// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package fmt import ( "errors" "io" "os" "reflect" "sync" "unicode/utf8" ) // Some constants in the form of bytes, to avoid string overhead. // Needlessly fastidious, I suppose. var ( commaSpaceBytes = []byte(", ") nilAngleBytes = []byte("") nilParenBytes = []byte("(nil)") nilBytes = []byte("nil") mapBytes = []byte("map[") percentBangBytes = []byte("%!") missingBytes = []byte("(MISSING)") badIndexBytes = []byte("(BADINDEX)") panicBytes = []byte("(PANIC=") extraBytes = []byte("%!(EXTRA ") irparenBytes = []byte("i)") bytesBytes = []byte("[]byte{") badWidthBytes = []byte("%!(BADWIDTH)") badPrecBytes = []byte("%!(BADPREC)") noVerbBytes = []byte("%!(NOVERB)") ) // State represents the printer state passed to custom formatters. // It provides access to the io.Writer interface plus information about // the flags and options for the operand's format specifier. type State interface { // Write is the function to call to emit formatted output to be printed. Write(b []byte) (ret int, err error) // Width returns the value of the width option and whether it has been set. Width() (wid int, ok bool) // Precision returns the value of the precision option and whether it has been set. Precision() (prec int, ok bool) // Flag reports whether the flag c, a character, has been set. Flag(c int) bool } // Formatter is the interface implemented by values with a custom formatter. // The implementation of Format may call Sprint(f) or Fprint(f) etc. // to generate its output. type Formatter interface { Format(f State, c rune) } // Stringer is implemented by any value that has a String method, // which defines the ``native'' format for that value. // The String method is used to print values passed as an operand // to any format that accepts a string or to an unformatted printer // such as Print. type Stringer interface { String() string } // GoStringer is implemented by any value that has a GoString method, // which defines the Go syntax for that value. // The GoString method is used to print values passed as an operand // to a %#v format. type GoStringer interface { GoString() string } // Use simple []byte instead of bytes.Buffer to avoid large dependency. type buffer []byte func (b *buffer) Write(p []byte) (n int, err error) { *b = append(*b, p...) return len(p), nil } func (b *buffer) WriteString(s string) (n int, err error) { *b = append(*b, s...) return len(s), nil } func (b *buffer) WriteByte(c byte) error { *b = append(*b, c) return nil } func (bp *buffer) WriteRune(r rune) error { if r < utf8.RuneSelf { *bp = append(*bp, byte(r)) return nil } b := *bp n := len(b) for n+utf8.UTFMax > cap(b) { b = append(b, 0) } w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r) *bp = b[:n+w] return nil } type pp struct { n int panicking bool erroring bool // printing an error condition buf buffer // arg holds the current item, as an interface{}. arg interface{} // value holds the current item, as a reflect.Value, and will be // the zero Value if the item has not been reflected. value reflect.Value // reordered records whether the format string used argument reordering. reordered bool // goodArgNum records whether the most recent reordering directive was valid. goodArgNum bool runeBuf [utf8.UTFMax]byte fmt fmt } var ppFree = sync.Pool{ New: func() interface{} { return new(pp) }, } // newPrinter allocates a new pp struct or grabs a cached one. func newPrinter() *pp { p := ppFree.Get().