interop_key, NULL);
|
|
|
|
CILK_ASSERT (status == 0);
|
|
|
|
|
|
|
|
#if SUPPORT_GET_CURRENT_FIBER > 0
|
|
|
|
status = pthread_key_create(&fiber_key, NULL);
|
|
|
|
CILK_ASSERT (status == 0);
|
|
|
|
#endif
|
|
|
|
cilk_keys_defined = 1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
COMMON_SYSDEP
|
|
|
|
void* cilkos_get_current_thread_id(void)
|
|
|
|
{
|
|
|
|
return (void*)pthread_self();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CILK_ABI_WORKER_PTR __cilkrts_get_tls_worker()
|
|
|
|
{
|
|
|
|
if (__builtin_expect(cilk_keys_defined, 1))
|
|
|
|
return (__cilkrts_worker *)pthread_getspecific(worker_key);
|
|
|
|
else
|
|
|
|
return serial_worker;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
CILK_ABI_WORKER_PTR __cilkrts_get_tls_worker_fast()
|
|
|
|
{
|
|
|
|
return (__cilkrts_worker *)pthread_getspecific(worker_key);
|
|
|
|
}
|
|
|
|
|
|
|
|
COMMON_SYSDEP
|
|
|
|
__cilk_tbb_stack_op_thunk *__cilkrts_get_tls_tbb_interop(void)
|
|
|
|
{
|
|
|
|
if (__builtin_expect(cilk_keys_defined, 1))
|
|
|
|
return (__cilk_tbb_stack_op_thunk *)
|
|
|
|
pthread_getspecific(tbb_interop_key);
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// This counter should be updated atomically.
|
|
|
|
static int __cilkrts_global_pedigree_tls_counter = -1;
|
|
|
|
|
|
|
|
COMMON_SYSDEP
|
|
|
|
__cilkrts_pedigree *__cilkrts_get_tls_pedigree_leaf(int create_new)
|
|
|
|
{
|
|
|
|
__cilkrts_pedigree *pedigree_tls;
|
|
|
|
if (__builtin_expect(cilk_keys_defined, 1)) {
|
|
|
|
pedigree_tls =
|
|
|
|
(struct __cilkrts_pedigree *)pthread_getspecific(pedigree_leaf_key);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!pedigree_tls && create_new) {
|
|
|
|
// This call creates two nodes, X and Y.
|
|
|
|
// X == pedigree_tls[0] is the leaf node, which gets copied
|
|
|
|
// in and out of a user worker w when w binds and unbinds.
|
|
|
|
// Y == pedigree_tls[1] is the root node,
|
|
|
|
// which is a constant node that represents the user worker
|
|
|
|
// thread w.
|
|
|
|
pedigree_tls = (__cilkrts_pedigree*)
|
|
|
|
__cilkrts_malloc(2 * sizeof(__cilkrts_pedigree));
|
|
|
|
|
|
|
|
// This call sets the TLS pointer to the new node.
|
|
|
|
__cilkrts_set_tls_pedigree_leaf(pedigree_tls);
|
|
|
|
|
|
|
|
pedigree_tls[0].rank = 0;
|
|
|
|
pedigree_tls[0].parent = &pedigree_tls[1];
|
|
|
|
|
|
|
|
// Create Y, whose rank begins as the global counter value.
