//===-- ubsan_handlers.cc -------------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Error logging entry points for the UBSan runtime. // //===----------------------------------------------------------------------===// #include "ubsan_platform.h" #if CAN_SANITIZE_UB #include "ubsan_handlers.h" #include "ubsan_diag.h" #include "sanitizer_common/sanitizer_common.h" using namespace __sanitizer; using namespace __ubsan; static bool ignoreReport(SourceLocation SLoc, ReportOptions Opts) { // If source location is already acquired, we don't need to print an error // report for the second time. However, if we're in an unrecoverable handler, // it's possible that location was required by concurrently running thread. // In this case, we should continue the execution to ensure that any of // threads will grab the report mutex and print the report before // crashing the program. return SLoc.isDisabled() && !Opts.DieAfterReport; } namespace __ubsan { const char *TypeCheckKinds[] = { "load of", "store to", "reference binding to", "member access within", "member call on", "constructor call on", "downcast of", "downcast of", "upcast of", "cast to virtual base of"}; } static void handleTypeMismatchImpl(TypeMismatchData *Data, ValueHandle Pointer, ReportOptions Opts) { Location Loc = Data->Loc.acquire(); // Use the SourceLocation from Data to track deduplication, even if 'invalid' if (ignoreReport(Loc.getSourceLocation(), Opts)) return; SymbolizedStackHolder FallbackLoc; if (Data->Loc.isInvalid()) { FallbackLoc.reset(getCallerLocation(Opts.pc)); Loc = FallbackLoc; } ScopedReport R(Opts, Loc); if (!Pointer) { R.setErrorType(ErrorType::NullPointerUse); Diag(Loc, DL_Error, "%0 null pointer of type %1") << TypeCheckKinds[Data->TypeCheckKind] << Data->Type; } else if (Data->Alignment && (Pointer & (Data->Alignment - 1))) { R.setErrorType(ErrorType::MisalignedPointerUse); Diag(Loc, DL_Error, "%0 misaligned address %1 for type %3, " "which requires %2 byte alignment") << TypeCheckKinds[Data->TypeCheckKind] << (void*)Pointer << Data->Alignment << Data->Type; } else { R.setErrorType(ErrorType::InsufficientObjectSize); Diag(Loc, DL_Error, "%0 address %1 with insufficient space " "for an object of type %2") << TypeCheckKinds[Data->TypeCheckKind] << (void*)Pointer << Data->Type; } if (Pointer) Diag(Pointer, DL_Note, "pointer points here"); } void __ubsan::__ubsan_handle_type_mismatch(TypeMismatchData *Data, ValueHandle Pointer) { GET_REPORT_OPTIONS(false); handleTypeMismatchImpl(Data, Pointer, Opts); } void __ubsan::__ubsan_handle_type_mismatch_abort(TypeMismatchData *Data, ValueHandle Pointer) { GET_REPORT_OPTIONS(true); handleTypeMismatchImpl(Data, Pointer, Opts); Die(); } /// \brief Common diagnostic emission for various forms of integer overflow. template static void handleIntegerOverflowImpl(OverflowData *Data, ValueHandle LHS, const char *Operator, T RHS, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; bool IsSigned = Data->Type.isSignedIntegerTy(); ScopedReport R(Opts, Loc, IsSigned ? ErrorType::SignedIntegerOverflow : ErrorType::UnsignedIntegerOverflow); Diag(Loc, DL_Error, "%0 integer overflow: " "%1 %2 %3 cannot be represented in type %4") << (IsSigned ? "signed" : "unsigned") << Value(Data->Type, LHS) << Operator << RHS << Data->Type; } #define UBSAN_OVERFLOW_HANDLER(handler_name, op, abort) \ void __ubsan::handler_name(OverflowData *Data, ValueHandle LHS, \ ValueHandle RHS) { \ GET_REPORT_OPTIONS(abort); \ handleIntegerOverflowImpl(Data, LHS, op, Value(Data->Type, RHS), Opts); \ if (abort) Die(); \ } UBSAN_OVERFLOW_HANDLER(__ubsan_handle_add_overflow, "+", false) UBSAN_OVERFLOW_HANDLER(__ubsan_handle_add_overflow_abort, "+", true) UBSAN_OVERFLOW_HANDLER(__ubsan_handle_sub_overflow, "-", false) UBSAN_OVERFLOW_HANDLER(__ubsan_handle_sub_overflow_abort, "-", true) UBSAN_OVERFLOW_HANDLER(__ubsan_handle_mul_overflow, "*", false) UBSAN_OVERFLOW_HANDLER(__ubsan_handle_mul_overflow_abort, "*", true) static