(*pp) p.panicking = false p.erroring = false p.fmt.init(&p.buf) return p } // free saves used pp structs in ppFree; avoids an allocation per invocation. func (p *pp) free() { // Don't hold on to pp structs with large buffers. if cap(p.buf) > 1024 { return } p.buf = p.buf[:0] p.arg = nil p.value = reflect.Value{} ppFree.Put(p) } func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent } func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent } func (p *pp) Flag(b int) bool { switch b { case '-': return p.fmt.minus case '+': return p.fmt.plus case '#': return p.fmt.sharp case ' ': return p.fmt.space case '0': return p.fmt.zero } return false } func (p *pp) add(c rune) { p.buf.WriteRune(c) } // Implement Write so we can call Fprintf on a pp (through State), for // recursive use in custom verbs. func (p *pp) Write(b []byte) (ret int, err error) { return p.buf.Write(b) } // These routines end in 'f' and take a format string. // Fprintf formats according to a format specifier and writes to w. // It returns the number of bytes written and any write error encountered. func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { p := newPrinter() p.doPrintf(format, a) n, err = w.Write(p.buf) p.free() return } // Printf formats according to a format specifier and writes to standard output. // It returns the number of bytes written and any write error encountered. func Printf(format string, a ...interface{}) (n int, err error) { return Fprintf(os.Stdout, format, a...) } // Sprintf formats according to a format specifier and returns the resulting string. func Sprintf(format string, a ...interface{}) string { p := newPrinter() p.doPrintf(format, a) s := string(p.buf) p.free() return s } // Errorf formats according to a format specifier and returns the string // as a value that satisfies error. func Errorf(format string, a ...interface{}) error { return errors.New(Sprintf(format, a...)) } // These routines do not take a format string // Fprint formats using the default formats for its operands and writes to w. // Spaces are added between operands when neither is a string. // It returns the number of bytes written and any write error encountered. func Fprint(w io.Writer, a ...interface{}) (n int, err error) { p := newPrinter() p.doPrint(a, false, false) n, err = w.Write(p.buf) p.free() return } // Print formats using the default formats for its operands and writes to standard output. // Spaces are added between operands when neither is a string. // It returns the number of bytes written and any write error encountered. func Print(a ...interface{}) (n int, err error) { return Fprint(os.Stdout, a...) } // Sprint formats using the default formats for its operands and returns the resulting string. // Spaces are added between operands when neither is a string. func Sprint(a ...interface{}) string { p := newPrinter() p.doPrint(a, false, false) s := string(p.buf) p.free() return s } // These routines end in 'ln', do not take a format string, // always add spaces between operands, and add a newline // after the last operand. // Fprintln formats using the default formats for its operands and writes to w. // Spaces are always added between operands and a newline is appended. // It returns the number of bytes written and any write error encountered. func Fprintln(w io.Writer, a ...interface{}) (n int, err error) { p := newPrinter() p.doPrint(a, true, true) n, err = w.Write(p.buf) p.free() return } // Println formats using the default formats for its operands and writes to standard output. // Spaces are always added between operands and a newline is appended. // It returns the number of bytes written and any write error encountered. func Println(a ...interface{}) (n int, err error) { return Fprintln(os.Stdout, a...) } // Sprintln formats using