|
|
|
|
pedigree_tls[1].rank =
|
|
|
|
__sync_add_and_fetch(&__cilkrts_global_pedigree_tls_counter, 1);
|
|
|
|
|
|
|
|
pedigree_tls[1].parent = NULL;
|
|
|
|
CILK_ASSERT(pedigree_tls[1].rank != -1);
|
|
|
|
}
|
|
|
|
return pedigree_tls;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if SUPPORT_GET_CURRENT_FIBER > 0
|
|
|
|
COMMON_SYSDEP
|
|
|
|
cilk_fiber_sysdep* cilkos_get_tls_cilk_fiber(void)
|
|
|
|
{
|
|
|
|
if (__builtin_expect(cilk_keys_defined, 1))
|
|
|
|
return (cilk_fiber_sysdep *)pthread_getspecific(fiber_key);
|
|
|
|
else
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
COMMON_SYSDEP
|
|
|
|
void __cilkrts_set_tls_worker(__cilkrts_worker *w)
|
|
|
|
{
|
|
|
|
if (__builtin_expect(cilk_keys_defined, 1)) {
|
|
|
|
int status;
|
|
|
|
status = pthread_setspecific(worker_key, w);
|
|
|
|
CILK_ASSERT (status == 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
serial_worker = w;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
COMMON_SYSDEP
|
|
|
|
void __cilkrts_set_tls_tbb_interop(__cilk_tbb_stack_op_thunk *t)
|
|
|
|
{
|
|
|
|
if (__builtin_expect(cilk_keys_defined, 1)) {
|
|
|
|
int status;
|
|
|
|
status = pthread_setspecific(tbb_interop_key, t);
|
|
|
|
CILK_ASSERT (status == 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
COMMON_SYSDEP
|
|
|
|
void __cilkrts_set_tls_pedigree_leaf(__cilkrts_pedigree* pedigree_leaf)
|
|
|
|
{
|
|
|
|
if (__builtin_expect(cilk_keys_defined, 1)) {
|
|
|
|
int status;
|
|
|
|
status = pthread_setspecific(pedigree_leaf_key, pedigree_leaf);
|
|
|
|
CILK_ASSERT (status == 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
#if SUPPORT_GET_CURRENT_FIBER > 0
|
|
|
|
COMMON_SYSDEP
|
|
|
|
void cilkos_set_tls_cilk_fiber(cilk_fiber_sysdep* fiber)
|
|
|
|
{
|
|
|
|
if (__builtin_expect(cilk_keys_defined, 1)) {
|
|
|
|
int status;
|
|
|
|
status = pthread_setspecific(fiber_key, fiber);
|
|
|
|
CILK_ASSERT (status == 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#else
|
|
|
|
void __cilkrts_init_tls_variables(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined (__linux__) && ! defined(__ANDROID__)
|
|
|
|
/*
|
|
|
|
* Get the thread id, rather than the pid. In the case of MIC offload, it's
|
|
|
|
* possible that we have multiple threads entering Cilk, and each has a
|
|
|
|
* different affinity.
|
|
|
|
*/
|
|
|
|
static pid_t linux_gettid(void)
|
|
|
|
{
|
|
|
|
return syscall(SYS_gettid);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On Linux we look at the thread affinity mask and restrict ourself to one
|
|
|
|
* thread for each of the hardware contexts to which we are bound.
|
|
|
|
* Therefore if user does
|
|
|
|
* % taskset 0-1 cilkProgram
|
|
|
|
* # restrict execution to hardware contexts zero and one
|
|
|
|
* the Cilk program will only use two threads even if it is running on a
|
|
|
|
* machine that has 32 hardware contexts.
|
|
|
|
* This is the right thing to do, because the threads are restricted to two
|
|
|
|
* hardware contexts by the affinity mask set by taskset, and if we were to
|
|
|
|
* create extra threads they would simply oversubscribe the hardware resources
|
|
|
|
* we can use.
|
|
|
|
* This is particularly important on MIC in offload mode, where the affinity
|
|
|
|
* mask is set by the offload library to force the offload code away from
|
|
|
|
* cores that have offload support threads running on them.
|
|
|
|
*/
|
|
|
|
static int linux_get_affinity_count (int tid)
|
|
|
|
{
|
|
|
|
#if !defined HAVE_PTHREAD_AFFINITY_NP
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
|
|
|
|
cpu_set_t process_mask;
|
|
|
|
|
|
|
|
// Extract the thread affinity mask
|
|
|
|
int err = sched_getaffinity (tid, sizeof(process_mask),&process_mask);
|
|
|
|
|
|
|
|
if (0 != err)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We have extracted the mask OK, so now we can count the number of threads
|
|
|
|
// in it. This is linear in the maximum number of CPUs available, We
|
|
|
|
// could do a logarithmic version, if we assume the format of the mask,
|
|
|
|
// but it's not really worth it. We only call this at thread startup
|
|
|
|
// anyway.
