/* NDS32-specific support for 32-bit ELF. Copyright (C) 2012-2017 Free Software Foundation, Inc. Contributed by Andes Technology Corporation. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "bfd_stdint.h" #include "bfdlink.h" #include "libbfd.h" #include "elf-bfd.h" #include "libiberty.h" #include "bfd_stdint.h" #include "elf/nds32.h" #include "opcode/nds32.h" #include "elf32-nds32.h" #include "opcode/cgen.h" #include "../opcodes/nds32-opc.h" /* Relocation HOWTO functions. */ static bfd_reloc_status_type nds32_elf_ignore_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nds32_elf_9_pcrel_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nds32_elf_hi20_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nds32_elf_lo12_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nds32_elf_generic_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nds32_elf_sda15_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); /* Helper functions for HOWTO. */ static bfd_reloc_status_type nds32_elf_do_9_pcrel_reloc (bfd *, reloc_howto_type *, asection *, bfd_byte *, bfd_vma, asection *, bfd_vma, bfd_vma); static void nds32_elf_relocate_hi20 (bfd *, int, Elf_Internal_Rela *, Elf_Internal_Rela *, bfd_byte *, bfd_vma); static reloc_howto_type *bfd_elf32_bfd_reloc_type_table_lookup (enum elf_nds32_reloc_type); static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup (bfd *, bfd_reloc_code_real_type); /* Target hooks. */ static void nds32_info_to_howto_rel (bfd *, arelent *, Elf_Internal_Rela *dst); static void nds32_info_to_howto (bfd *, arelent *, Elf_Internal_Rela *dst); static bfd_boolean nds32_elf_add_symbol_hook (bfd *, struct bfd_link_info *, Elf_Internal_Sym *, const char **, flagword *, asection **, bfd_vma *); static bfd_boolean nds32_elf_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); static bfd_boolean nds32_elf_object_p (bfd *); static void nds32_elf_final_write_processing (bfd *, bfd_boolean); static bfd_boolean nds32_elf_set_private_flags (bfd *, flagword); static bfd_boolean nds32_elf_merge_private_bfd_data (bfd *, struct bfd_link_info *); static bfd_boolean nds32_elf_print_private_bfd_data (bfd *, void *); static bfd_boolean nds32_elf_gc_sweep_hook (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); static bfd_boolean nds32_elf_check_relocs (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); static asection *nds32_elf_gc_mark_hook (asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *); static bfd_boolean nds32_elf_adjust_dynamic_symbol (struct bfd_link_info *, struct elf_link_hash_entry *); static bfd_boolean nds32_elf_size_dynamic_sections (bfd *, struct bfd_link_info *); static bfd_boolean nds32_elf_create_dynamic_sections (bfd *, struct bfd_link_info *); static bfd_boolean nds32_elf_finish_dynamic_sections (bfd *, struct bfd_link_info *info); static bfd_boolean nds32_elf_finish_dynamic_symbol (bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *); static bfd_boolean nds32_elf_mkobject (bfd *); /* Nds32 helper functions. */ static bfd_reloc_status_type nds32_elf_final_sda_base (bfd *, struct bfd_link_info *, bfd_vma *, bfd_boolean); static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *, void *); static bfd_boolean readonly_dynrelocs (struct elf_link_hash_entry *, void *); static Elf_Internal_Rela *find_relocs_at_address (Elf_Internal_Rela *, Elf_Internal_Rela *, Elf_Internal_Rela *, enum elf_nds32_reloc_type); static bfd_vma calculate_memory_address (bfd *, Elf_Internal_Rela *, Elf_Internal_Sym *, Elf_Internal_Shdr *); static int nds32_get_section_contents (bfd *, asection *, bfd_byte **, bfd_boolean); static bfd_boolean nds32_elf_ex9_build_hash_table (bfd *, asection *, struct bfd_link_info *); static bfd_boolean nds32_elf_ex9_itb_base (struct bfd_link_info *); static void nds32_elf_ex9_import_table (struct bfd_link_info *); static void nds32_elf_ex9_finish (struct bfd_link_info *); static void nds32_elf_ex9_reloc_jmp (struct bfd_link_info *); static void nds32_elf_get_insn_with_reg (Elf_Internal_Rela *, uint32_t, uint32_t *); static int nds32_get_local_syms (bfd *, asection *ATTRIBUTE_UNUSED, Elf_Internal_Sym **); static bfd_boolean nds32_elf_ex9_replace_instruction (struct bfd_link_info *, bfd *, asection *); static bfd_boolean nds32_elf_ifc_calc (struct bfd_link_info *, bfd *, asection *); static bfd_boolean nds32_elf_ifc_finish (struct bfd_link_info *); static bfd_boolean nds32_elf_ifc_replace (struct bfd_link_info *); static bfd_boolean nds32_elf_ifc_reloc (void); static bfd_boolean nds32_relax_fp_as_gp (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *internal_relocs, Elf_Internal_Rela *irelend, Elf_Internal_Sym *isymbuf); static bfd_boolean nds32_fag_remove_unused_fpbase (bfd *abfd, asection *sec, Elf_Internal_Rela *internal_relocs, Elf_Internal_Rela *irelend); static bfd_byte * nds32_elf_get_relocated_section_contents (bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, bfd_boolean relocatable, asymbol **symbols); enum { MACH_V1 = bfd_mach_n1h, MACH_V2 = bfd_mach_n1h_v2, MACH_V3 = bfd_mach_n1h_v3, MACH_V3M = bfd_mach_n1h_v3m }; #define MIN(a, b) ((a) > (b) ? (b) : (a)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" /* The nop opcode we use. */ #define NDS32_NOP32 0x40000009 #define NDS32_NOP16 0x9200 /* The size in bytes of an entry in the procedure linkage table. */ #define PLT_ENTRY_SIZE 24 #define PLT_HEADER_SIZE 24 /* The first entry in a procedure linkage table are reserved, and the initial contents are unimportant (we zero them out). Subsequent entries look like this. */ #define PLT0_ENTRY_WORD0 0x46f00000 /* sethi r15, HI20(.got+4) */ #define PLT0_ENTRY_WORD1 0x58f78000 /* ori r15, r25, LO12(.got+4) */ #define PLT0_ENTRY_WORD2 0x05178000 /* lwi r17, [r15+0] */ #define PLT0_ENTRY_WORD3 0x04f78001 /* lwi r15, [r15+4] */ #define PLT0_ENTRY_WORD4 0x4a003c00 /* jr r15 */ /* $ta is change to $r15 (from $r25). */ #define PLT0_PIC_ENTRY_WORD0 0x46f00000 /* sethi r15, HI20(got[1]@GOT) */ #define PLT0_PIC_ENTRY_WORD1 0x58f78000 /* ori r15, r15, LO12(got[1]@GOT) */ #define PLT0_PIC_ENTRY_WORD2 0x40f7f400 /* add r15, gp, r15 */ #define PLT0_PIC_ENTRY_WORD3 0x05178000 /* lwi r17, [r15+0] */ #define PLT0_PIC_ENTRY_WORD4 0x04f78001 /* lwi r15, [r15+4] */ #define PLT0_PIC_ENTRY_WORD5 0x4a003c00 /* jr r15 */ #define PLT_ENTRY_WORD0 0x46f00000 /* sethi r15, HI20(&got[n+3]) */ #define PLT_ENTRY_WORD1 0x04f78000 /* lwi r15, r15, LO12(&got[n+3]) */ #define PLT_ENTRY_WORD2 0x4a003c00 /* jr r15 */ #define PLT_ENTRY_WORD3 0x45000000 /* movi r16, sizeof(RELA) * n */ #define PLT_ENTRY_WORD4 0x48000000 /* j .plt0. */ #define PLT_PIC_ENTRY_WORD0 0x46f00000 /* sethi r15, HI20(got[n+3]@GOT) */ #define PLT_PIC_ENTRY_WORD1 0x58f78000 /* ori r15, r15, LO12(got[n+3]@GOT) */ #define PLT_PIC_ENTRY_WORD2 0x38febc02 /* lw r15, [gp+r15] */ #define PLT_PIC_ENTRY_WORD3 0x4a003c00 /* jr r15 */ #define PLT_PIC_ENTRY_WORD4 0x45000000 /* movi r16, sizeof(RELA) * n */ #define PLT_PIC_ENTRY_WORD5 0x48000000 /* j .plt0 */ /* These are macros used to get the relocation accurate value. */ #define ACCURATE_8BIT_S1 (0x100) #define ACCURATE_U9BIT_S1 (0x400) #define ACCURATE_12BIT_S1 (0x2000) #define ACCURATE_14BIT_S1 (0x4000) #define ACCURATE_19BIT (0x40000) /* These are macros used to get the relocation conservative value. */ #define CONSERVATIVE_8BIT_S1 (0x100 - 4) #define CONSERVATIVE_14BIT_S1 (0x4000 - 4) #define CONSERVATIVE_16BIT_S1 (0x10000 - 4) #define CONSERVATIVE_24BIT_S1 (0x1000000 - 4) /* These must be more conservative because the address may be in different segment. */ #define CONSERVATIVE_15BIT (0x4000 - 0x1000) #define CONSERVATIVE_15BIT_S1 (0x8000 - 0x1000) #define CONSERVATIVE_15BIT_S2 (0x10000 - 0x1000) #define CONSERVATIVE_19BIT (0x40000 - 0x1000) #define CONSERVATIVE_20BIT (0x80000 - 0x1000) /* Size of small data/bss sections, used to calculate SDA_BASE. */ static long got_size = 0; static int is_SDA_BASE_set = 0; static int is_ITB_BASE_set = 0; /* Convert ELF-VER in eflags to string for debugging purpose. */ static const char *const nds32_elfver_strtab[] = { "ELF-1.2", "ELF-1.3", "ELF-1.4", }; /* The nds32 linker needs to keep track of the number of relocs that it decides to copy in check_relocs for each symbol. This is so that it can discard PC relative relocs if it doesn't need them when linking with -Bsymbolic. We store the information in a field extending the regular ELF linker hash table. */ /* This structure keeps track of the number of PC relative relocs we have copied for a given symbol. */ struct elf_nds32_pcrel_relocs_copied { /* Next section. */ struct elf_nds32_pcrel_relocs_copied *next; /* A section in dynobj. */ asection *section; /* Number of relocs copied in this section. */ bfd_size_type count; }; /* The sh linker needs to keep track of the number of relocs that it decides to copy as dynamic relocs in check_relocs for each symbol. This is so that it can later discard them if they are found to be unnecessary. We store the information in a field extending the regular ELF linker hash table. */ struct elf_nds32_dyn_relocs { struct elf_nds32_dyn_relocs *next; /* The input section of the reloc. */ asection *sec; /* Total number of relocs copied for the input section. */ bfd_size_type count; /* Number of pc-relative relocs copied for the input section. */ bfd_size_type pc_count; }; /* Nds32 ELF linker hash entry. */ struct elf_nds32_link_hash_entry { struct elf_link_hash_entry root; /* Track dynamic relocs copied for this symbol. */ struct elf_nds32_dyn_relocs *dyn_relocs; /* For checking relocation type. */ #define GOT_UNKNOWN 0 #define GOT_NORMAL 1 #define GOT_TLS_IE 2 unsigned int tls_type; }; /* Get the nds32 ELF linker hash table from a link_info structure. */ #define FP_BASE_NAME "_FP_BASE_" static int check_start_export_sym = 0; static size_t ex9_relax_size = 0; /* Save ex9 predicted reducing size. */ /* The offset for executable tls relaxation. */ #define TP_OFFSET 0x0 struct elf_nds32_obj_tdata { struct elf_obj_tdata root; /* tls_type for each local got entry. */ char *local_got_tls_type; }; #define elf_nds32_tdata(bfd) \ ((struct elf_nds32_obj_tdata *) (bfd)->tdata.any) #define elf32_nds32_local_got_tls_type(bfd) \ (elf_nds32_tdata (bfd)->local_got_tls_type) #define elf32_nds32_hash_entry(ent) ((struct elf_nds32_link_hash_entry *)(ent)) static bfd_boolean nds32_elf_mkobject (bfd *abfd) { return bfd_elf_allocate_object (abfd, sizeof (struct elf_nds32_obj_tdata), NDS32_ELF_DATA); } /* Relocations used for relocation. */ static reloc_howto_type nds32_elf_howto_table[] = { /* This reloc does nothing. */ HOWTO (R_NDS32_NONE, /* type */ 0, /* rightshift */ 3, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 16 bit absolute relocation. */ HOWTO (R_NDS32_16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ nds32_elf_generic_reloc, /* special_function */ "R_NDS32_16", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 32 bit absolute relocation. */ HOWTO (R_NDS32_32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ nds32_elf_generic_reloc, /* special_function */ "R_NDS32_32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 20 bit address. */ HOWTO (R_NDS32_20, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ nds32_elf_generic_reloc, /* special_function */ "R_NDS32_20", /* name */ FALSE, /* partial_inplace */ 0xfffff, /* src_mask */ 0xfffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* An PC Relative 9-bit relocation, shifted by 2. This reloc is complicated because relocations are relative to pc & -4. i.e. branches in the right insn slot use the address of the left insn slot for pc. */ /* ??? It's not clear whether this should have partial_inplace set or not. Branch relaxing in the assembler can store the addend in the insn, and if bfd_install_relocation gets called the addend may get added again. */ HOWTO (R_NDS32_9_PCREL, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ nds32_elf_9_pcrel_reloc, /* special_function */ "R_NDS32_9_PCREL", /* name */ FALSE, /* partial_inplace */ 0xff, /* src_mask */ 0xff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 15 bit relocation, right shifted by 1. */ HOWTO (R_NDS32_15_PCREL, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 14, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_15_PCREL", /* name */ FALSE, /* partial_inplace */ 0x3fff, /* src_mask */ 0x3fff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 17 bit relocation, right shifted by 1. */ HOWTO (R_NDS32_17_PCREL, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_17_PCREL", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 25 bit relocation, right shifted by 1. */ /* ??? It's not clear whether this should have partial_inplace set or not. Branch relaxing in the assembler can store the addend in the insn, and if bfd_install_relocation gets called the addend may get added again. */ HOWTO (R_NDS32_25_PCREL, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_25_PCREL", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* High 20 bits of address when lower 12 is or'd in. */ HOWTO (R_NDS32_HI20, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_hi20_reloc, /* special_function */ "R_NDS32_HI20", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S3, /* type */ 3, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 9, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_lo12_reloc, /* special_function */ "R_NDS32_LO12S3", /* name */ FALSE, /* partial_inplace */ 0x000001ff, /* src_mask */ 0x000001ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S2, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 10, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_lo12_reloc, /* special_function */ "R_NDS32_LO12S2", /* name */ FALSE, /* partial_inplace */ 0x000003ff, /* src_mask */ 0x000003ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S1, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 11, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_lo12_reloc, /* special_function */ "R_NDS32_LO12S1", /* name */ FALSE, /* partial_inplace */ 0x000007ff, /* src_mask */ 0x000007ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_lo12_reloc, /* special_function */ "R_NDS32_LO12S0", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 15 bits offset. */ HOWTO (R_NDS32_SDA15S3, /* type */ 3, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ nds32_elf_sda15_reloc, /* special_function */ "R_NDS32_SDA15S3", /* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 15 bits offset. */ HOWTO (R_NDS32_SDA15S2, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ nds32_elf_sda15_reloc, /* special_function */ "R_NDS32_SDA15S2", /* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 15 bits offset. */ HOWTO (R_NDS32_SDA15S1, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ nds32_elf_sda15_reloc, /* special_function */ "R_NDS32_SDA15S1", /* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 15 bits offset. */ HOWTO (R_NDS32_SDA15S0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ nds32_elf_sda15_reloc, /* special_function */ "R_NDS32_SDA15S0", /* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable hierarchy */ HOWTO (R_NDS32_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ NULL, /* special_function */ "R_NDS32_GNU_VTINHERIT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable member usage */ HOWTO (R_NDS32_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_NDS32_GNU_VTENTRY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 16 bit absolute relocation. */ HOWTO (R_NDS32_16_RELA, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_16_RELA", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 32 bit absolute relocation. */ HOWTO (R_NDS32_32_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_32_RELA", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 20 bit address. */ HOWTO (R_NDS32_20_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_20_RELA", /* name */ FALSE, /* partial_inplace */ 0xfffff, /* src_mask */ 0xfffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_9_PCREL_RELA, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_9_PCREL_RELA",/* name */ FALSE, /* partial_inplace */ 0xff, /* src_mask */ 0xff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 15 bit relocation, right shifted by 1. */ HOWTO (R_NDS32_15_PCREL_RELA, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 14, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_15_PCREL_RELA", /* name */ FALSE, /* partial_inplace */ 0x3fff, /* src_mask */ 0x3fff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 17 bit relocation, right shifted by 1. */ HOWTO (R_NDS32_17_PCREL_RELA, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_17_PCREL_RELA", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative 25 bit relocation, right shifted by 2. */ HOWTO (R_NDS32_25_PCREL_RELA, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_25_PCREL_RELA", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* High 20 bits of address when lower 16 is or'd in. */ HOWTO (R_NDS32_HI20_RELA, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_HI20_RELA", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S3_RELA, /* type */ 3, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 9, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_LO12S3_RELA", /* name */ FALSE, /* partial_inplace */ 0x000001ff, /* src_mask */ 0x000001ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S2_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 10, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_LO12S2_RELA", /* name */ FALSE, /* partial_inplace */ 0x000003ff, /* src_mask */ 0x000003ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S1_RELA, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 11, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_LO12S1_RELA", /* name */ FALSE, /* partial_inplace */ 0x000007ff, /* src_mask */ 0x000007ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S0_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_LO12S0_RELA", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 15 bits offset. */ HOWTO (R_NDS32_SDA15S3_RELA, /* type */ 3, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA15S3_RELA",/* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 15 bits offset. */ HOWTO (R_NDS32_SDA15S2_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA15S2_RELA",/* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_SDA15S1_RELA, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA15S1_RELA",/* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_SDA15S0_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA15S0_RELA",/* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable hierarchy */ HOWTO (R_NDS32_RELA_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ NULL, /* special_function */ "R_NDS32_RELA_GNU_VTINHERIT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable member usage */ HOWTO (R_NDS32_RELA_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_NDS32_RELA_GNU_VTENTRY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_NDS32_20, but referring to the GOT table entry for the symbol. */ HOWTO (R_NDS32_GOT20, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOT20", /* name */ FALSE, /* partial_inplace */ 0xfffff, /* src_mask */ 0xfffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_NDS32_PCREL, but referring to the procedure linkage table entry for the symbol. */ HOWTO (R_NDS32_25_PLTREL, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_25_PLTREL", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* This is used only by the dynamic linker. The symbol should exist both in the object being run and in some shared library. The dynamic linker copies the data addressed by the symbol from the shared library into the object, because the object being run has to have the data at some particular address. */ HOWTO (R_NDS32_COPY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_COPY", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_NDS32_20, but used when setting global offset table entries. */ HOWTO (R_NDS32_GLOB_DAT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GLOB_DAT", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Marks a procedure linkage table entry for a symbol. */ HOWTO (R_NDS32_JMP_SLOT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_JMP_SLOT", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Used only by the dynamic linker. When the object is run, this longword is set to the load address of the object, plus the addend. */ HOWTO (R_NDS32_RELATIVE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_RELATIVE", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_GOTOFF, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOTOFF", /* name */ FALSE, /* partial_inplace */ 0xfffff, /* src_mask */ 0xfffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* An PC Relative 20-bit relocation used when setting PIC offset table register. */ HOWTO (R_NDS32_GOTPC20, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOTPC20", /* name */ FALSE, /* partial_inplace */ 0xfffff, /* src_mask */ 0xfffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* Like R_NDS32_HI20, but referring to the GOT table entry for the symbol. */ HOWTO (R_NDS32_GOT_HI20, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOT_HI20", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_GOT_LO12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOT_LO12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* An PC Relative relocation used when setting PIC offset table register. Like R_NDS32_HI20, but referring to the GOT table entry for the symbol. */ HOWTO (R_NDS32_GOTPC_HI20, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOTPC_HI20", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_NDS32_GOTPC_LO12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOTPC_LO12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_NDS32_GOTOFF_HI20, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOTOFF_HI20", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_GOTOFF_LO12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOTOFF_LO12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Alignment hint for relaxable instruction. This is used with R_NDS32_LABEL as a pair. Relax this instruction from 4 bytes to 2 in order to make next label aligned on word boundary. */ HOWTO (R_NDS32_INSN16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_INSN16", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Alignment hint for label. */ HOWTO (R_NDS32_LABEL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_LABEL", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for unconditional call sequence */ HOWTO (R_NDS32_LONGCALL1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_LONGCALL1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for conditional call sequence. */ HOWTO (R_NDS32_LONGCALL2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_LONGCALL2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for conditional call sequence. */ HOWTO (R_NDS32_LONGCALL3, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_LONGCALL3", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for unconditional branch sequence. */ HOWTO (R_NDS32_LONGJUMP1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_LONGJUMP1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for conditional branch sequence. */ HOWTO (R_NDS32_LONGJUMP2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_LONGJUMP2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for conditional branch sequence. */ HOWTO (R_NDS32_LONGJUMP3, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_LONGJUMP3", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for load/store sequence. */ HOWTO (R_NDS32_LOADSTORE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_LOADSTORE", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for load/store sequence. */ HOWTO (R_NDS32_9_FIXED_RELA, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_9_FIXED_RELA",/* name */ FALSE, /* partial_inplace */ 0x000000ff, /* src_mask */ 0x000000ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for load/store sequence. */ HOWTO (R_NDS32_15_FIXED_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_15_FIXED_RELA", /* name */ FALSE, /* partial_inplace */ 0x00003fff, /* src_mask */ 0x00003fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for load/store sequence. */ HOWTO (R_NDS32_17_FIXED_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_17_FIXED_RELA", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for load/store sequence. */ HOWTO (R_NDS32_25_FIXED_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_25_FIXED_RELA", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* High 20 bits of PLT symbol offset relative to PC. */ HOWTO (R_NDS32_PLTREL_HI20, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_PLTREL_HI20", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Low 12 bits of PLT symbol offset relative to PC. */ HOWTO (R_NDS32_PLTREL_LO12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_PLTREL_LO12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* High 20 bits of PLT symbol offset relative to GOT (GP). */ HOWTO (R_NDS32_PLT_GOTREL_HI20, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_PLT_GOTREL_HI20", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Low 12 bits of PLT symbol offset relative to GOT (GP). */ HOWTO (R_NDS32_PLT_GOTREL_LO12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_PLT_GOTREL_LO12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 12 bits offset. */ HOWTO (R_NDS32_SDA12S2_DP_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA12S2_DP_RELA", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 12 bits offset. */ HOWTO (R_NDS32_SDA12S2_SP_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA12S2_SP_RELA", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S2_DP_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 10, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_LO12S2_DP_RELA", /* name */ FALSE, /* partial_inplace */ 0x000003ff, /* src_mask */ 0x000003ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. */ HOWTO (R_NDS32_LO12S2_SP_RELA,/* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 10, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_LO12S2_SP_RELA", /* name */ FALSE, /* partial_inplace */ 0x000003ff, /* src_mask */ 0x000003ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Lower 12 bits of address. Special identity for or case. */ HOWTO (R_NDS32_LO12S0_ORI_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_LO12S0_ORI_RELA", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 19 bits offset. */ HOWTO (R_NDS32_SDA16S3_RELA, /* type */ 3, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA16S3_RELA",/* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Small data area 15 bits offset. */ HOWTO (R_NDS32_SDA17S2_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 17, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA17S2_RELA",/* name */ FALSE, /* partial_inplace */ 0x0001ffff, /* src_mask */ 0x0001ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_SDA18S1_RELA, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 18, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA18S1_RELA",/* name */ FALSE, /* partial_inplace */ 0x0003ffff, /* src_mask */ 0x0003ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_SDA19S0_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 19, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA19S0_RELA",/* name */ FALSE, /* partial_inplace */ 0x0007ffff, /* src_mask */ 0x0007ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_DWARF2_OP1_RELA, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_DWARF2_OP1_RELA", /* name */ FALSE, /* partial_inplace */ 0xff, /* src_mask */ 0xff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_DWARF2_OP2_RELA, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_DWARF2_OP2_RELA", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_DWARF2_LEB_RELA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_DWARF2_LEB_RELA", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_UPDATE_TA_RELA,/* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_UPDATE_TA_RELA", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_NDS32_PCREL, but referring to the procedure linkage table entry for the symbol. */ HOWTO (R_NDS32_9_PLTREL, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_9_PLTREL", /* name */ FALSE, /* partial_inplace */ 0xff, /* src_mask */ 0xff, /* dst_mask */ TRUE), /* pcrel_offset */ /* Low 20 bits of PLT symbol offset relative to GOT (GP). */ HOWTO (R_NDS32_PLT_GOTREL_LO20, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_PLT_GOTREL_LO20", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* low 15 bits of PLT symbol offset relative to GOT (GP) */ HOWTO (R_NDS32_PLT_GOTREL_LO15, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_PLT_GOTREL_LO15", /* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Low 19 bits of PLT symbol offset relative to GOT (GP). */ HOWTO (R_NDS32_PLT_GOTREL_LO19, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 19, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_PLT_GOTREL_LO19", /* name */ FALSE, /* partial_inplace */ 0x0007ffff, /* src_mask */ 0x0007ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_GOT_LO15, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOT_LO15", /* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_GOT_LO19, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 19, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOT_LO19", /* name */ FALSE, /* partial_inplace */ 0x0007ffff, /* src_mask */ 0x0007ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_GOTOFF_LO15, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOTOFF_LO15", /* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_GOTOFF_LO19, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 19, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOTOFF_LO19", /* name */ FALSE, /* partial_inplace */ 0x0007ffff, /* src_mask */ 0x0007ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* GOT 15 bits offset. */ HOWTO (R_NDS32_GOT15S2_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOT15S2_RELA",/* name */ FALSE, /* partial_inplace */ 0x00007fff, /* src_mask */ 0x00007fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* GOT 17 bits offset. */ HOWTO (R_NDS32_GOT17S2_RELA, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 17, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_GOT17S2_RELA",/* name */ FALSE, /* partial_inplace */ 0x0001ffff, /* src_mask */ 0x0001ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 5 bit address. */ HOWTO (R_NDS32_5_RELA, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 5, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_5_RELA", /* name */ FALSE, /* partial_inplace */ 0x1f, /* src_mask */ 0x1f, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_10_UPCREL_RELA,/* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 9, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_10_UPCREL_RELA", /* name */ FALSE, /* partial_inplace */ 0x1ff, /* src_mask */ 0x1ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_NDS32_SDA_FP7U2_RELA,/* type */ 2, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 7, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_SDA_FP7U2_RELA", /* name */ FALSE, /* partial_inplace */ 0x0000007f, /* src_mask */ 0x0000007f, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_WORD_9_PCREL_RELA, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_WORD_9_PCREL_RELA", /* name */ FALSE, /* partial_inplace */ 0xff, /* src_mask */ 0xff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_NDS32_25_ABS_RELA, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_25_ABS_RELA", /* name */ FALSE, /* partial_inplace */ 0xffffff, /* src_mask */ 0xffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A relative 17 bit relocation for ifc, right shifted by 1. */ HOWTO (R_NDS32_17IFC_PCREL_RELA, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_17IFC_PCREL_RELA", /* name */ FALSE, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* A relative unsigned 10 bit relocation for ifc, right shifted by 1. */ HOWTO (R_NDS32_10IFCU_PCREL_RELA, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 9, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_10IFCU_PCREL_RELA", /* name */ FALSE, /* partial_inplace */ 0x1ff, /* src_mask */ 0x1ff, /* dst_mask */ TRUE), /* pcrel_offset */ /* Like R_NDS32_HI20, but referring to the TLS entry for the symbol. */ HOWTO (R_NDS32_TLS_LE_HI20, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_TLS_LE_HI20", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_TLS_LE_LO12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_TLS_LE_LO12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Like R_NDS32_HI20, but referring to the TLS entry for the symbol. */ HOWTO (R_NDS32_TLS_IE_HI20, /* type */ 12, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_TLS_IE_HI20", /* name */ FALSE, /* partial_inplace */ 0x000fffff, /* src_mask */ 0x000fffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_TLS_IE_LO12S2, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 10, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_TLS_IE_LO12S2", /* name */ FALSE, /* partial_inplace */ 0x000003ff, /* src_mask */ 0x000003ff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Mark a TLS IE entry in GOT. */ HOWTO (R_NDS32_TLS_TPOFF, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_TLS_TPOFF", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* A 20 bit address. */ HOWTO (R_NDS32_TLS_LE_20, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 20, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_TLS_LE_20", /* name */ FALSE, /* partial_inplace */ 0xfffff, /* src_mask */ 0xfffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_TLS_LE_15S0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_TLS_LE_15S0", /* name */ FALSE, /* partial_inplace */ 0x7fff, /* src_mask */ 0x7fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_TLS_LE_15S1, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_TLS_LE_15S1", /* name */ FALSE, /* partial_inplace */ 0x7fff, /* src_mask */ 0x7fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_TLS_LE_15S2, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 15, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NDS32_TLS_LE_15S2", /* name */ FALSE, /* partial_inplace */ 0x7fff, /* src_mask */ 0x7fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for unconditional call sequence */ HOWTO (R_NDS32_LONGCALL4, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_LONGCALL4", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for conditional call sequence. */ HOWTO (R_NDS32_LONGCALL5, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_LONGCALL5", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for conditional call sequence. */ HOWTO (R_NDS32_LONGCALL6, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_LONGCALL6", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for unconditional branch sequence. */ HOWTO (R_NDS32_LONGJUMP4, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_LONGJUMP4", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for conditional branch sequence. */ HOWTO (R_NDS32_LONGJUMP5, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_LONGJUMP5", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for conditional branch sequence. */ HOWTO (R_NDS32_LONGJUMP6, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_LONGJUMP6", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relax hint for conditional branch sequence. */ HOWTO (R_NDS32_LONGJUMP7, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_LONGJUMP7", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ }; /* Relocations used for relaxation. */ static reloc_howto_type nds32_elf_relax_howto_table[] = { HOWTO (R_NDS32_RELAX_ENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_RELAX_ENTRY", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_GOT_SUFF, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_GOT_SUFF", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_GOTOFF_SUFF, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_GOTOFF_SUFF", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_PLT_GOT_SUFF, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_PLT_GOT_SUFF",/* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_MULCALL_SUFF, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_MULCALL_SUFF",/* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_PTR, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_PTR", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_PTR_COUNT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_PTR_COUNT", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_PTR_RESOLVED, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_PTR_RESOLVED",/* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_PLTBLOCK, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_PLTBLOCK", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_RELAX_REGION_BEGIN, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_RELAX_REGION_BEGIN", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_RELAX_REGION_END, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_RELAX_REGION_END", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_MINUEND, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_MINUEND", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_SUBTRAHEND, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_SUBTRAHEND", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_DIFF8, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_DIFF8", /* name */ FALSE, /* partial_inplace */ 0x000000ff, /* src_mask */ 0x000000ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_DIFF16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_DIFF16", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_DIFF32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_DIFF32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_DIFF_ULEB128, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_DIFF_ULEB128",/* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_DATA, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_DATA", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_TRAN, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ nds32_elf_ignore_reloc,/* special_function */ "R_NDS32_TRAN", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_TLS_LE_ADD, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_TLS_LE_ADD", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_TLS_LE_LS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_TLS_LE_LS", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NDS32_EMPTY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ nds32_elf_ignore_reloc, /* special_function */ "R_NDS32_EMPTY", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ }; /* nds32_insertion_sort sorts an array with nmemb elements of size size. This prototype is the same as qsort (). */ void nds32_insertion_sort (void *base, size_t nmemb, size_t size, int (*compar) (const void *lhs, const void *rhs)) { char *ptr = (char *) base; int i, j; char *tmp = xmalloc (size); /* If i is less than j, i is inserted before j. |---- j ----- i --------------| \ / \ / sorted unsorted */ for (i = 1; i < (int) nmemb; i++) { for (j = (i - 1); j >= 0; j--) if (compar (ptr + i * size, ptr + j * size) >= 0) break; j++; if (i == j) continue; /* i is in order. */ memcpy (tmp, ptr + i * size, size); memmove (ptr + (j + 1) * size, ptr + j * size, (i - j) * size); memcpy (ptr + j * size, tmp, size); } free (tmp); } /* Sort relocation by r_offset. We didn't use qsort () in stdlib, because quick-sort is not a stable sorting algorithm. Relocations at the same r_offset must keep their order. For example, RELAX_ENTRY must be the very first relocation entry. Currently, this function implements insertion-sort. FIXME: If we already sort them in