the default formats for its operands and returns the resulting string. // Spaces are always added between operands and a newline is appended. func Sprintln(a ...interface{}) string { p := newPrinter() p.doPrint(a, true, true) s := string(p.buf) p.free() return s } // getField gets the i'th field of the struct value. // If the field is itself is an interface, return a value for // the thing inside the interface, not the interface itself. func getField(v reflect.Value, i int) reflect.Value { val := v.Field(i) if val.Kind() == reflect.Interface && !val.IsNil() { val = val.Elem() } return val } // tooLarge reports whether the magnitude of the integer is // too large to be used as a formatting width or precision. func tooLarge(x int) bool { const max int = 1e6 return x > max || x < -max } // parsenum converts ASCII to integer. num is 0 (and isnum is false) if no number present. func parsenum(s string, start, end int) (num int, isnum bool, newi int) { if start >= end { return 0, false, end } for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ { if tooLarge(num) { return 0, false, end // Overflow; crazy long number most likely. } num = num*10 + int(s[newi]-'0') isnum = true } return } func (p *pp) unknownType(v reflect.Value) { if !v.IsValid() { p.buf.Write(nilAngleBytes) return } p.buf.WriteByte('?') p.buf.WriteString(v.Type().String()) p.buf.WriteByte('?') } func (p *pp) badVerb(verb rune) { p.erroring = true p.add('%') p.add('!') p.add(verb) p.add('(') switch { case p.arg != nil: p.buf.WriteString(reflect.TypeOf(p.arg).String()) p.add('=') p.printArg(p.arg, 'v', 0) case p.value.IsValid(): p.buf.WriteString(p.value.Type().String()) p.add('=') p.printValue(p.value, 'v', 0) default: p.buf.Write(nilAngleBytes) } p.add(')') p.erroring = false } func (p *pp) fmtBool(v bool, verb rune) { switch verb { case 't', 'v': p.fmt.fmt_boolean(v) default: p.badVerb(verb) } } // fmtC formats a rune for the 'c' format. func (p *pp) fmtC(c int64) { r := rune(c) // Check for overflow. if int64(r) != c { r = utf8.RuneError } w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], r) p.fmt.pad(p.runeBuf[0:w]) } func (p *pp) fmtInt64(v int64, verb rune) { switch verb { case 'b': p.fmt.integer(v, 2, signed, ldigits) case 'c': p.fmtC(v) case 'd', 'v': p.fmt.integer(v, 10, signed, ldigits) case 'o': p.fmt.integer(v, 8, signed, ldigits) case 'q': if 0 <= v && v <= utf8.MaxRune { p.fmt.fmt_qc(v) } else { p.badVerb(verb) } case 'x': p.fmt.integer(v, 16, signed, ldigits) case 'U': p.fmtUnicode(v) case 'X': p.fmt.integer(v, 16, signed, udigits) default: p.badVerb(verb) } } // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or // not, as requested, by temporarily setting the sharp flag. func (p *pp) fmt0x64(v uint64, leading0x bool) { sharp := p.fmt.sharp p.fmt.sharp = leading0x p.fmt.integer(int64(v), 16, unsigned, ldigits) p.fmt.sharp = sharp } // fmtUnicode formats a uint64 in U+1234 form by // temporarily turning on the unicode flag and tweaking the precision. func (p *pp) fmtUnicode(v int64) { precPresent := p.fmt.precPresent sharp := p.fmt.sharp p.fmt.sharp = false prec := p.fmt.prec if !precPresent { // If prec is already set, leave it alone; otherwise 4 is minimum. p.fmt.prec = 4 p.fmt.precPresent = true } p.fmt.unicode = true // turn on U+ p.fmt.uniQuote = sharp p.fmt.integer(int64(v), 16, unsigned, udigits) p.fmt.unicode = false p.fmt.uniQuote = false p.fmt.prec = prec p.fmt.precPresent = precPresent p.fmt.sharp = sharp } func (p *pp) fmtUint64(v uint64, verb rune) { switch verb { case 'b': p.fmt.integer(int64(v), 2, unsigned, ldigits) case 'c': p.fmtC(int64(v)) case 