|
|
|
|
int available_procs = 0;
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < CPU_SETSIZE; i++)
|
|
|
|
{
|
|
|
|
if (CPU_ISSET(i, &process_mask))
|
|
|
|
{
|
|
|
|
available_procs++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return available_procs;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif // defined (__linux__) && ! defined(__ANDROID__)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* __cilkrts_hardware_cpu_count
|
|
|
|
*
|
|
|
|
* Returns the number of available CPUs on this hardware. This is architecture-
|
|
|
|
* specific.
|
|
|
|
*/
|
|
|
|
|
|
|
|
COMMON_SYSDEP int __cilkrts_hardware_cpu_count(void)
|
|
|
|
{
|
|
|
|
#if defined __ANDROID__ || (defined(__sun__) && defined(__svr4__))
|
|
|
|
return sysconf (_SC_NPROCESSORS_ONLN);
|
|
|
|
#elif defined __MIC__
|
|
|
|
/// HACK: Usually, the 3rd and 4th hyperthreads are not beneficial
|
|
|
|
/// on KNC. Also, ignore the last core.
|
|
|
|
int P = sysconf (_SC_NPROCESSORS_ONLN);
|
|
|
|
return P/2 - 2;
|
|
|
|
#elif defined __linux__
|
|
|
|
int affinity_count = linux_get_affinity_count(linux_gettid());
|
|
|
|
|
|
|
|
return (0 != affinity_count) ? affinity_count : sysconf (_SC_NPROCESSORS_ONLN);
|
|
|
|
#elif defined __APPLE__
|
|
|
|
int count = 0;
|
|
|
|
int cmd[2] = { CTL_HW, HW_NCPU };
|
|
|
|
size_t len = sizeof count;
|
|
|
|
int status = sysctl(cmd, 2, &count, &len, 0, 0);
|
|
|
|
assert(status >= 0);
|
|
|
|
assert((unsigned)count == count);
|
|
|
|
|
|
|
|
return count;
|
2015-08-28 15:33:40 +00:00
|
|
|
#elif defined __FreeBSD__ || defined __CYGWIN__ || defined __DragonFly__
|
2014-09-21 17:33:12 +00:00
|
|
|
int ncores = sysconf(_SC_NPROCESSORS_ONLN);
|
|
|
|
|
|
|
|
return ncores;
|
|
|
|
// Just get the number of processors
|
|
|
|
// return sysconf(_SC_NPROCESSORS_ONLN);
|
|
|
|
#elif defined __VXWORKS__
|
|
|
|
return __builtin_popcount( vxCpuEnabledGet() );
|
|
|
|
#else
|
|
|
|
#error "Unknown architecture"
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
COMMON_SYSDEP void __cilkrts_sleep(void)
|
|
|
|
{
|
|
|
|
#ifdef __VXWORKS__
|
|
|
|
taskDelay(1);
|
|
|
|
#else
|
|
|
|
usleep(1);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
COMMON_SYSDEP void __cilkrts_yield(void)
|
|
|
|
{
|
|
|
|
#if __APPLE__ || __FreeBSD__ || __VXWORKS__
|
|
|
|
// On MacOS, call sched_yield to yield quantum. I'm not sure why we
|
|
|
|
// don't do this on Linux also.
|
|
|
|
sched_yield();
|
2015-08-28 15:33:40 +00:00
|
|
|
#elif defined(__DragonFly__)
|
|
|
|
// On DragonFly BSD, call sched_yield to yield quantum.
|
|
|
|
sched_yield();
|
2014-09-21 17:33:12 +00:00
|
|
|
#elif defined(__MIC__)
|
|
|
|
// On MIC, pthread_yield() really trashes things. Arch's measurements
|
|
|
|
// showed that calling _mm_delay_32() (or doing nothing) was a better
|
|
|
|
// option. Delaying 1024 clock cycles is a reasonable compromise between
|
|
|
|
// giving up the processor and latency starting up when work becomes
|
|
|
|
// available
|
|
|
|
_mm_delay_32(1024);
|
|
|
|
#elif defined(__ANDROID__) || (defined(__sun__) && defined(__svr4__))
|
|
|
|
// On Android and Solaris, call sched_yield to yield quantum. I'm not
|
|
|
|
// sure why we don't do this on Linux also.