void handleNegateOverflowImpl(OverflowData *Data, ValueHandle OldVal, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; bool IsSigned = Data->Type.isSignedIntegerTy(); ScopedReport R(Opts, Loc, IsSigned ? ErrorType::SignedIntegerOverflow : ErrorType::UnsignedIntegerOverflow); if (IsSigned) Diag(Loc, DL_Error, "negation of %0 cannot be represented in type %1; " "cast to an unsigned type to negate this value to itself") << Value(Data->Type, OldVal) << Data->Type; else Diag(Loc, DL_Error, "negation of %0 cannot be represented in type %1") << Value(Data->Type, OldVal) << Data->Type; } void __ubsan::__ubsan_handle_negate_overflow(OverflowData *Data, ValueHandle OldVal) { GET_REPORT_OPTIONS(false); handleNegateOverflowImpl(Data, OldVal, Opts); } void __ubsan::__ubsan_handle_negate_overflow_abort(OverflowData *Data, ValueHandle OldVal) { GET_REPORT_OPTIONS(true); handleNegateOverflowImpl(Data, OldVal, Opts); Die(); } static void handleDivremOverflowImpl(OverflowData *Data, ValueHandle LHS, ValueHandle RHS, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; ScopedReport R(Opts, Loc); Value LHSVal(Data->Type, LHS); Value RHSVal(Data->Type, RHS); if (RHSVal.isMinusOne()) { R.setErrorType(ErrorType::SignedIntegerOverflow); Diag(Loc, DL_Error, "division of %0 by -1 cannot be represented in type %1") << LHSVal << Data->Type; } else { R.setErrorType(Data->Type.isIntegerTy() ? ErrorType::IntegerDivideByZero : ErrorType::FloatDivideByZero); Diag(Loc, DL_Error, "division by zero"); } } void __ubsan::__ubsan_handle_divrem_overflow(OverflowData *Data, ValueHandle LHS, ValueHandle RHS) { GET_REPORT_OPTIONS(false); handleDivremOverflowImpl(Data, LHS, RHS, Opts); } void __ubsan::__ubsan_handle_divrem_overflow_abort(OverflowData *Data, ValueHandle LHS, ValueHandle RHS) { GET_REPORT_OPTIONS(true); handleDivremOverflowImpl(Data, LHS, RHS, Opts); Die(); } static void handleShiftOutOfBoundsImpl(ShiftOutOfBoundsData *Data, ValueHandle LHS, ValueHandle RHS, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; ScopedReport R(Opts, Loc); Value LHSVal(Data->LHSType, LHS); Value RHSVal(Data->RHSType, RHS); if (RHSVal.isNegative()) { R.setErrorType(ErrorType::InvalidShiftExponent); Diag(Loc, DL_Error, "shift exponent %0 is negative") << RHSVal; } else if (RHSVal.getPositiveIntValue() >= Data->LHSType.getIntegerBitWidth()) { R.setErrorType(ErrorType::InvalidShiftExponent); Diag(Loc, DL_Error, "shift exponent %0 is too large for %1-bit type %2") << RHSVal << Data->LHSType.getIntegerBitWidth() << Data->LHSType; } else if (LHSVal.isNegative()) { R.setErrorType(ErrorType::InvalidShiftBase); Diag(Loc, DL_Error, "left shift of negative value %0") << LHSVal; } else { R.setErrorType(ErrorType::InvalidShiftBase); Diag(Loc, DL_Error, "left shift of %0 by %1 places cannot be represented in type %2") << LHSVal << RHSVal << Data->LHSType; } } void __ubsan::__ubsan_handle_shift_out_of_bounds(ShiftOutOfBoundsData *Data, ValueHandle LHS, ValueHandle RHS) { GET_REPORT_OPTIONS(false); handleShiftOutOfBoundsImpl(Data, LHS, RHS, Opts); } void __ubsan::__ubsan_handle_shift_out_of_bounds_abort( ShiftOutOfBoundsData *Data, ValueHandle LHS, ValueHandle RHS) { GET_REPORT_OPTIONS(true); handleShiftOutOfBoundsImpl(Data, LHS, RHS, Opts); Die(); } static void handleOutOfBoundsImpl(OutOfBoundsData *Data, ValueHandle Index, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; ScopedReport R(Opts, Loc, ErrorType::OutOfBoundsIndex); Value IndexVal(Data->IndexType, Index); Diag(Loc, DL_Error, "index %0 out of bounds for type %1") << IndexVal << Data->ArrayType; } void __ubsan::__ubsan_handle_out_of_bounds(OutOfBoundsData *Data, ValueHandle Index) { GET_REPORT_OPTIONS(false); handleOutOfBoundsImpl(Data, Index, Opts); } void __ubsan::__ubsan_handle_out_of_bounds_abort(OutOfBoundsData *Data, ValueHandle Index) { GET_REPORT_OPTIONS(true); handleOutOfBoundsImpl(Data, Index, Opts); Die(); } static void handleBuiltinUnreachableImpl(UnreachableData *Data, ReportOptions Opts) { ScopedReport R(Opts, Data->Loc, ErrorType::UnreachableCall); Diag(Data->Loc, DL_Error, "execution reached a __builtin_unreachable() call"); } void __ubsan::__ubsan_handle_builtin_unreachable(UnreachableData *Data) { GET_REPORT_OPTIONS(true); handleBuiltinUnreachableImpl(Data, Opts); Die(); } static void handleMissingReturnImpl(UnreachableData *Data, ReportOptions Opts) { ScopedReport R(Opts, Data->Loc, ErrorType::MissingReturn); Diag(Data->Loc, DL_Error, "execution reached the end of a value-returning function " "without returning a value"); } void __ubsan::__ubsan_handle_missing_return(UnreachableData *Data) { GET_REPORT_OPTIONS(true); handleMissingReturnImpl(Data, Opts); Die(); } static void handleVLABoundNotPositive(VLABoundData *Data, ValueHandle Bound, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; ScopedReport R(Opts, Loc, ErrorType::NonPositiveVLAIndex); Diag(Loc, DL_Error, "variable length array bound evaluates to " "non-positive value %0") << Value(Data->Type, Bound); } void __ubsan::__ubsan_handle_vla_bound_not_positive(VLABoundData *Data, ValueHandle Bound) { GET_REPORT_OPTIONS(false); handleVLABoundNotPositive(Data, Bound, Opts); } void __ubsan::__ubsan_handle_vla_bound_not_positive_abort(VLABoundData *Data, ValueHandle Bound) { GET_REPORT_OPTIONS(true); handleVLABoundNotPositive(Data, Bound, Opts); Die(); } static bool looksLikeFloatCastOverflowDataV1(void *Data) { // First field is either a pointer to filename or a pointer to a // TypeDescriptor. u8 *FilenameOrTypeDescriptor; internal_memcpy(&FilenameOrTypeDescriptor, Data, sizeof(FilenameOrTypeDescriptor)); // Heuristic: For float_cast_overflow, the TypeKind will be either TK_Integer // (0x0), TK_Float (0x1) or TK_Unknown (0xff). If both types are known, // adding both bytes will be 0 or 1 (for BE or LE). If it were a filename, // adding two printable characters will not yield such a value. Otherwise, // if one of them is 0xff, this is most likely TK_Unknown type descriptor. u16 MaybeFromTypeKind = FilenameOrTypeDescriptor[0] + FilenameOrTypeDescriptor[1]; return MaybeFromTypeKind < 2 || FilenameOrTypeDescriptor[0] == 0xff || FilenameOrTypeDescriptor[1] == 0xff; } static void handleFloatCastOverflow(void *DataPtr, ValueHandle From, ReportOptions Opts) { SymbolizedStackHolder CallerLoc; Location Loc; const TypeDescriptor *FromType, *ToType; if (looksLikeFloatCastOverflowDataV1(DataPtr)) { auto Data = reinterpret_cast(DataPtr); CallerLoc.reset(getCallerLocation(Opts.pc)); Loc = CallerLoc; FromType = &Data->FromType; ToType = &Data->ToType; } else { auto Data = reinterpret_cast(DataPtr); SourceLocation SLoc = Data->Loc.acquire(); if (ignoreReport(SLoc, Opts)) return; Loc = SLoc; FromType = &Data->FromType; ToType = &Data->ToType; } ScopedReport R(Opts, Loc, ErrorType::FloatCastOverflow); Diag(Loc, DL_Error, "value %0 is outside the range of representable values of type %2") << Value(*FromType, From) << *FromType << *ToType; } void __ubsan::__ubsan_handle_float_cast_overflow(void *Data, ValueHandle From) { GET_REPORT_OPTIONS(false); handleFloatCastOverflow(Data, From, Opts); } void __ubsan::__ubsan_handle_float_cast_overflow_abort(void *Data, ValueHandle From) { GET_REPORT_OPTIONS(true); handleFloatCastOverflow(Data, From, Opts); Die(); } static void handleLoadInvalidValue(InvalidValueData *Data, ValueHandle Val, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; // This check could be more precise if we used different