'd': p.fmt.integer(int64(v), 10, unsigned, ldigits) case 'v': if p.fmt.sharpV { p.fmt0x64(v, true) } else { p.fmt.integer(int64(v), 10, unsigned, ldigits) } case 'o': p.fmt.integer(int64(v), 8, unsigned, ldigits) case 'q': if 0 <= v && v <= utf8.MaxRune { p.fmt.fmt_qc(int64(v)) } else { p.badVerb(verb) } case 'x': p.fmt.integer(int64(v), 16, unsigned, ldigits) case 'X': p.fmt.integer(int64(v), 16, unsigned, udigits) case 'U': p.fmtUnicode(int64(v)) default: p.badVerb(verb) } } func (p *pp) fmtFloat32(v float32, verb rune) { switch verb { case 'b': p.fmt.fmt_fb32(v) case 'e': p.fmt.fmt_e32(v) case 'E': p.fmt.fmt_E32(v) case 'f', 'F': p.fmt.fmt_f32(v) case 'g', 'v': p.fmt.fmt_g32(v) case 'G': p.fmt.fmt_G32(v) default: p.badVerb(verb) } } func (p *pp) fmtFloat64(v float64, verb rune) { switch verb { case 'b': p.fmt.fmt_fb64(v) case 'e': p.fmt.fmt_e64(v) case 'E': p.fmt.fmt_E64(v) case 'f', 'F': p.fmt.fmt_f64(v) case 'g', 'v': p.fmt.fmt_g64(v) case 'G': p.fmt.fmt_G64(v) default: p.badVerb(verb) } } func (p *pp) fmtComplex64(v complex64, verb rune) { switch verb { case 'b', 'e', 'E', 'f', 'F', 'g', 'G': p.fmt.fmt_c64(v, verb) case 'v': p.fmt.fmt_c64(v, 'g') default: p.badVerb(verb) } } func (p *pp) fmtComplex128(v complex128, verb rune) { switch verb { case 'b', 'e', 'E', 'f', 'F', 'g', 'G': p.fmt.fmt_c128(v, verb) case 'v': p.fmt.fmt_c128(v, 'g') default: p.badVerb(verb) } } func (p *pp) fmtString(v string, verb rune) { switch verb { case 'v': if p.fmt.sharpV { p.fmt.fmt_q(v) } else { p.fmt.fmt_s(v) } case 's': p.fmt.fmt_s(v) case 'x': p.fmt.fmt_sx(v, ldigits) case 'X': p.fmt.fmt_sx(v, udigits) case 'q': p.fmt.fmt_q(v) default: p.badVerb(verb) } } func (p *pp) fmtBytes(v []byte, verb rune, typ reflect.Type, depth int) { if verb == 'v' || verb == 'd' { if p.fmt.sharpV { if v == nil { if typ == nil { p.buf.WriteString("[]byte(nil)") } else { p.buf.WriteString(typ.String()) p.buf.Write(nilParenBytes) } return } if typ == nil { p.buf.Write(bytesBytes) } else { p.buf.WriteString(typ.String()) p.buf.WriteByte('{') } } else { p.buf.WriteByte('[') } for i, c := range v { if i > 0 { if p.fmt.sharpV { p.buf.Write(commaSpaceBytes) } else { p.buf.WriteByte(' ') } } p.printArg(c, 'v', depth+1) } if p.fmt.sharpV { p.buf.WriteByte('}') } else { p.buf.WriteByte(']') } return } switch verb { case 's': p.fmt.fmt_s(string(v)) case 'x': p.fmt.fmt_bx(v, ldigits) case 'X': p.fmt.fmt_bx(v, udigits) case 'q': p.fmt.fmt_q(string(v)) default: p.badVerb(verb) } } func (p *pp) fmtPointer(value reflect.Value, verb rune) { use0x64 := true switch verb { case 'p', 'v': // ok case 'b', 'd', 'o', 'x', 'X': use0x64 = false // ok default: p.badVerb(verb) return } var u uintptr switch value.Kind() { case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer: u = value.Pointer() default: p.badVerb(verb) return } if p.fmt.sharpV { p.add('(') p.buf.WriteString(value.Type().String()) p.add(')') p.add('(') if u == 0 { p.buf.Write(nilBytes) } else { p.fmt0x64(uint64(u), true) } p.add(')') } else if verb == 'v' && u == 0 { p.buf.Write(nilAngleBytes) } else { if use0x64 { p.fmt0x64(uint64(u), !p.fmt.sharp) } else { p.fmtUint64(uint64(u), verb) } } } var ( intBits = reflect.TypeOf(0).Bits() uintptrBits = reflect.TypeOf(uintptr(0)).Bits() ) func (p *pp) catchPanic(arg interface{}, verb rune) { if err := recover(); err != nil { // If it's a nil pointer, just say "". The likeliest causes are a // Stringer that fails to guard against nil or a nil pointer for a // value receiver, and in either case, "" is a nice result. if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() { p.buf.Write(nilAngleBytes) return } // Otherwise