assembler, why bother sort them here again? */ static int compar_reloc (const void *lhs, const void *rhs) { const Elf_Internal_Rela *l = (const Elf_Internal_Rela *) lhs; const Elf_Internal_Rela *r = (const Elf_Internal_Rela *) rhs; if (l->r_offset > r->r_offset) return 1; else if (l->r_offset == r->r_offset) return 0; else return -1; } /* Functions listed below are only used for old relocs. * nds32_elf_9_pcrel_reloc * nds32_elf_do_9_pcrel_reloc * nds32_elf_hi20_reloc * nds32_elf_relocate_hi20 * nds32_elf_lo12_reloc * nds32_elf_sda15_reloc * nds32_elf_generic_reloc */ /* Handle the R_NDS32_9_PCREL & R_NDS32_9_PCREL_RELA reloc. */ static bfd_reloc_status_type nds32_elf_9_pcrel_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) { /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; } return nds32_elf_do_9_pcrel_reloc (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, symbol->section, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } /* Utility to actually perform an R_NDS32_9_PCREL reloc. */ #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1) static bfd_reloc_status_type nds32_elf_do_9_pcrel_reloc (bfd *abfd, reloc_howto_type *howto, asection *input_section, bfd_byte *data, bfd_vma offset, asection *symbol_section ATTRIBUTE_UNUSED, bfd_vma symbol_value, bfd_vma addend) { bfd_signed_vma relocation; unsigned short x; bfd_reloc_status_type status; /* Sanity check the address (offset in section). */ if (offset > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; relocation = symbol_value + addend; /* Make it pc relative. */ relocation -= (input_section->output_section->vma + input_section->output_offset); /* These jumps mask off the lower two bits of the current address before doing pcrel calculations. */ relocation -= (offset & -(bfd_vma) 2); if (relocation < -ACCURATE_8BIT_S1 || relocation >= ACCURATE_8BIT_S1) status = bfd_reloc_overflow; else status = bfd_reloc_ok; x = bfd_getb16 (data + offset); relocation >>= howto->rightshift; relocation <<= howto->bitpos; x = (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask); bfd_putb16 ((bfd_vma) x, data + offset); return status; } /* Handle the R_NDS32_HI20_[SU]LO relocs. HI20_SLO is for the add3 and load/store with displacement instructions. HI20 is for the or3 instruction. For R_NDS32_HI20_SLO, the lower 16 bits are sign extended when added to the high 16 bytes so if the lower 16 bits are negative (bit 15 == 1) then we must add one to the high 16 bytes (which will get subtracted off when the low 16 bits are added). These relocs have to be done in combination with an R_NDS32_LO12 reloc because there is a carry from the LO12 to the HI20. Here we just save the information we need; we do the actual relocation when we see the LO12. This code is copied from the elf32-mips.c. We also support an arbitrary number of HI20 relocs to be associated with a single LO12 reloc. The assembler sorts the relocs to ensure each HI20 immediately precedes its LO12. However if there are multiple copies, the assembler may not find the real LO12 so it picks the first one it finds. */ struct nds32_hi20 { struct nds32_hi20 *next; bfd_byte *addr; bfd_vma addend; }; static struct nds32_hi20 *nds32_hi20_list; static bfd_reloc_status_type nds32_elf_hi20_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { bfd_reloc_status_type ret; bfd_vma relocation; struct nds32_hi20 *n; /* This part is from bfd_elf_generic_reloc. If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Sanity check the address (offset in section). */ if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; ret = bfd_reloc_ok; if (bfd_is_und_section (symbol->section) && output_bfd == (bfd *) NULL) ret = bfd_reloc_undefined; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc_entry->addend; /* Save the information, and let LO12 do the actual relocation. */ n = (struct nds32_hi20 *) bfd_malloc ((bfd_size_type) sizeof *n); if (n == NULL) return bfd_reloc_outofrange; n->addr = (bfd_byte *) data + reloc_entry->address; n->addend = relocation; n->next = nds32_hi20_list; nds32_hi20_list = n; if (output_bfd != (bfd *) NULL) reloc_entry->address += input_section->output_offset; return ret; } /* Handle an NDS32 ELF HI20 reloc. */ static void nds32_elf_relocate_hi20 (bfd *input_bfd ATTRIBUTE_UNUSED, int type ATTRIBUTE_UNUSED, Elf_Internal_Rela *relhi, Elf_Internal_Rela *rello, bfd_byte *contents, bfd_vma addend) { unsigned long insn; bfd_vma addlo; insn = bfd_getb32 (contents + relhi->r_offset); addlo = bfd_getb32 (contents + rello->r_offset); addlo &= 0xfff; addend += ((insn & 0xfffff) << 20) + addlo; insn = (insn & 0xfff00000) | ((addend >> 12) & 0xfffff); bfd_putb32 (insn, contents + relhi->r_offset); } /* Do an R_NDS32_LO12 relocation. This is a straightforward 12 bit inplace relocation; this function exists in order to do the R_NDS32_HI20_[SU]LO relocation described above. */ static bfd_reloc_status_type nds32_elf_lo12_reloc (bfd *input_bfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message) { /* This part is from bfd_elf_generic_reloc. If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (nds32_hi20_list != NULL) { struct nds32_hi20 *l; l = nds32_hi20_list; while (l != NULL) { unsigned long insn; unsigned long val; unsigned long vallo; struct nds32_hi20 *next; /* Do the HI20 relocation. Note that we actually don't need to know anything about the LO12 itself, except where to find the low 12 bits of the addend needed by the LO12. */ insn = bfd_getb32 (l->addr); vallo = bfd_getb32 ((bfd_byte *) data + reloc_entry->address); vallo &= 0xfff; switch (reloc_entry->howto->type) { case R_NDS32_LO12S3: vallo <<= 3; break; case R_NDS32_LO12S2: vallo <<= 2; break; case R_NDS32_LO12S1: vallo <<= 1; break; case R_NDS32_LO12S0: vallo <<= 0; break; } val = ((insn & 0xfffff) << 12) + vallo; val += l->addend; insn = (insn & ~(bfd_vma) 0xfffff) | ((val >> 12) & 0xfffff); bfd_putb32 ((bfd_vma) insn, l->addr); next = l->next; free (l); l = next; } nds32_hi20_list = NULL; } /* Now do the LO12 reloc in the usual way. ??? It would be nice to call bfd_elf_generic_reloc here, but we have partial_inplace set. bfd_elf_generic_reloc will pass the handling back to bfd_install_relocation which will install a section relative addend which is wrong. */ return nds32_elf_generic_reloc (input_bfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); } /* Do generic partial_inplace relocation. This is a local replacement for bfd_elf_generic_reloc. */ static bfd_reloc_status_type nds32_elf_generic_reloc (bfd *input_bfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { bfd_reloc_status_type ret; bfd_vma relocation; bfd_byte *inplace_address; /* This part is from bfd_elf_generic_reloc. If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Now do the reloc in the usual way. ??? It would be nice to call bfd_elf_generic_reloc here, but we have partial_inplace set. bfd_elf_generic_reloc will pass the handling back to bfd_install_relocation which will install a section relative addend which is wrong. */ /* Sanity check the address (offset in section). */ if (reloc_entry->address > bfd_get_section_limit (input_bfd, input_section)) return bfd_reloc_outofrange; ret = bfd_reloc_ok; if (bfd_is_und_section (symbol->section) && output_bfd == (bfd *) NULL) ret = bfd_reloc_undefined; if (bfd_is_com_section (symbol->section) || output_bfd != (bfd *) NULL) relocation = 0; else relocation = symbol->value; /* Only do this for a final link. */ if (output_bfd == (bfd *) NULL) { relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; } relocation += reloc_entry->addend; switch (reloc_entry->howto->type) { case R_NDS32_LO12S3: relocation >>= 3; break; case R_NDS32_LO12S2: relocation >>= 2; break; case R_NDS32_LO12S1: relocation >>= 1; break; case R_NDS32_LO12S0: default: relocation >>= 0; break; } inplace_address = (bfd_byte *) data + reloc_entry->address; #define DOIT(x) \ x = ((x & ~reloc_entry->howto->dst_mask) | \ (((x & reloc_entry->howto->src_mask) + relocation) & \ reloc_entry->howto->dst_mask)) switch (reloc_entry->howto->size) { case 1: { short x = bfd_getb16 (inplace_address); DOIT (x); bfd_putb16 ((bfd_vma) x, inplace_address); } break; case 2: { unsigned long x = bfd_getb32 (inplace_address); DOIT (x); bfd_putb32 ((bfd_vma) x, inplace_address); } break; default: BFD_ASSERT (0); } if (output_bfd != (bfd *) NULL) reloc_entry->address += input_section->output_offset; return ret; } /* Handle the R_NDS32_SDA15 reloc. This reloc is used to compute the address of objects in the small data area and to perform loads and stores from that area. The lower 15 bits are sign extended and added to the register specified in the instruction, which is assumed to point to _SDA_BASE_. Since the lower 15 bits offset is left-shifted 0, 1 or 2 bits depending on the access size, this must be taken care of. */ static bfd_reloc_status_type nds32_elf_sda15_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol, void *data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) { /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; } /* FIXME: not sure what to do here yet. But then again, the linker may never call us. */ abort (); } /* nds32_elf_ignore_reloc is the special function for relocation types which don't need to be relocated like relaxation relocation types. This function simply return bfd_reloc_ok when it is invoked. */ static bfd_reloc_status_type nds32_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { if (output_bfd != NULL) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Map BFD reloc types to NDS32 ELF reloc types. */ struct nds32_reloc_map_entry { bfd_reloc_code_real_type bfd_reloc_val; unsigned char elf_reloc_val; }; static const struct nds32_reloc_map_entry nds32_reloc_map[] = { {BFD_RELOC_NONE, R_NDS32_NONE}, {BFD_RELOC_16, R_NDS32_16_RELA}, {BFD_RELOC_32, R_NDS32_32_RELA}, {BFD_RELOC_NDS32_20, R_NDS32_20_RELA}, {BFD_RELOC_NDS32_5, R_NDS32_5_RELA}, {BFD_RELOC_NDS32_9_PCREL, R_NDS32_9_PCREL_RELA}, {BFD_RELOC_NDS32_WORD_9_PCREL, R_NDS32_WORD_9_PCREL_RELA}, {BFD_RELOC_NDS32_15_PCREL, R_NDS32_15_PCREL_RELA}, {BFD_RELOC_NDS32_17_PCREL, R_NDS32_17_PCREL_RELA}, {BFD_RELOC_NDS32_25_PCREL, R_NDS32_25_PCREL_RELA}, {BFD_RELOC_NDS32_10_UPCREL, R_NDS32_10_UPCREL_RELA}, {BFD_RELOC_NDS32_HI20, R_NDS32_HI20_RELA}, {BFD_RELOC_NDS32_LO12S3, R_NDS32_LO12S3_RELA}, {BFD_RELOC_NDS32_LO12S2, R_NDS32_LO12S2_RELA}, {BFD_RELOC_NDS32_LO12S1, R_NDS32_LO12S1_RELA}, {BFD_RELOC_NDS32_LO12S0, R_NDS32_LO12S0_RELA}, {BFD_RELOC_NDS32_LO12S0_ORI, R_NDS32_LO12S0_ORI_RELA}, {BFD_RELOC_NDS32_SDA15S3, R_NDS32_SDA15S3_RELA}, {BFD_RELOC_NDS32_SDA15S2, R_NDS32_SDA15S2_RELA}, {BFD_RELOC_NDS32_SDA15S1, R_NDS32_SDA15S1_RELA}, {BFD_RELOC_NDS32_SDA15S0, R_NDS32_SDA15S0_RELA}, {BFD_RELOC_VTABLE_INHERIT, R_NDS32_RELA_GNU_VTINHERIT}, {BFD_RELOC_VTABLE_ENTRY, R_NDS32_RELA_GNU_VTENTRY}, {BFD_RELOC_NDS32_GOT20, R_NDS32_GOT20}, {BFD_RELOC_NDS32_9_PLTREL, R_NDS32_9_PLTREL}, {BFD_RELOC_NDS32_25_PLTREL, R_NDS32_25_PLTREL}, {BFD_RELOC_NDS32_COPY, R_NDS32_COPY}, {BFD_RELOC_NDS32_GLOB_DAT, R_NDS32_GLOB_DAT}, {BFD_RELOC_NDS32_JMP_SLOT, R_NDS32_JMP_SLOT}, {BFD_RELOC_NDS32_RELATIVE, R_NDS32_RELATIVE}, {BFD_RELOC_NDS32_GOTOFF, R_NDS32_GOTOFF}, {BFD_RELOC_NDS32_GOTPC20, R_NDS32_GOTPC20}, {BFD_RELOC_NDS32_GOT_HI20, R_NDS32_GOT_HI20}, {BFD_RELOC_NDS32_GOT_LO12, R_NDS32_GOT_LO12}, {BFD_RELOC_NDS32_GOT_LO15, R_NDS32_GOT_LO15}, {BFD_RELOC_NDS32_GOT_LO19, R_NDS32_GOT_LO19}, {BFD_RELOC_NDS32_GOTPC_HI20, R_NDS32_GOTPC_HI20}, {BFD_RELOC_NDS32_GOTPC_LO12, R_NDS32_GOTPC_LO12}, {BFD_RELOC_NDS32_GOTOFF_HI20, R_NDS32_GOTOFF_HI20}, {BFD_RELOC_NDS32_GOTOFF_LO12, R_NDS32_GOTOFF_LO12}, {BFD_RELOC_NDS32_GOTOFF_LO15, R_NDS32_GOTOFF_LO15}, {BFD_RELOC_NDS32_GOTOFF_LO19, R_NDS32_GOTOFF_LO19}, {BFD_RELOC_NDS32_INSN16, R_NDS32_INSN16}, {BFD_RELOC_NDS32_LABEL, R_NDS32_LABEL}, {BFD_RELOC_NDS32_LONGCALL1, R_NDS32_LONGCALL1}, {BFD_RELOC_NDS32_LONGCALL2, R_NDS32_LONGCALL2}, {BFD_RELOC_NDS32_LONGCALL3, R_NDS32_LONGCALL3}, {BFD_RELOC_NDS32_LONGCALL4, R_NDS32_LONGCALL4}, {BFD_RELOC_NDS32_LONGCALL5, R_NDS32_LONGCALL5}, {BFD_RELOC_NDS32_LONGCALL6, R_NDS32_LONGCALL6}, {BFD_RELOC_NDS32_LONGJUMP1, R_NDS32_LONGJUMP1}, {BFD_RELOC_NDS32_LONGJUMP2, R_NDS32_LONGJUMP2}, {BFD_RELOC_NDS32_LONGJUMP3, R_NDS32_LONGJUMP3}, {BFD_RELOC_NDS32_LONGJUMP4, R_NDS32_LONGJUMP4}, {BFD_RELOC_NDS32_LONGJUMP5, R_NDS32_LONGJUMP5}, {BFD_RELOC_NDS32_LONGJUMP6, R_NDS32_LONGJUMP6}, {BFD_RELOC_NDS32_LONGJUMP7, R_NDS32_LONGJUMP7}, {BFD_RELOC_NDS32_LOADSTORE, R_NDS32_LOADSTORE}, {BFD_RELOC_NDS32_9_FIXED, R_NDS32_9_FIXED_RELA}, {BFD_RELOC_NDS32_15_FIXED, R_NDS32_15_FIXED_RELA}, {BFD_RELOC_NDS32_17_FIXED, R_NDS32_17_FIXED_RELA}, {BFD_RELOC_NDS32_25_FIXED, R_NDS32_25_FIXED_RELA}, {BFD_RELOC_NDS32_PLTREL_HI20, R_NDS32_PLTREL_HI20}, {BFD_RELOC_NDS32_PLTREL_LO12, R_NDS32_PLTREL_LO12}, {BFD_RELOC_NDS32_PLT_GOTREL_HI20, R_NDS32_PLT_GOTREL_HI20}, {BFD_RELOC_NDS32_PLT_GOTREL_LO12, R_NDS32_PLT_GOTREL_LO12}, {BFD_RELOC_NDS32_PLT_GOTREL_LO15, R_NDS32_PLT_GOTREL_LO15}, {BFD_RELOC_NDS32_PLT_GOTREL_LO19, R_NDS32_PLT_GOTREL_LO19}, {BFD_RELOC_NDS32_PLT_GOTREL_LO20, R_NDS32_PLT_GOTREL_LO20}, {BFD_RELOC_NDS32_SDA12S2_DP, R_NDS32_SDA12S2_DP_RELA}, {BFD_RELOC_NDS32_SDA12S2_SP, R_NDS32_SDA12S2_SP_RELA}, {BFD_RELOC_NDS32_LO12S2_DP, R_NDS32_LO12S2_DP_RELA}, {BFD_RELOC_NDS32_LO12S2_SP, R_NDS32_LO12S2_SP_RELA}, {BFD_RELOC_NDS32_SDA16S3, R_NDS32_SDA16S3_RELA}, {BFD_RELOC_NDS32_SDA17S2, R_NDS32_SDA17S2_RELA}, {BFD_RELOC_NDS32_SDA18S1, R_NDS32_SDA18S1_RELA}, {BFD_RELOC_NDS32_SDA19S0, R_NDS32_SDA19S0_RELA}, {BFD_RELOC_NDS32_SDA_FP7U2_RELA, R_NDS32_SDA_FP7U2_RELA}, {BFD_RELOC_NDS32_DWARF2_OP1, R_NDS32_DWARF2_OP1_RELA}, {BFD_RELOC_NDS32_DWARF2_OP2, R_NDS32_DWARF2_OP2_RELA}, {BFD_RELOC_NDS32_DWARF2_LEB, R_NDS32_DWARF2_LEB_RELA}, {BFD_RELOC_NDS32_UPDATE_TA, R_NDS32_UPDATE_TA_RELA}, {BFD_RELOC_NDS32_GOT_SUFF, R_NDS32_GOT_SUFF}, {BFD_RELOC_NDS32_GOTOFF_SUFF, R_NDS32_GOTOFF_SUFF}, {BFD_RELOC_NDS32_GOT15S2, R_NDS32_GOT15S2_RELA}, {BFD_RELOC_NDS32_GOT17S2, R_NDS32_GOT17S2_RELA}, {BFD_RELOC_NDS32_PTR, R_NDS32_PTR}, {BFD_RELOC_NDS32_PTR_COUNT, R_NDS32_PTR_COUNT}, {BFD_RELOC_NDS32_PLT_GOT_SUFF, R_NDS32_PLT_GOT_SUFF}, {BFD_RELOC_NDS32_PTR_RESOLVED, R_NDS32_PTR_RESOLVED}, {BFD_RELOC_NDS32_RELAX_ENTRY, R_NDS32_RELAX_ENTRY}, {BFD_RELOC_NDS32_MULCALL_SUFF, R_NDS32_MULCALL_SUFF}, {BFD_RELOC_NDS32_PLTBLOCK, R_NDS32_PLTBLOCK}, {BFD_RELOC_NDS32_RELAX_REGION_BEGIN, R_NDS32_RELAX_REGION_BEGIN}, {BFD_RELOC_NDS32_RELAX_REGION_END, R_NDS32_RELAX_REGION_END}, {BFD_RELOC_NDS32_MINUEND, R_NDS32_MINUEND}, {BFD_RELOC_NDS32_SUBTRAHEND, R_NDS32_SUBTRAHEND}, {BFD_RELOC_NDS32_EMPTY, R_NDS32_EMPTY}, {BFD_RELOC_NDS32_DIFF8, R_NDS32_DIFF8}, {BFD_RELOC_NDS32_DIFF16, R_NDS32_DIFF16}, {BFD_RELOC_NDS32_DIFF32, R_NDS32_DIFF32}, {BFD_RELOC_NDS32_DIFF_ULEB128, R_NDS32_DIFF_ULEB128}, {BFD_RELOC_NDS32_25_ABS, R_NDS32_25_ABS_RELA}, {BFD_RELOC_NDS32_DATA, R_NDS32_DATA}, {BFD_RELOC_NDS32_TRAN, R_NDS32_TRAN}, {BFD_RELOC_NDS32_17IFC_PCREL, R_NDS32_17IFC_PCREL_RELA}, {BFD_RELOC_NDS32_10IFCU_PCREL, R_NDS32_10IFCU_PCREL_RELA}, {BFD_RELOC_NDS32_TLS_LE_HI20, R_NDS32_TLS_LE_HI20}, {BFD_RELOC_NDS32_TLS_LE_LO12, R_NDS32_TLS_LE_LO12}, {BFD_RELOC_NDS32_TLS_LE_ADD, R_NDS32_TLS_LE_ADD}, {BFD_RELOC_NDS32_TLS_LE_LS, R_NDS32_TLS_LE_LS}, {BFD_RELOC_NDS32_TLS_IE_HI20, R_NDS32_TLS_IE_HI20}, {BFD_RELOC_NDS32_TLS_IE_LO12S2, R_NDS32_TLS_IE_LO12S2}, {BFD_RELOC_NDS32_TLS_TPOFF, R_NDS32_TLS_TPOFF}, {BFD_RELOC_NDS32_TLS_LE_20, R_NDS32_TLS_LE_20}, {BFD_RELOC_NDS32_TLS_LE_15S0, R_NDS32_TLS_LE_15S0}, {BFD_RELOC_NDS32_TLS_LE_15S1, R_NDS32_TLS_LE_15S1}, {BFD_RELOC_NDS32_TLS_LE_15S2, R_NDS32_TLS_LE_15S2}, }; /* Patch tag. */ static reloc_howto_type * bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < ARRAY_SIZE (nds32_elf_howto_table); i++) if (nds32_elf_howto_table[i].name != NULL && strcasecmp (nds32_elf_howto_table[i].name, r_name) == 0) return &nds32_elf_howto_table[i]; for (i = 0; i < ARRAY_SIZE (nds32_elf_relax_howto_table); i++) if (nds32_elf_relax_howto_table[i].name != NULL && strcasecmp (nds32_elf_relax_howto_table[i].name, r_name) == 0) return &nds32_elf_relax_howto_table[i]; return NULL; } static reloc_howto_type * bfd_elf32_bfd_reloc_type_table_lookup (enum elf_nds32_reloc_type code) { if (code < R_NDS32_RELAX_ENTRY) { BFD_ASSERT (code < ARRAY_SIZE (nds32_elf_howto_table)); return &nds32_elf_howto_table[code]; } else { BFD_ASSERT ((size_t) (code - R_NDS32_RELAX_ENTRY) < ARRAY_SIZE (nds32_elf_relax_howto_table)); return &nds32_elf_relax_howto_table[code - R_NDS32_RELAX_ENTRY]; } } static reloc_howto_type * bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; for (i = 0; i < ARRAY_SIZE (nds32_reloc_map); i++) { if (nds32_reloc_map[i].bfd_reloc_val == code) return bfd_elf32_bfd_reloc_type_table_lookup (nds32_reloc_map[i].elf_reloc_val); } return NULL; } /* Set the howto pointer for an NDS32 ELF reloc. */ static void nds32_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst) { enum elf_nds32_reloc_type r_type; r_type = ELF32_R_TYPE (dst->r_info); if (r_type > R_NDS32_GNU_VTENTRY) { /* xgettext:c-format */ _bfd_error_handler (_("%B: invalid NDS32 reloc number: %d"), abfd, r_type); r_type = 0; } cache_ptr->howto = bfd_elf32_bfd_reloc_type_table_lookup (r_type); } static void nds32_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst) { BFD_ASSERT ((ELF32_R_TYPE (dst->r_info) == R_NDS32_NONE) || ((ELF32_R_TYPE (dst->r_info) > R_NDS32_GNU_VTENTRY) && (ELF32_R_TYPE (dst->r_info) < R_NDS32_max))); cache_ptr->howto = bfd_elf32_bfd_reloc_type_table_lookup (ELF32_R_TYPE (dst->r_info)); } /* Support for core dump NOTE sections. Reference to include/linux/elfcore.h in Linux. */ static bfd_boolean nds32_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; size_t size; switch (note->descsz) { case 0x114: /* Linux/NDS32 32-bit, ABI1 */ /* pr_cursig */ elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 24); /* pr_reg */ offset = 72; size = 200; break; case 0xfc: /* Linux/NDS32 32-bit */ /* pr_cursig */ elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 24); /* pr_reg */ offset = 72; size = 176; break; default: return FALSE; } /* Make a ".reg" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } static bfd_boolean nds32_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { switch (note->descsz) { case 124: /* Linux/NDS32 */ /* __kernel_uid_t, __kernel_gid_t are short on NDS32 platform. */ elf_tdata (abfd)->core->program = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); elf_tdata (abfd)->core->command = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); break; default: return FALSE; } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core->command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return TRUE; } /* Hook called by the linker routine which adds symbols from an object file. We must handle the special NDS32 section numbers here. We also keep watching for whether we need to create the sdata special linker sections. */ static bfd_boolean nds32_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, const char **namep ATTRIBUTE_UNUSED, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp, bfd_vma *valp) { switch (sym->st_shndx) { case SHN_COMMON: /* Common symbols less than the GP size are automatically treated as SHN_MIPS_SCOMMON symbols. */ if (sym->st_size > elf_gp_size (abfd) || ELF_ST_TYPE (sym->st_info) == STT_TLS) break; /* st_value is the alignemnt constraint. That might be its actual size if it is an array or structure. */ switch (sym->st_value) { case 1: *secp = bfd_make_section_old_way (abfd, ".scommon_b"); break; case 2: *secp = bfd_make_section_old_way (abfd, ".scommon_h"); break; case 4: *secp = bfd_make_section_old_way (abfd, ".scommon_w"); break; case 8: *secp = bfd_make_section_old_way (abfd, ".scommon_d"); break; default: return TRUE; } (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; } return TRUE; } /* This function can figure out the best location for a base register to access data relative to this base register INPUT: sda_d0: size of first DOUBLE WORD data section sda_w0: size of first WORD data section sda_h0: size of first HALF WORD data section sda_b : size of BYTE data section sda_hi: size of second HALF WORD data section sda_w1: size of second WORD data section sda_d1: size of second DOUBLE WORD data section OUTPUT: offset (always positive) from the beginning of sda_d0 if OK a negative error value if fail NOTE: these 7 sections have to be located back to back if exist a pass in 0 value for non-existing section */ /* Due to the interpretation of simm15 field of load/store depending on data accessing size, the organization of base register relative data shall like the following figure ------------------------------------------- | DOUBLE WORD sized data (range +/- 128K) ------------------------------------------- | WORD sized data (range +/- 64K) ------------------------------------------- | HALF WORD sized data (range +/- 32K) ------------------------------------------- | BYTE sized data (range +/- 16K) ------------------------------------------- | HALF WORD sized data (range +/- 32K) ------------------------------------------- | WORD sized data (range +/- 64K) ------------------------------------------- | DOUBLE WORD sized data (range +/- 128K) ------------------------------------------- Its base register shall be set to access these data freely. */ /* We have to figure out the SDA_BASE value, so that we can adjust the symbol value correctly. We look up the symbol _SDA_BASE_ in the output BFD. If we can't find it, we're stuck. We cache it in the ELF target data. We don't need to adjust the symbol value for an external symbol if we are producing relocatable output. */ static asection *sda_rela_sec = NULL; #define SDA_SECTION_NUM 10 static bfd_reloc_status_type nds32_elf_final_sda_base (bfd *output_bfd, struct bfd_link_info *info, bfd_vma *psb, bfd_boolean add_symbol) { int relax_fp_as_gp; struct elf_nds32_link_hash_table *table; struct bfd_link_hash_entry *h, *h2; long unsigned int total = 0; h = bfd_link_hash_lookup (info->hash, "_SDA_BASE_", FALSE, FALSE, TRUE); if (!h || (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)) { asection *first = NULL, *final = NULL, *temp; bfd_vma sda_base; /* The first section must be 4-byte aligned to promise _SDA_BASE_ being 4 byte-aligned. Therefore, it has to set the first section ".data" 4 byte-aligned. */ static const char sec_name[SDA_SECTION_NUM][10] = { ".data", ".got", ".sdata_d", ".sdata_w", ".sdata_h", ".sdata_b", ".sbss_b", ".sbss_h", ".sbss_w", ".sbss_d" }; size_t i = 0; if (output_bfd->sections == NULL) { *psb = elf_gp (output_bfd); return bfd_reloc_ok; } /* Get the first and final section. */ while (i < sizeof (sec_name) / sizeof (sec_name [0])) { temp = bfd_get_section_by_name (output_bfd, sec_name[i]); if (temp && !first && (temp->size != 0 || temp->rawsize != 0)) first = temp; if (temp && (temp->size != 0 || temp->rawsize != 0)) final = temp; /* Summarize the sections in order to check if joining .bss. */ if (temp && temp->size != 0) total += temp->size; else if (temp && temp->rawsize != 0) total += temp->rawsize; i++; } /* Check .bss size. */ temp = bfd_get_section_by_name (output_bfd, ".bss"); if (temp) { if (temp->size != 0) total += temp->size; else if (temp->rawsize != 0) total += temp->rawsize; if (total < 0x80000) { if (!first && (temp->size != 0 || temp->rawsize != 0)) first = temp; if ((temp->size != 0 || temp->rawsize != 0)) final = temp; } } if (first && final) { /* The middle of data region. */ sda_base = final->vma / 2 + final->rawsize / 2 + first->vma / 2; /* Find the section sda_base located. */ i = 0; while (i < sizeof (sec_name) / sizeof (sec_name [0])) { final = bfd_get_section_by_name (output_bfd, sec_name[i]); if (final && (final->size != 0 || final->rawsize != 0) && sda_base >= final->vma) { first = final; i++; } else break; } } else { /* There is not any data section in output bfd, and set _SDA_BASE_ in first output section. */ first = output_bfd->sections; while (first && first->size == 0 && first->rawsize == 0) first = first->next; if (!first) { *psb = elf_gp (output_bfd); return bfd_reloc_ok; } sda_base = first->vma + first->rawsize; } sda_base -= first->vma; sda_base = sda_base & (~7); if (!_bfd_generic_link_add_one_symbol (info, output_bfd, "_SDA_BASE_", BSF_GLOBAL | BSF_WEAK, first, (bfd_vma) sda_base, (const char *) NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &h)) return FALSE; sda_rela_sec = first; table = nds32_elf_hash_table (info); relax_fp_as_gp = table->relax_fp_as_gp; if (relax_fp_as_gp) { h2 = bfd_link_hash_lookup (info->hash, FP_BASE_NAME, FALSE, FALSE, FALSE); /* Define a weak FP_BASE_NAME here to prevent the undefined symbol. And set FP equal to SDA_BASE to do relaxation for la $fp, _FP_BASE_. */ if (!_bfd_generic_link_add_one_symbol (info, output_bfd, FP_BASE_NAME, BSF_GLOBAL | BSF_WEAK, first, (bfd_vma) sda_base, (const char *) NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &h2)) return FALSE; } } if (add_symbol) { if (h) { /* Now set gp. */ elf_gp (output_bfd) = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); } else { _bfd_error_handler (_("error: Can't find symbol: _SDA_BASE_.")); return bfd_reloc_dangerous; } } *psb = h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset; return bfd_reloc_ok; } /* Return size of a PLT entry. */ #define elf_nds32_sizeof_plt(info) PLT_ENTRY_SIZE /* Create an entry in an nds32 ELF linker hash table. */ static struct bfd_hash_entry * nds32_elf_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct elf_nds32_link_hash_entry *ret; ret = (struct elf_nds32_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == NULL) ret = (struct elf_nds32_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct elf_nds32_link_hash_entry)); if (ret == NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = (struct elf_nds32_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string); if (ret != NULL) { struct elf_nds32_link_hash_entry *eh; eh = (struct elf_nds32_link_hash_entry *) ret; eh->dyn_relocs = NULL; eh->tls_type = GOT_UNKNOWN; } return (struct bfd_hash_entry *) ret; } /* Create an nds32 ELF linker hash table. */ static struct bfd_link_hash_table * nds32_elf_link_hash_table_create (bfd *abfd) { struct elf_nds32_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf_nds32_link_hash_table); ret = (struct elf_nds32_link_hash_table *) bfd_zmalloc (amt); if (ret == NULL) return NULL; /* patch tag. */ if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, nds32_elf_link_hash_newfunc, sizeof (struct elf_nds32_link_hash_entry), NDS32_ELF_DATA)) { free (ret); return NULL; } return &ret->root.root; } /* Create dynamic sections when linking against a dynamic object. */ static bfd_boolean nds32_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) { struct elf_nds32_link_hash_table *htab; flagword flags, pltflags; register asection *s; const struct elf_backend_data *bed; int ptralign = 2; /* 32-bit */ bed = get_elf_backend_data (abfd); htab = nds32_elf_hash_table (info); /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and .rel[a].bss sections. */ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); pltflags = flags; pltflags |= SEC_CODE; if (bed->plt_not_loaded) pltflags &= ~(SEC_LOAD | SEC_HAS_CONTENTS); if (bed->plt_readonly) pltflags |= SEC_READONLY; s = bfd_make_section (abfd, ".plt"); htab->root.splt = s; if (s == NULL || !bfd_set_section_flags (abfd, s, pltflags) || !bfd_set_section_alignment (abfd, s, bed->plt_alignment)) return FALSE; if (bed->want_plt_sym) { /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section. */ struct bfd_link_hash_entry *bh = NULL; struct elf_link_hash_entry *h; if (!