|
|
|
|
sched_yield();
|
|
|
|
#else
|
|
|
|
// On Linux, call pthread_yield (which in turn will call sched_yield)
|
|
|
|
// to yield quantum.
|
|
|
|
pthread_yield();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
COMMON_SYSDEP __STDNS size_t cilkos_getenv(char* value, __STDNS size_t vallen,
|
|
|
|
const char* varname)
|
|
|
|
{
|
|
|
|
CILK_ASSERT(value);
|
|
|
|
CILK_ASSERT(varname);
|
|
|
|
|
|
|
|
const char* envstr = getenv(varname);
|
|
|
|
if (envstr)
|
|
|
|
{
|
|
|
|
size_t len = strlen(envstr);
|
|
|
|
if (len > vallen - 1)
|
|
|
|
return len + 1;
|
|
|
|
|
|
|
|
strcpy(value, envstr);
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
value[0] = '\0';
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unrecoverable error: Print an error message and abort execution.
|
|
|
|
*/
|
|
|
|
COMMON_SYSDEP void cilkos_error(const char *fmt, ...)
|
|
|
|
{
|
|
|
|
va_list l;
|
|
|
|
fflush(NULL);
|
|
|
|
fprintf(stderr, "Cilk error: ");
|
|
|
|
va_start(l, fmt);
|
|
|
|
vfprintf(stderr, fmt, l);
|
|
|
|
va_end(l);
|
|
|
|
fprintf(stderr, "Exiting.\n");
|
|
|
|
fflush(stderr);
|
|
|
|
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Print a warning message and return.
|
|
|
|
*/
|
|
|
|
COMMON_SYSDEP void cilkos_warning(const char *fmt, ...)
|
|
|
|
{
|
|
|
|
va_list l;
|
|
|
|
fflush(NULL);
|
|
|
|
fprintf(stderr, "Cilk warning: ");
|
|
|
|
va_start(l, fmt);
|
|
|
|
vfprintf(stderr, fmt, l);
|
|
|
|
va_end(l);
|
|
|
|
fflush(stderr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __attribute__((constructor)) init_once()
|
|
|
|
{
|
|
|
|
/*__cilkrts_debugger_notification_internal(CILK_DB_RUNTIME_LOADED);*/
|
|
|
|
__cilkrts_init_tls_variables();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#define PAGE 4096
|
|
|
|
#define CILK_MIN_STACK_SIZE (4*PAGE)
|
|
|
|
// Default size for the stacks that we create in Cilk for Unix.
|
|
|
|
#define CILK_DEFAULT_STACK_SIZE 0x100000
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert the user's specified stack size into a "reasonable" value
|
|
|
|
* for this OS.
|
|
|
|
*/
|
|
|
|
size_t cilkos_validate_stack_size(size_t specified_stack_size) {
|
|
|
|
// Convert any negative value to the default.
|
|
|
|
if (specified_stack_size == 0) {
|
|
|
|
CILK_ASSERT((CILK_DEFAULT_STACK_SIZE % PAGE) == 0);
|
|
|
|
return CILK_DEFAULT_STACK_SIZE;
|
|
|
|
}
|
|
|
|
// Round values in between 0 and CILK_MIN_STACK_SIZE up to
|
|
|
|
// CILK_MIN_STACK_SIZE.
|
|
|
|
if (specified_stack_size <= CILK_MIN_STACK_SIZE) {
|
|
|
|
return CILK_MIN_STACK_SIZE;
|
|
|
|
}
|
|
|
|
if ((specified_stack_size % PAGE) > 0) {
|
|
|
|
// Round the user's stack size value up to nearest page boundary.
|
|
|
|
return (PAGE * (1 + specified_stack_size / PAGE));
|
|
|
|
}
|
|
|
|
return specified_stack_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
long cilkos_atomic_add(volatile long* p, long x)
|
|
|
|
{
|
|
|
|
return __sync_add_and_fetch(p, x);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* End os-unix.c */
|