print a concise panic message. Most of the time the panic // value will print itself nicely. if p.panicking { // Nested panics; the recursion in printArg cannot succeed. panic(err) } p.fmt.clearflags() // We are done, and for this output we want default behavior. p.buf.Write(percentBangBytes) p.add(verb) p.buf.Write(panicBytes) p.panicking = true p.printArg(err, 'v', 0) p.panicking = false p.buf.WriteByte(')') } } // clearSpecialFlags pushes %#v back into the regular flags and returns their old state. func (p *pp) clearSpecialFlags() (plusV, sharpV bool) { plusV = p.fmt.plusV if plusV { p.fmt.plus = true p.fmt.plusV = false } sharpV = p.fmt.sharpV if sharpV { p.fmt.sharp = true p.fmt.sharpV = false } return } // restoreSpecialFlags, whose argument should be a call to clearSpecialFlags, // restores the setting of the plusV and sharpV flags. func (p *pp) restoreSpecialFlags(plusV, sharpV bool) { if plusV { p.fmt.plus = false p.fmt.plusV = true } if sharpV { p.fmt.sharp = false p.fmt.sharpV = true } } func (p *pp) handleMethods(verb rune, depth int) (handled bool) { if p.erroring { return } // Is it a Formatter? if formatter, ok := p.arg.(Formatter); ok { handled = true defer p.restoreSpecialFlags(p.clearSpecialFlags()) defer p.catchPanic(p.arg, verb) formatter.Format(p, verb) return } // If we're doing Go syntax and the argument knows how to supply it, take care of it now. if p.fmt.sharpV { if stringer, ok := p.arg.(GoStringer); ok { handled = true defer p.catchPanic(p.arg, verb) // Print the result of GoString unadorned. p.fmt.fmt_s(stringer.GoString()) return } } else { // If a string is acceptable according to the format, see if // the value satisfies one of the string-valued interfaces. // Println etc. set verb to %v, which is "stringable". switch verb { case 'v', 's', 'x', 'X', 'q': // Is it an error or Stringer? // The duplication in the bodies is necessary: // setting handled and deferring catchPanic // must happen before calling the method. switch v := p.arg.(type) { case error: handled = true defer p.catchPanic(p.arg, verb) p.printArg(v.Error(), verb, depth) return case Stringer: handled = true defer p.catchPanic(p.arg, verb) p.printArg(v.String(), verb, depth) return } } } return false } func (p *pp) printArg(arg interface{}, verb rune, depth int) (wasString bool) { p.arg = arg p.value = reflect.Value{} if arg == nil { if verb == 'T' || verb == 'v' { p.fmt.pad(nilAngleBytes) } else { p.badVerb(verb) } return false } // Special processing considerations. // %T (the value's type) and %p (its address) are special; we always do them first. switch verb { case 'T': p.printArg(reflect.TypeOf(arg).String(), 's', 0) return false case 'p': p.fmtPointer(reflect.ValueOf(arg), verb) return false } // Some types can be done without reflection. switch f := arg.(type) { case bool: p.fmtBool(f, verb) case float32: p.fmtFloat32(f, verb) case float64: p.fmtFloat64(f, verb) case complex64: p.fmtComplex64(f, verb) case complex128: p.fmtComplex128(f, verb) case int: p.fmtInt64(int64(f), verb) case int8: p.fmtInt64(int64(f), verb) case int16: p.fmtInt64(int64(f), verb) case int32: p.fmtInt64(int64(f), verb) case int64: p.fmtInt64(f, verb) case uint: p.fmtUint64(uint64(f), verb) case uint8: p.fmtUint64(uint64(f), verb) case uint16: p.fmtUint64(uint64(f), verb) case uint32: p.fmtUint64(uint64(f), verb) case uint64: p.fmtUint64(f, verb) case uintptr: p.fmtUint64(uint64(f), verb) case string: p.fmtString(f, verb) wasString = verb == 's' || verb == 'v' case []byte: p.fmtBytes(f, verb, nil, depth) wasString = verb == 's' case reflect.Value: return p.printReflectValue(f, verb, depth) default: // If the type is not simple, it might have methods. if handled := p.handleMethods(verb, depth); handled { return false } // Need to use reflection return p.printReflectValue(reflect.ValueOf(arg), verb, depth) } p.arg = nil return } // printValue is like printArg but starts with a reflect value, not an interface{} value. func (p *pp) printValue(value reflect.Value, verb rune, depth int) (wasString bool) { if !value.IsValid() { if verb == 'T' || verb == 'v' { p.buf.Write(nilAngleBytes) } else { p.badVerb(verb) } return false } // Special processing considerations. // %T (the value's type) and %p (its address) are special; we always do them first. switch verb { case 'T': p.printArg(value.Type().String(), 's', 0) return false case 'p': p.fmtPointer(value, verb) return false } // Handle values with special methods. // Call always, even when arg == nil, because handleMethods clears p.fmt.plus for us. p.arg = nil // Make sure it's cleared, for safety. if value.CanInterface() { p.arg = value.Interface() } if handled := p.handleMethods(verb, depth); handled { return false } return p.printReflectValue(value, verb, depth) } var byteType = reflect.TypeOf(byte(0)) // printReflectValue is the fallback for both printArg and printValue. // It uses reflect to print the value. func (p *pp) printReflectValue(value reflect.Value, verb rune, depth int) (wasString bool) { oldValue := p.value p.value = value BigSwitch: switch f := value; f.Kind() { case reflect.Invalid: p.buf.WriteString("") case reflect.Bool: p.fmtBool(f.Bool(), verb) case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: p.fmtInt64(f.Int(), verb) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: p.fmtUint64(f.Uint(), verb) case reflect.Float32, reflect.Float64: if f.Type().Size() == 4 { p.fmtFloat32(float32(f.Float()), verb) } else { p.fmtFloat64(f.Float(), verb) } case reflect.Complex64, reflect.Complex128: if f.Type().Size() == 8 { p.fmtComplex64(complex64(f.Complex()), verb) } else { p.fmtComplex128(f.Complex(), verb) } case reflect.String: p.fmtString(f.String(), verb) case reflect.Map: if p.fmt.sharpV { p.buf.WriteString(f.Type().String()) if f.IsNil() { p.buf.WriteString("(nil)") break } p.buf.WriteByte('{') } else { p.buf.Write(mapBytes) } keys := f.MapKeys() for i, key := range keys { if i > 0 { if p.fmt.sharpV { p.buf.Write(commaSpaceBytes) } else { p.buf.WriteByte(' ') } } p.printValue(key, verb, depth+1) p.buf.WriteByte(':') p.printValue(f.MapIndex(key), verb, depth+1) } if p.fmt.sharpV { p.buf.WriteByte('}') } else { p.buf.WriteByte(']') } case reflect.Struct: if p.fmt.sharpV { p.buf.WriteString(value.Type().String()) } p.add('{') v := f t := v.Type() for i := 0; i < v.NumField(); i++ { if i > 0 { if p.fmt.sharpV { p.buf.Write(commaSpaceBytes) } else { p.buf.WriteByte(' ') } } if p.fmt.plusV || p.fmt.sharpV { if f := t.Field(i); f.Name != "" { p.buf.WriteString(f.Name) p.buf.WriteByte(':') } } p.printValue(getField(v, i), verb, depth+1) } p.buf.WriteByte('}') case reflect.Interface: value := f.Elem() if !value.IsValid() { if p.fmt.sharpV { p.buf.WriteString(f.Type().String()) p.buf.Write(nilParenBytes) } else { p.buf.Write(nilAngleBytes) } } else { wasString = p.printValue(value, verb, depth+1) } case reflect.Array, reflect.Slice: // Byte slices are special: // - Handle []byte (== []uint8) with fmtBytes. // - Handle []T, where T is a named byte type, with fmtBytes only // for the s, q, an x verbs. For other verbs, T might be a // Stringer, so we use printValue to print each element. if typ := f.Type(); typ.Elem().Kind() == reflect.Uint8 && (typ.Elem() == byteType || verb == 's' || verb == 