(_bfd_generic_link_add_one_symbol (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0, (const char *) NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->def_regular = 1; h->type = STT_OBJECT; if (bfd_link_pic (info) && !bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = bfd_make_section (abfd, bed->default_use_rela_p ? ".rela.plt" : ".rel.plt"); htab->root.srelplt = s; if (s == NULL || !bfd_set_section_flags (abfd, s, flags | SEC_READONLY) || !bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; if (htab->root.sgot == NULL && !_bfd_elf_create_got_section (abfd, info)) return FALSE; { const char *secname; char *relname; flagword secflags; asection *sec; for (sec = abfd->sections; sec; sec = sec->next) { secflags = bfd_get_section_flags (abfd, sec); if ((secflags & (SEC_DATA | SEC_LINKER_CREATED)) || ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS)) continue; secname = bfd_get_section_name (abfd, sec); relname = (char *) bfd_malloc ((bfd_size_type) strlen (secname) + 6); strcpy (relname, ".rela"); strcat (relname, secname); if (bfd_get_section_by_name (abfd, secname)) continue; s = bfd_make_section (abfd, relname); if (s == NULL || !bfd_set_section_flags (abfd, s, flags | SEC_READONLY) || !bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; } } if (bed->want_dynbss) { /* The .dynbss section is a place to put symbols which are defined by dynamic objects, are referenced by regular objects, and are not functions. We must allocate space for them in the process image and use a R_*_COPY reloc to tell the dynamic linker to initialize them at run time. The linker script puts the .dynbss section into the .bss section of the final image. */ s = bfd_make_section (abfd, ".dynbss"); htab->sdynbss = s; if (s == NULL || !bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED)) return FALSE; /* The .rel[a].bss section holds copy relocs. This section is not normally needed. We need to create it here, though, so that the linker will map it to an output section. We can't just create it only if we need it, because we will not know whether we need it until we have seen all the input files, and the first time the main linker code calls BFD after examining all the input files (size_dynamic_sections) the input sections have already been mapped to the output sections. If the section turns out not to be needed, we can discard it later. We will never need this section when generating a shared object, since they do not use copy relocs. */ if (!bfd_link_pic (info)) { s = bfd_make_section (abfd, (bed->default_use_rela_p ? ".rela.bss" : ".rel.bss")); htab->srelbss = s; if (s == NULL || !bfd_set_section_flags (abfd, s, flags | SEC_READONLY) || !bfd_set_section_alignment (abfd, s, ptralign)) return FALSE; } } return TRUE; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void nds32_elf_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct elf_nds32_link_hash_entry *edir, *eind; edir = (struct elf_nds32_link_hash_entry *) dir; eind = (struct elf_nds32_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf_nds32_dyn_relocs **pp; struct elf_nds32_dyn_relocs *p; if (ind->root.type == bfd_link_hash_indirect) abort (); /* Add reloc counts against the weak sym to the strong sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL;) { struct elf_nds32_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } _bfd_elf_link_hash_copy_indirect (info, dir, ind); } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean nds32_elf_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct elf_nds32_link_hash_table *htab; struct elf_nds32_link_hash_entry *eh; struct elf_nds32_dyn_relocs *p; bfd *dynobj; asection *s; unsigned int power_of_two; dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->needs_plt || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || h->needs_plt) { if (!bfd_link_pic (info) && !h->def_dynamic && !h->ref_dynamic && h->root.type != bfd_link_hash_undefweak && h->root.type != bfd_link_hash_undefined) { /* This case can occur if we saw a PLT reloc in an input file, but the symbol was never referred to by a dynamic object. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PCREL reloc instead. */ h->plt.offset = (bfd_vma) - 1; h->needs_plt = 0; } return TRUE; } else h->plt.offset = (bfd_vma) - 1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; return TRUE; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (bfd_link_pic (info)) return TRUE; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if (!h->non_got_ref) return TRUE; /* If -z nocopyreloc was given, we won't generate them either. */ if (info->nocopyreloc) { h->non_got_ref = 0; return TRUE; } eh = (struct elf_nds32_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { s = p->sec->output_section; if (s != NULL && (s->flags & (SEC_READONLY | SEC_HAS_CONTENTS)) != 0) break; } /* If we didn't find any dynamic relocs in sections which needs the copy reloc, then we'll be keeping the dynamic relocs and avoiding the copy reloc. */ if (p == NULL) { h->non_got_ref = 0; return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ htab = nds32_elf_hash_table (info); s = htab->sdynbss; BFD_ASSERT (s != NULL); /* We must generate a R_NDS32_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rela.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { asection *srel; srel = htab->srelbss; BFD_ASSERT (srel != NULL); srel->size += sizeof (Elf32_External_Rela); h->needs_copy = 1; } /* We need to figure out the alignment required for this symbol. I have no idea how ELF linkers handle this. */ power_of_two = bfd_log2 (h->size); if (power_of_two > 3) power_of_two = 3; /* Apply the required alignment. */ s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two)); if (power_of_two > bfd_get_section_alignment (dynobj, s)) { if (!bfd_set_section_alignment (dynobj, s, power_of_two)) return FALSE; } /* Define the symbol as being at this point in the section. */ h->root.u.def.section = s; h->root.u.def.value = s->size; /* Increment the section size to make room for the symbol. */ s->size += h->size; return TRUE; } /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) { struct bfd_link_info *info; struct elf_nds32_link_hash_table *htab; struct elf_nds32_link_hash_entry *eh; struct elf_nds32_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; info = (struct bfd_link_info *) inf; htab = nds32_elf_hash_table (info); eh = (struct elf_nds32_link_hash_entry *) h; if (htab->root.dynamic_sections_created && h->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (!bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h)) { asection *s = htab->root.splt; /* If this is the first .plt entry, make room for the special first entry. */ if (s->size == 0) s->size += PLT_ENTRY_SIZE; h->plt.offset = s->size; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (!bfd_link_pic (info) && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; } /* Make room for this entry. */ s->size += PLT_ENTRY_SIZE; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ htab->root.sgotplt->size += 4; /* We also need to make an entry in the .rel.plt section. */ htab->root.srelplt->size += sizeof (Elf32_External_Rela); } else { h->plt.offset = (bfd_vma) - 1; h->needs_plt = 0; } } else { h->plt.offset = (bfd_vma) - 1; h->needs_plt = 0; } if (h->got.refcount > 0) { asection *s; bfd_boolean dyn; int tls_type = elf32_nds32_hash_entry (h)->tls_type; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (!bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = htab->root.sgot; h->got.offset = s->size; if (tls_type == GOT_UNKNOWN) abort (); else if (tls_type == GOT_NORMAL || tls_type == GOT_TLS_IE) /* Need a GOT slot. */ s->size += 4; dyn = htab->root.dynamic_sections_created; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)) htab->root.srelgot->size += sizeof (Elf32_External_Rela); } else h->got.offset = (bfd_vma) - 1; if (eh->dyn_relocs == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (bfd_link_pic (info)) { if (h->def_regular && (h->forced_local || info->symbolic)) { struct elf_nds32_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL;) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && ((h->def_dynamic && !h->def_regular) || (htab->root.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (!bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep:; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->size += p->count * sizeof (Elf32_External_Rela); } return TRUE; } /* Find any dynamic relocs that apply to read-only sections. */ static bfd_boolean readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf) { struct elf_nds32_link_hash_entry *eh; struct elf_nds32_dyn_relocs *p; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; eh = (struct elf_nds32_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = (struct bfd_link_info *) inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return FALSE; } } return TRUE; } /* Set the sizes of the dynamic sections. */ static bfd_boolean nds32_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { struct elf_nds32_link_hash_table *htab; bfd *dynobj; asection *s; bfd_boolean relocs; bfd *ibfd; htab = nds32_elf_hash_table (info); dynobj = htab->root.dynobj; BFD_ASSERT (dynobj != NULL); if (htab->root.dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (!bfd_link_pic (info) && !info->nointerp) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf_nds32_dyn_relocs *p; for (p = ((struct elf_nds32_dyn_relocs *) elf_section_data (s)->local_dynrel); p != NULL; p = p->next) { if (!bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (p->count != 0) { srel = elf_section_data (p->sec)->sreloc; srel->size += p->count * sizeof (Elf32_External_Rela); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; s = htab->root.sgot; srel = htab->root.srelgot; for (; local_got < end_local_got; ++local_got) { if (*local_got > 0) { *local_got = s->size; s->size += 4; if (bfd_link_pic (info)) srel->size += sizeof (Elf32_External_Rela); } else *local_got = (bfd_vma) - 1; } } /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (void *) info); /* We now have determined the sizes of the various dynamic sections. Allocate memory for them. */ relocs = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->root.splt) { /* Strip this section if we don't need it; see the comment below. */ } else if (s == htab->root.sgot) { got_size += s->size; } else if (s == htab->root.sgotplt) { got_size += s->size; } else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0) { if (s->size != 0 && s != htab->root.srelplt) relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } /* Allocate memory for the section contents. We use bfd_zalloc here in case unused entries are not reclaimed before the section's contents are written out. This should not happen, but this way if it does, we get a R_NDS32_NONE reloc instead of garbage. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } if (htab->root.dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in nds32_elf_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (!bfd_link_pic (info)) { if (!add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (htab->root.splt->size != 0) { if (!add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } if (relocs) { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) return FALSE; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (&htab->root, readonly_dynrelocs, (void *) info); if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } } } #undef add_dynamic_entry return TRUE; } static bfd_reloc_status_type nds32_relocate_contents (reloc_howto_type *howto, bfd *input_bfd, bfd_vma relocation, bfd_byte *location) { int size; bfd_vma x = 0; bfd_reloc_status_type flag; unsigned int rightshift = howto->rightshift; unsigned int bitpos = howto->bitpos; /* If the size is negative, negate RELOCATION. This isn't very general. */ if (howto->size < 0) relocation = -relocation; /* Get the value we are going to relocate. */ size = bfd_get_reloc_size (howto); switch (size) { default: abort (); break; case 0: return bfd_reloc_ok; case 2: x = bfd_getb16 (location); break; case 4: x = bfd_getb32 (location); break; } /* Check for overflow. FIXME: We may drop bits during the addition which we don't check for. We must either check at every single operation, which would be tedious, or we must do the computations in a type larger than bfd_vma, which would be inefficient. */ flag = bfd_reloc_ok; if (howto->complain_on_overflow != complain_overflow_dont) { bfd_vma addrmask, fieldmask, signmask, ss; bfd_vma a, b, sum; /* Get the values to be added together. For signed and unsigned relocations, we assume that all values should be truncated to the size of an address. For bitfields, all the bits matter. See also bfd_check_overflow. */ fieldmask = N_ONES (howto->bitsize); signmask = ~fieldmask; addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask; a = (relocation & addrmask) >> rightshift; b = (x & howto->src_mask & addrmask) >> bitpos; switch (howto->complain_on_overflow) { case complain_overflow_signed: /* If any sign bits are set, all sign bits must be set. That is, A must be a valid negative address after shifting. */ signmask = ~(fieldmask >> 1); /* Fall through. */ case complain_overflow_bitfield: /* Much like the signed check, but for a field one bit wider. We allow a bitfield to represent numbers in the range -2**n to 2**n-1, where n is the number of bits in the field. Note that when bfd_vma is 32 bits, a 32-bit reloc can't overflow, which is exactly what we want. */ ss = a & signmask; if (ss != 0 && ss != ((addrmask >> rightshift) & signmask)) flag = bfd_reloc_overflow; /* We only need this next bit of code if the sign bit of B is below the sign bit of A. This would only happen if SRC_MASK had fewer bits than BITSIZE. Note that if SRC_MASK has more bits than BITSIZE, we can get into trouble; we would need to verify that B is in range, as we do for A above. */ ss = ((~howto->src_mask) >> 1) & howto->src_mask; ss >>= bitpos; /* Set all the bits above the sign bit. */ b = (b ^ ss) - ss; /* Now we can do the addition. */ sum = a + b; /* See if the result has the correct sign. Bits above the sign bit are junk now; ignore them. If the sum is positive, make sure we did not have all negative inputs; if the sum is negative, make sure we did not have all positive inputs. The test below looks only at the sign bits, and it really just SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM) We mask with addrmask here to explicitly allow an address wrap-around. The Linux kernel relies on it, and it is the only way to write assembler code which can run when loaded at a location 0x80000000 away from the location at which it is linked. */ if (((~(a ^ b)) & (a ^ sum)) & signmask & addrmask) flag = bfd_reloc_overflow; break; case complain_overflow_unsigned: /* Checking for an unsigned overflow is relatively easy: trim the addresses and add, and trim the result as well. Overflow is normally indicated when the result does not fit in the field. However, we also need to consider the case when, e.g., fieldmask is 0x7fffffff or smaller, an input is 0x80000000, and bfd_vma is only 32 bits; then we will get sum == 0, but there is an overflow, since the inputs did not fit in the field. Instead of doing a separate test, we can check for this by or-ing in the operands when testing for the sum overflowing its final field. */ sum = (a + b) & addrmask; if ((a | b | sum) & signmask) flag = bfd_reloc_overflow; break; default: abort (); } } /* Put RELOCATION in the right bits. */ relocation >>= (bfd_vma) rightshift; relocation <<= (bfd_vma) bitpos; /* Add RELOCATION to the right bits of X. */ /* FIXME : 090616 Because the relaxation may generate duplicate relocation at one address, an addition to immediate in the instruction may cause the relocation added several times. This bug should be fixed in assembler, but a check is also needed here. */ if (howto->partial_inplace) x = ((x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask)); else x = ((x & ~howto->dst_mask) | ((relocation) & howto->dst_mask)); /* Put the relocated value back in the object file. */ switch (size) { default: case 0: case 1: case 8: abort (); break; case 2: bfd_putb16 (x, location); break; case 4: bfd_putb32 (x, location); break; } return flag; } static bfd_reloc_status_type nds32_elf_final_link_relocate (reloc_howto_type *howto, bfd *input_bfd, asection *input_section, bfd_byte *contents, bfd_vma address, bfd_vma value, bfd_vma addend) { bfd_vma relocation; /* Sanity check the address. */ if (address > bfd_get_section_limit (input_bfd, input_section)) return bfd_reloc_outofrange; /* This function assumes that we are dealing with a basic relocation against a symbol. We want to compute the value of the symbol to relocate to. This is just VALUE, the value of the symbol, plus ADDEND, any addend associated with the reloc. */ relocation = value + addend; /* If the relocation is PC relative, we want to set RELOCATION to the distance between the symbol (currently in RELOCATION) and the location we are relocating. Some targets (e.g., i386-aout) arrange for the contents of the section to be the negative of the offset of the location within the section; for such targets pcrel_offset is FALSE. Other targets (e.g., m88kbcs or ELF) simply leave the contents of the section as zero; for such targets pcrel_offset is TRUE. If pcrel_offset is FALSE we do not need to subtract out the offset of the location within the section (which is just ADDRESS). */ if (howto->pc_relative) { relocation -= (input_section->output_section->vma + input_section->output_offset); if (howto->pcrel_offset) relocation -= address; } return nds32_relocate_contents (howto, input_bfd, relocation, contents + address); } static bfd_boolean nds32_elf_output_symbol_hook (struct bfd_link_info *info, const char *name, Elf_Internal_Sym *elfsym ATTRIBUTE_UNUSED, asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) { const char *source; FILE *sym_ld_script = NULL; struct elf_nds32_link_hash_table *table; table = nds32_elf_hash_table (info); sym_ld_script = table->sym_ld_script; if (!sym_ld_script) return TRUE; if (!h || !name || *name == '\0') return TRUE; if (input_sec->flags & SEC_EXCLUDE) return TRUE; if (!check_start_export_sym) { fprintf (sym_ld_script, "SECTIONS\n{\n"); check_start_export_sym = 1; } if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { if (!h->root.u.def.section->output_section) return TRUE; if (bfd_is_const_section (input_sec)) source = input_sec->name; else source = input_sec->owner->filename; fprintf (sym_ld_script, "\t%s = 0x%08lx;\t /* %s */\n", h->root.root.string, (long) (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset), source); } return TRUE; } /* Relocate an NDS32/D ELF section. There is some attempt to make this function usable for many architectures, both for RELA and REL type relocs, if only to serve as a learning tool. The RELOCATE_SECTION function is called by the new ELF backend linker to handle the relocations for a section. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. This function is responsible for adjust the section contents as necessary, and (if using Rela relocs and generating a relocatable output file) adjusting the reloc addend as necessary. This function does not have to worry about setting the reloc address or the reloc symbol index. LOCAL_SYMS is a pointer to the swapped in local symbols. LOCAL_SECTIONS is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. The global hash table entry for the global symbols can be found via elf_sym_hashes (input_bfd). When generating relocatable output, this function must handle STB_LOCAL/STT_SECTION symbols specially. The output symbol is going to be the section symbol corresponding to the output section, which means that the addend must be adjusted accordingly. */ static bfd_vma dtpoff_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma; } static bfd_boolean nds32_elf_relocate_section (bfd * output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info * info, bfd * input_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * relocs, Elf_Internal_Sym * local_syms, asection ** local_sections) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; Elf_Internal_Rela *rel, *relend; bfd_boolean ret = TRUE; /* Assume success. */ int align = 0; bfd_reloc_status_type r; const char *errmsg = NULL; bfd_vma gp; struct elf_nds32_link_hash_table *htab; bfd *dynobj; bfd_vma *local_got_offsets; asection *sgot, *splt, *sreloc; bfd_vma high_address; struct elf_nds32_link_hash_table *table; int eliminate_gc_relocs; bfd_vma fpbase_addr; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); htab = nds32_elf_hash_table (info); high_address = bfd_get_section_limit (input_bfd, input_section); dynobj = htab->root.dynobj; local_got_offsets = elf_local_got_offsets (input_bfd); sgot = htab->root.sgot; splt = htab->root.splt; sreloc = NULL; rel = relocs; relend = relocs + input_section->reloc_count; table = nds32_elf_hash_table (info); eliminate_gc_relocs = table->eliminate_gc_relocs; /* By this time, we can adjust the value of _SDA_BASE_. */ if ((!bfd_link_relocatable (info))) { is_SDA_BASE_set = 1; r = nds32_elf_final_sda_base (output_bfd, info, &gp, TRUE); if (r != bfd_reloc_ok) return FALSE; } if (is_ITB_BASE_set == 0) { /* Set the _ITB_BASE_. */ if (!nds32_elf_ex9_itb_base (info)) { _bfd_error_handler (_("%B: error: Cannot set _ITB_BASE_"), output_bfd); bfd_set_error (bfd_error_bad_value); } } if (table->target_optimize & NDS32_RELAX_JUMP_IFC_ON) if (!nds32_elf_ifc_reloc ()) _bfd_error_handler (_("error: IFC relocation error.")); /* Relocation for .ex9.itable. */ if (table->target_optimize & NDS32_RELAX_EX9_ON || (table->ex9_import_file && table->update_ex9_table)) nds32_elf_ex9_reloc_jmp (info); /* Use gp as fp to prevent truncated fit. Because in relaxation time the fp value is set as gp, and it has be reverted for instruction setting fp. */ fpbase_addr = elf_gp (output_bfd); for (rel = relocs; rel < relend; rel++) { enum elf_nds32_reloc_type r_type; reloc_howto_type *howto = NULL; unsigned long r_symndx; struct elf_link_hash_entry *h = NULL; Elf_Internal_Sym *sym = NULL; asection *sec; bfd_vma relocation; /* We can't modify r_addend here as elf_link_input_bfd has an assert to ensure it's zero (we use REL relocs, not RELA). Therefore this should be assigning zero to `addend', but for clarity we use `r_addend'. */ bfd_vma addend = rel->r_addend; bfd_vma offset = rel->r_offset; r_type = ELF32_R_TYPE (rel->r_info); if (r_type >= R_NDS32_max) { /* xgettext:c-format */ _bfd_error_handler (_("%B: error: unknown relocation type %d."), input_bfd, r_type); bfd_set_error (bfd_error_bad_value); ret = FALSE; continue; } if (r_type == R_NDS32_GNU_VTENTRY || r_type == R_NDS32_GNU_VTINHERIT || r_type == R_NDS32_NONE || r_type == R_NDS32_RELA_GNU_VTENTRY || r_type == R_NDS32_RELA_GNU_VTINHERIT || (r_type >= R_NDS32_INSN16 && r_type <= R_NDS32_25_FIXED_RELA) || r_type == R_NDS32_DATA || r_type == R_NDS32_TRAN || (r_type >= R_NDS32_LONGCALL4 && r_type <= R_NDS32_LONGJUMP7)) continue; /* If we enter the fp-as-gp region. Resolve the address of best fp-base. */ if (ELF32_R_TYPE (rel->r_info) == R_NDS32_RELAX_REGION_BEGIN && (rel->r_addend & R_NDS32_RELAX_REGION_OMIT_FP_FLAG)) { int dist; /* Distance to relocation of best fp-base is encoded in R_SYM. */ dist = rel->r_addend >> 16; fpbase_addr = calculate_memory_address (input_bfd, rel + dist, local_syms, symtab_hdr); } else if (ELF32_R_TYPE (rel->r_info) == R_NDS32_RELAX_REGION_END && (rel->r_addend & R_NDS32_RELAX_REGION_OMIT_FP_FLAG)) { fpbase_addr = elf_gp (output_bfd); } if (((r_type >= R_NDS32_DWARF2_OP1_RELA && r_type <= R_NDS32_DWARF2_LEB_RELA) || r_type >= R_NDS32_RELAX_ENTRY) && !bfd_link_relocatable (info)) continue; howto = bfd_elf32_bfd_reloc_type_table_lookup (r_type); r_symndx = ELF32_R_SYM (rel->r_info); /* This is a final link. */ sym = NULL; sec = NULL; h = NULL; if (r_symndx < symtab_hdr->sh_info) { /* Local symbol. */ sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); addend = rel->r_addend; } else { /* External symbol. */ bfd_boolean warned, ignored, unresolved_reloc; int symndx = r_symndx - symtab_hdr->sh_info; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned, ignored); /* la $fp, _FP_BASE_ is per-function (region). Handle it specially. */ switch ((int) r_type) { case R_NDS32_SDA19S0_RELA: case R_NDS32_SDA15S0_RELA: case R_NDS32_20_RELA: if (strcmp (elf_sym_hashes (input_bfd)[symndx]->root.root.string, FP_BASE_NAME) == 0) { relocation = fpbase_addr; break; } } } if (bfd_link_relocatable (info)) { /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) rel->r_addend += sec->output_offset + sym->st_value; continue; } /* Sanity check the address. */ if (offset > high_address) { r = bfd_reloc_outofrange; goto check_reloc; } if ((r_type >= R_NDS32_DWARF2_OP1_RELA && r_type <= R_NDS32_DWARF2_LEB_RELA) || r_type >= R_NDS32_RELAX_ENTRY) continue; switch ((int) r_type) { case R_NDS32_GOTOFF: /* Relocation is relative to the start of the global offset table (for ld24 rx, #uimm24), e.g. access at label+addend ld24 rx. #label@GOTOFF + addend sub rx, r12. */ case R_NDS32_GOTOFF_HI20: case R_NDS32_GOTOFF_LO12: case R_NDS32_GOTOFF_LO15: case R_NDS32_GOTOFF_LO19: BFD_ASSERT (sgot != NULL); relocation -= elf_gp (output_bfd); break; case R_NDS32_9_PLTREL: case R_NDS32_25_PLTREL: /* Relocation is to the entry for this symbol in the procedure linkage table. */ /* The native assembler will generate a 25_PLTREL reloc for a local symbol if you assemble a call from one section to another when using -K pic. */ if (h == NULL) break; if (h->forced_local) break; /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ if (h->plt.offset == (bfd_vma) - 1) break; relocation = (splt->output_section->vma + splt->output_offset + h->plt.offset); break; case R_NDS32_PLT_GOTREL_HI20: case R_NDS32_PLT_GOTREL_LO12: case R_NDS32_PLT_GOTREL_LO15: case R_NDS32_PLT_GOTREL_LO19: case R_NDS32_PLT_GOTREL_LO20: if (h == NULL || h->forced_local || h->plt.offset == (bfd_vma) - 1) { /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ relocation -= elf_gp (output_bfd); break; } relocation = (splt->output_section->vma + splt->output_offset + h->plt.offset); relocation -= elf_gp (output_bfd); break; case R_NDS32_PLTREL_HI20: case R_NDS32_PLTREL_LO12: /* Relocation is to the entry for this symbol in the procedure linkage table. */ /* The native assembler will generate a 25_PLTREL reloc for a local symbol if you assemble a call from one section to another when using -K pic. */ if (h == NULL) break; if (h->forced_local) break; if (h->plt.offset == (bfd_vma) - 1) /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ break; if (splt == NULL) break; relocation = (splt->output_section->vma + splt->output_offset + h->plt.offset + 4) - (input_section->output_section->vma + input_section->output_offset + rel->r_offset); break; case R_NDS32_GOTPC20: /* .got(_GLOBAL_OFFSET_TABLE_) - pc relocation ld24 rx,#_GLOBAL_OFFSET_TABLE_ */ relocation = elf_gp (output_bfd); break; case R_NDS32_GOTPC_HI20: case R_NDS32_GOTPC_LO12: { /* .got(_GLOBAL_OFFSET_TABLE_) - pc relocation bl .