handlers for // -fsanitize=bool and -fsanitize=enum. bool IsBool = (0 == internal_strcmp(Data->Type.getTypeName(), "'bool'")); ScopedReport R(Opts, Loc, IsBool ? ErrorType::InvalidBoolLoad : ErrorType::InvalidEnumLoad); Diag(Loc, DL_Error, "load of value %0, which is not a valid value for type %1") << Value(Data->Type, Val) << Data->Type; } void __ubsan::__ubsan_handle_load_invalid_value(InvalidValueData *Data, ValueHandle Val) { GET_REPORT_OPTIONS(false); handleLoadInvalidValue(Data, Val, Opts); } void __ubsan::__ubsan_handle_load_invalid_value_abort(InvalidValueData *Data, ValueHandle Val) { GET_REPORT_OPTIONS(true); handleLoadInvalidValue(Data, Val, Opts); Die(); } static void handleFunctionTypeMismatch(FunctionTypeMismatchData *Data, ValueHandle Function, ReportOptions Opts) { SourceLocation CallLoc = Data->Loc.acquire(); if (ignoreReport(CallLoc, Opts)) return; ScopedReport R(Opts, CallLoc, ErrorType::FunctionTypeMismatch); SymbolizedStackHolder FLoc(getSymbolizedLocation(Function)); const char *FName = FLoc.get()->info.function; if (!FName) FName = "(unknown)"; Diag(CallLoc, DL_Error, "call to function %0 through pointer to incorrect function type %1") << FName << Data->Type; Diag(FLoc, DL_Note, "%0 defined here") << FName; } void __ubsan::__ubsan_handle_function_type_mismatch(FunctionTypeMismatchData *Data, ValueHandle Function) { GET_REPORT_OPTIONS(false); handleFunctionTypeMismatch(Data, Function, Opts); } void __ubsan::__ubsan_handle_function_type_mismatch_abort( FunctionTypeMismatchData *Data, ValueHandle Function) { GET_REPORT_OPTIONS(true); handleFunctionTypeMismatch(Data, Function, Opts); Die(); } static void handleNonNullReturn(NonNullReturnData *Data, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; ScopedReport R(Opts, Loc, ErrorType::InvalidNullReturn); Diag(Loc, DL_Error, "null pointer returned from function declared to never " "return null"); if (!Data->AttrLoc.isInvalid()) Diag(Data->AttrLoc, DL_Note, "returns_nonnull attribute specified here"); } void __ubsan::__ubsan_handle_nonnull_return(NonNullReturnData *Data) { GET_REPORT_OPTIONS(false); handleNonNullReturn(Data, Opts); } void __ubsan::__ubsan_handle_nonnull_return_abort(NonNullReturnData *Data) { GET_REPORT_OPTIONS(true); handleNonNullReturn(Data, Opts); Die(); } static void handleNonNullArg(NonNullArgData *Data, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; ScopedReport R(Opts, Loc, ErrorType::InvalidNullArgument); Diag(Loc, DL_Error, "null pointer passed as argument %0, which is declared to " "never be null") << Data->ArgIndex; if (!Data->AttrLoc.isInvalid()) Diag(Data->AttrLoc, DL_Note, "nonnull attribute specified here"); } void __ubsan::__ubsan_handle_nonnull_arg(NonNullArgData *Data) { GET_REPORT_OPTIONS(false); handleNonNullArg(Data, Opts); } void __ubsan::__ubsan_handle_nonnull_arg_abort(NonNullArgData *Data) { GET_REPORT_OPTIONS(true); handleNonNullArg(Data, Opts); Die(); } static void handleCFIBadIcall(CFIBadIcallData *Data, ValueHandle Function, ReportOptions Opts) { SourceLocation Loc = Data->Loc.acquire(); if (ignoreReport(Loc, Opts)) return; ScopedReport R(Opts, Loc); Diag(Loc, DL_Error, "control flow integrity check for type %0 failed during " "indirect function call") << Data->Type; SymbolizedStackHolder FLoc(getSymbolizedLocation(Function)); const char *FName = FLoc.get()->info.function; if (!FName) FName = "(unknown)"; Diag(FLoc, DL_Note, "%0 defined here") << FName; } void __ubsan::__ubsan_handle_cfi_bad_icall(CFIBadIcallData *Data, ValueHandle Function) { GET_REPORT_OPTIONS(false); handleCFIBadIcall(Data, Function, Opts); } void __ubsan::__ubsan_handle_cfi_bad_icall_abort(CFIBadIcallData *Data, ValueHandle Function) { GET_REPORT_OPTIONS(true); handleCFIBadIcall(Data, Function, Opts); Die(); } #endif // CAN_SANITIZE_UB