'q' || verb == 'x') { var bytes []byte if f.Kind() == reflect.Slice { bytes = f.Bytes() } else if f.CanAddr() { bytes = f.Slice(0, f.Len()).Bytes() } else { // We have an array, but we cannot Slice() a non-addressable array, // so we build a slice by hand. This is a rare case but it would be nice // if reflection could help a little more. bytes = make([]byte, f.Len()) for i := range bytes { bytes[i] = byte(f.Index(i).Uint()) } } p.fmtBytes(bytes, verb, typ, depth) wasString = verb == 's' break } if p.fmt.sharpV { p.buf.WriteString(value.Type().String()) if f.Kind() == reflect.Slice && f.IsNil() { p.buf.WriteString("(nil)") break } p.buf.WriteByte('{') } else { p.buf.WriteByte('[') } for i := 0; i < f.Len(); i++ { if i > 0 { if p.fmt.sharpV { p.buf.Write(commaSpaceBytes) } else { p.buf.WriteByte(' ') } } p.printValue(f.Index(i), verb, depth+1) } if p.fmt.sharpV { p.buf.WriteByte('}') } else { p.buf.WriteByte(']') } case reflect.Ptr: v := f.Pointer() // pointer to array or slice or struct? ok at top level // but not embedded (avoid loops) if v != 0 && depth == 0 { switch a := f.Elem(); a.Kind() { case reflect.Array, reflect.Slice: p.buf.WriteByte('&') p.printValue(a, verb, depth+1) break BigSwitch case reflect.Struct: p.buf.WriteByte('&') p.printValue(a, verb, depth+1) break BigSwitch case reflect.Map: p.buf.WriteByte('&') p.printValue(a, verb, depth+1) break BigSwitch } } fallthrough case reflect.Chan, reflect.Func, reflect.UnsafePointer: p.fmtPointer(value, verb) default: p.unknownType(f) } p.value = oldValue return wasString } // intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has integer type. func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) { newArgNum = argNum if argNum < len(a) { num, isInt = a[argNum].(int) // Almost always OK. if !isInt { // Work harder. switch v := reflect.ValueOf(a[argNum]); v.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: n := v.Int() if int64(int(n)) == n { num = int(n) isInt = true } case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: n := v.Uint() if int64(n) >= 0 && uint64(int(n)) == n { num = int(n) isInt = true } default: // Already 0, false. } } newArgNum = argNum + 1 if tooLarge(num) { num = 0 isInt = false } } return } // parseArgNumber returns the value of the bracketed number, minus 1 // (explicit argument numbers are one-indexed but we want zero-indexed). // The opening bracket is known to be present at format[0]. // The returned values are the index, the number of bytes to consume // up to the closing paren, if present, and whether the number parsed // ok. The bytes to consume will be 1 if no closing paren is present. func parseArgNumber(format string) (index int, wid int, ok bool) { // There must be at least 3 bytes: [n]. if len(format) < 3 { return 0, 1, false } // Find closing bracket. for i := 1; i < len(format); i++ { if format[i] == ']' { width, ok, newi := parsenum(format, 1, i) if !ok || newi != i { return 0, i + 1, false } return width - 1, i + 1, true // arg numbers are one-indexed and skip paren. } } return 0, 1, false } // argNumber returns the next argument to evaluate, which is either the value of the passed-in // argNum or the value of the bracketed integer that begins format[i:]. It also returns // the new value of i, that is, the index of the next byte of the format to process. func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) { if len(format) <= i || format[i] != '[' { return argNum, i, false } p.reordered = true index, wid, ok := parseArgNumber(format[i:]) if ok && 0 <= index && index < numArgs { return index, i + wid, true } p.goodArgNum = false return argNum, i + wid, ok } func (p *pp) doPrintf(format string, a []interface{}) { end := len(format) argNum := 0 // we process one argument per non-trivial format afterIndex := false // previous item in format was an index like [3]. p.reordered = false for i := 0; i < end; { p.goodArgNum = true lasti := i for i < end && format[i] != '%' { i++ } if i > lasti { p.buf.WriteString(format[lasti:i]) } if i >= end { // done processing format string break } // Process one verb i++ // Do we have flags? p.fmt.clearflags() F: for ; i < end; i++ { switch format[i] { case '#': p.fmt.sharp = true case '0': p.fmt.zero = true case '+': p.fmt.plus = true case '-': p.fmt.minus = true case ' ': p.fmt.space = true default: break F } } // Do we have an explicit argument index? argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) // Do we have width? if i < end && format[i] == '*' { i++ p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum) if !p.fmt.widPresent { p.buf.Write(badWidthBytes) } // We have a negative width, so take its value and ensure // that the minus flag is set if p.fmt.wid < 0 { p.fmt.wid = -p.fmt.wid p.fmt.minus = true } afterIndex = false } else { p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end) if afterIndex && p.fmt.widPresent { // "%[3]2d" p.goodArgNum = false } } // Do we have precision? if i+1 < end && format[i] == '.' { i++ if afterIndex { // "%[3].2d" p.goodArgNum = false } argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) if i < end && format[i] == '*' { i++ p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum) // Negative precision arguments don't make sense if p.fmt.prec < 0 { p.fmt.prec = 0 p.fmt.precPresent = false } if !p.fmt.precPresent { p.buf.Write(badPrecBytes) } afterIndex = false } else { p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end) if !p.fmt.precPresent { p.fmt.prec = 0 p.fmt.precPresent = true } } } if !afterIndex { argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) } if i >= end { p.buf.Write(noVerbBytes) continue } c, w := utf8.DecodeRuneInString(format[i:]) i += w // percent is special - absorbs no operand if c == '%' { p.buf.WriteByte('%') // We ignore width and prec. continue } if !p.goodArgNum { p.buf.Write(percentBangBytes) p.add(c) p.buf.Write(badIndexBytes) continue } else if argNum >= len(a) { // out of operands p.buf.Write(percentBangBytes) p.add(c) p.buf.Write(missingBytes) continue } arg := a[argNum] argNum++ if c == 'v' { if p.fmt.sharp { // Go syntax. Set the flag in the fmt and clear the sharp flag. p.fmt.sharp = false p.fmt.sharpV = true } if p.fmt.plus { // Struct-field syntax. Set the flag in the fmt and clear the plus flag. p.fmt.plus = false p.fmt.plusV = true } } p.printArg(arg, c, 0) } // Check for extra arguments unless the call accessed the arguments // out of order, in which case it's too expensive to detect if they've all // been used and arguably OK if they're not. if !p.reordered && argNum < len(a) { p.buf.Write(extraBytes) for ; argNum < len(a); argNum++ { arg := a[argNum] if arg != nil { p.buf.WriteString(reflect.TypeOf(arg).String()) p.buf.WriteByte('=') } p.printArg(arg, 'v', 0) if argNum+1 < len(a) { p.buf.Write(commaSpaceBytes) } } p.buf.WriteByte(')') } } func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) { prevString := false for argNum := 0; argNum < len(a); argNum++ { p.fmt.clearflags() // always add spaces if we're doing Println arg := a[argNum] if argNum > 0 { isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String if addspace || !isString && !prevString { p.buf.WriteByte(' ') } } prevString = p.printArg(arg, 'v', 0) } if addnewline { p.buf.WriteByte('\n') } }