+4 seth rx,#high(_GLOBAL_OFFSET_TABLE_) or3 rx,rx,#low(_GLOBAL_OFFSET_TABLE_ +4) or bl .+4 seth rx,#shigh(_GLOBAL_OFFSET_TABLE_) add3 rx,rx,#low(_GLOBAL_OFFSET_TABLE_ +4) */ relocation = elf_gp (output_bfd); relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); break; } case R_NDS32_GOT20: /* Fall through. */ case R_NDS32_GOT_HI20: case R_NDS32_GOT_LO12: case R_NDS32_GOT_LO15: case R_NDS32_GOT_LO19: /* Relocation is to the entry for this symbol in the global offset table. */ BFD_ASSERT (sgot != NULL); if (h != NULL) { bfd_boolean dyn; bfd_vma off; off = h->got.offset; BFD_ASSERT (off != (bfd_vma) - 1); dyn = htab->root.dynamic_sections_created; if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) || (bfd_link_pic (info) && (info->symbolic || h->dynindx == -1 || h->forced_local) && h->def_regular)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); h->got.offset |= 1; } } relocation = sgot->output_section->vma + sgot->output_offset + off - elf_gp (output_bfd); } else { bfd_vma off; bfd_byte *loc; BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) - 1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already processed this entry. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); if (bfd_link_pic (info)) { asection *srelgot; Elf_Internal_Rela outrel; /* We need to generate a R_NDS32_RELATIVE reloc for the dynamic linker. */ srelgot = htab->root.srelgot; BFD_ASSERT (srelgot != NULL); outrel.r_offset = (elf_gp (output_bfd) + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_NDS32_RELATIVE); outrel.r_addend = relocation; loc = srelgot->contents; loc += srelgot->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); ++srelgot->reloc_count; } local_got_offsets[r_symndx] |= 1; } relocation = sgot->output_section->vma + sgot->output_offset + off - elf_gp (output_bfd); } break; case R_NDS32_16_RELA: case R_NDS32_20_RELA: case R_NDS32_5_RELA: case R_NDS32_32_RELA: case R_NDS32_9_PCREL_RELA: case R_NDS32_WORD_9_PCREL_RELA: case R_NDS32_10_UPCREL_RELA: case R_NDS32_15_PCREL_RELA: case R_NDS32_17_PCREL_RELA: case R_NDS32_25_PCREL_RELA: case R_NDS32_HI20_RELA: case R_NDS32_LO12S3_RELA: case R_NDS32_LO12S2_RELA: case R_NDS32_LO12S2_DP_RELA: case R_NDS32_LO12S2_SP_RELA: case R_NDS32_LO12S1_RELA: case R_NDS32_LO12S0_RELA: case R_NDS32_LO12S0_ORI_RELA: if (bfd_link_pic (info) && r_symndx != 0 && (input_section->flags & SEC_ALLOC) != 0 && (eliminate_gc_relocs == 0 || (sec && (sec->flags & SEC_EXCLUDE) == 0)) && ((r_type != R_NDS32_9_PCREL_RELA && r_type != R_NDS32_WORD_9_PCREL_RELA && r_type != R_NDS32_10_UPCREL_RELA && r_type != R_NDS32_15_PCREL_RELA && r_type != R_NDS32_17_PCREL_RELA && r_type != R_NDS32_25_PCREL_RELA && !(r_type == R_NDS32_32_RELA && strcmp (input_section->name, ".eh_frame") == 0)) || (h != NULL && h->dynindx != -1 && (!info->symbolic || !h->def_regular)))) { Elf_Internal_Rela outrel; bfd_boolean skip, relocate; bfd_byte *loc; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ if (sreloc == NULL) { const char *name; name = bfd_elf_string_from_elf_section (input_bfd, elf_elfheader (input_bfd)->e_shstrndx, elf_section_data (input_section)->rela.hdr->sh_name); if (name == NULL) return FALSE; BFD_ASSERT (strncmp (name, ".rela", 5) == 0 && strcmp (bfd_get_section_name (input_bfd, input_section), name + 5) == 0); sreloc = bfd_get_section_by_name (dynobj, name); BFD_ASSERT (sreloc != NULL); } skip = FALSE; relocate = FALSE; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) - 1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) - 2) skip = TRUE, relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (r_type == R_NDS32_17_PCREL_RELA || r_type == R_NDS32_15_PCREL_RELA || r_type == R_NDS32_25_PCREL_RELA) { BFD_ASSERT (h != NULL && h->dynindx != -1); outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); outrel.r_addend = rel->r_addend; } else { /* h->dynindx may be -1 if this symbol was marked to become local. */ if (h == NULL || ((info->symbolic || h->dynindx == -1) && h->def_regular)) { relocate = TRUE; outrel.r_info = ELF32_R_INFO (0, R_NDS32_RELATIVE); outrel.r_addend = relocation + rel->r_addend; } else { BFD_ASSERT (h->dynindx != -1); outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); outrel.r_addend = rel->r_addend; } } loc = sreloc->contents; loc += sreloc->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); ++sreloc->reloc_count; /* If this reloc is against an external symbol, we do not want to fiddle with the addend. Otherwise, we need to include the symbol value so that it becomes an addend for the dynamic reloc. */ if (!relocate) continue; } break; case R_NDS32_25_ABS_RELA: if (bfd_link_pic (info)) { _bfd_error_handler (_("%B: warning: cannot deal R_NDS32_25_ABS_RELA in shared " "mode."), input_bfd); return FALSE; } break; case R_NDS32_9_PCREL: r = nds32_elf_do_9_pcrel_reloc (input_bfd, howto, input_section, contents, offset, sec, relocation, addend); goto check_reloc; case R_NDS32_HI20: { Elf_Internal_Rela *lorel; /* We allow an arbitrary number of HI20 relocs before the LO12 reloc. This permits gcc to emit the HI and LO relocs itself. */ for (lorel = rel + 1; (lorel < relend && ELF32_R_TYPE (lorel->r_info) == R_NDS32_HI20); lorel++) continue; if (lorel < relend && (ELF32_R_TYPE (lorel->r_info) == R_NDS32_LO12S3 || ELF32_R_TYPE (lorel->r_info) == R_NDS32_LO12S2 || ELF32_R_TYPE (lorel->r_info) == R_NDS32_LO12S1 || ELF32_R_TYPE (lorel->r_info) == R_NDS32_LO12S0)) { nds32_elf_relocate_hi20 (input_bfd, r_type, rel, lorel, contents, relocation + addend); r = bfd_reloc_ok; } else r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, offset, relocation, addend); } goto check_reloc; case R_NDS32_GOT17S2_RELA: case R_NDS32_GOT15S2_RELA: { bfd_vma off; BFD_ASSERT (sgot != NULL); if (h != NULL) { bfd_boolean dyn; off = h->got.offset; BFD_ASSERT (off != (bfd_vma) - 1); dyn = htab->root.dynamic_sections_created; if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) || (bfd_link_pic (info) && (info->symbolic || h->dynindx == -1 || h->forced_local) && h->def_regular)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); h->got.offset |= 1; } } } else { bfd_byte *loc; BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) - 1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already processed this entry. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); if (bfd_link_pic (info)) { asection *srelgot; Elf_Internal_Rela outrel; /* We need to generate a R_NDS32_RELATIVE reloc for the dynamic linker. */ srelgot = htab->root.srelgot; BFD_ASSERT (srelgot != NULL); outrel.r_offset = (elf_gp (output_bfd) + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_NDS32_RELATIVE); outrel.r_addend = relocation; loc = srelgot->contents; loc += srelgot->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); ++srelgot->reloc_count; } local_got_offsets[r_symndx] |= 1; } } relocation = sgot->output_section->vma + sgot->output_offset + off - elf_gp (output_bfd); } if (relocation & align) { /* Incorrect alignment. */ _bfd_error_handler (_("%B: warning: unaligned access to GOT entry."), input_bfd); ret = FALSE; r = bfd_reloc_dangerous; goto check_reloc; } break; case R_NDS32_SDA16S3_RELA: case R_NDS32_SDA15S3_RELA: case R_NDS32_SDA15S3: align = 0x7; goto handle_sda; case R_NDS32_SDA17S2_RELA: case R_NDS32_SDA15S2_RELA: case R_NDS32_SDA12S2_SP_RELA: case R_NDS32_SDA12S2_DP_RELA: case R_NDS32_SDA15S2: case R_NDS32_SDA_FP7U2_RELA: align = 0x3; goto handle_sda; case R_NDS32_SDA18S1_RELA: case R_NDS32_SDA15S1_RELA: case R_NDS32_SDA15S1: align = 0x1; goto handle_sda; case R_NDS32_SDA19S0_RELA: case R_NDS32_SDA15S0_RELA: case R_NDS32_SDA15S0: { align = 0x0; handle_sda: BFD_ASSERT (sec != NULL); /* If the symbol is in the abs section, the out_bfd will be null. This happens when the relocation has a symbol@GOTOFF. */ r = nds32_elf_final_sda_base (output_bfd, info, &gp, FALSE); if (r != bfd_reloc_ok) { _bfd_error_handler (_("%B: warning: relocate SDA_BASE failed."), input_bfd); ret = FALSE; goto check_reloc; } /* At this point `relocation' contains the object's address. */ if (r_type == R_NDS32_SDA_FP7U2_RELA) { relocation -= fpbase_addr; } else relocation -= gp; /* Now it contains the offset from _SDA_BASE_. */ /* Make sure alignment is correct. */ if (relocation & align) { /* Incorrect alignment. */ _bfd_error_handler /* xgettext:c-format */ (_("%B(%A): warning: unaligned small data access of type %d."), input_bfd, input_section, r_type); ret = FALSE; goto check_reloc; } } break; case R_NDS32_17IFC_PCREL_RELA: case R_NDS32_10IFCU_PCREL_RELA: /* do nothing */ break; case R_NDS32_TLS_LE_HI20: case R_NDS32_TLS_LE_LO12: case R_NDS32_TLS_LE_20: case R_NDS32_TLS_LE_15S0: case R_NDS32_TLS_LE_15S1: case R_NDS32_TLS_LE_15S2: if (elf_hash_table (info)->tls_sec != NULL) relocation -= (elf_hash_table (info)->tls_sec->vma + TP_OFFSET); break; case R_NDS32_TLS_IE_HI20: case R_NDS32_TLS_IE_LO12S2: { /* Relocation is to the entry for this symbol in the global offset table. */ unsigned int tls_type; asection *srelgot; Elf_Internal_Rela outrel; bfd_vma off; bfd_byte *loc; int indx = 0; BFD_ASSERT (sgot != NULL); if (h != NULL) { bfd_boolean dyn; off = h->got.offset; BFD_ASSERT (off != (bfd_vma) - 1); dyn = htab->root.dynamic_sections_created; tls_type = ((struct elf_nds32_link_hash_entry *) h)->tls_type; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) indx = h->dynindx; } else { /* Never happen currently. */ BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) - 1); off = local_got_offsets[r_symndx]; tls_type = elf32_nds32_local_got_tls_type (input_bfd)[r_symndx]; } relocation = sgot->output_section->vma + sgot->output_offset + off; if (r_type == R_NDS32_TLS_IE_LO12S2) break; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already processed this entry. */ if ((off & 1) != 0) off &= ~1; else { bfd_boolean need_relocs = FALSE; srelgot = htab->root.srelgot; if ((bfd_link_pic (info) || indx != 0) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { need_relocs = TRUE; BFD_ASSERT (srelgot != NULL); } if (tls_type & GOT_TLS_IE) { if (need_relocs) { if (h->dynindx == 0) outrel.r_addend = relocation - dtpoff_base (info); else outrel.r_addend = 0; outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (h->dynindx, R_NDS32_TLS_TPOFF); loc = srelgot->contents; loc += srelgot->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); ++srelgot->reloc_count; } else bfd_put_32 (output_bfd, h->root.u.def.value - TP_OFFSET, sgot->contents + off); } } } break; /* DON'T fall through. */ default: /* OLD_NDS32_RELOC. */ r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, offset, relocation, addend); goto check_reloc; } switch ((int) r_type) { case R_NDS32_20_RELA: case R_NDS32_5_RELA: case R_NDS32_9_PCREL_RELA: case R_NDS32_WORD_9_PCREL_RELA: case R_NDS32_10_UPCREL_RELA: case R_NDS32_15_PCREL_RELA: case R_NDS32_17_PCREL_RELA: case R_NDS32_25_PCREL_RELA: case R_NDS32_25_ABS_RELA: case R_NDS32_HI20_RELA: case R_NDS32_LO12S3_RELA: case R_NDS32_LO12S2_RELA: case R_NDS32_LO12S2_DP_RELA: case R_NDS32_LO12S2_SP_RELA: case R_NDS32_LO12S1_RELA: case R_NDS32_LO12S0_RELA: case R_NDS32_LO12S0_ORI_RELA: case R_NDS32_SDA16S3_RELA: case R_NDS32_SDA17S2_RELA: case R_NDS32_SDA18S1_RELA: case R_NDS32_SDA19S0_RELA: case R_NDS32_SDA15S3_RELA: case R_NDS32_SDA15S2_RELA: case R_NDS32_SDA12S2_DP_RELA: case R_NDS32_SDA12S2_SP_RELA: case R_NDS32_SDA15S1_RELA: case R_NDS32_SDA15S0_RELA: case R_NDS32_SDA_FP7U2_RELA: case R_NDS32_9_PLTREL: case R_NDS32_25_PLTREL: case R_NDS32_GOT20: case R_NDS32_GOT_HI20: case R_NDS32_GOT_LO12: case R_NDS32_GOT_LO15: case R_NDS32_GOT_LO19: case R_NDS32_GOT15S2_RELA: case R_NDS32_GOT17S2_RELA: case R_NDS32_GOTPC20: case R_NDS32_GOTPC_HI20: case R_NDS32_GOTPC_LO12: case R_NDS32_GOTOFF: case R_NDS32_GOTOFF_HI20: case R_NDS32_GOTOFF_LO12: case R_NDS32_GOTOFF_LO15: case R_NDS32_GOTOFF_LO19: case R_NDS32_PLTREL_HI20: case R_NDS32_PLTREL_LO12: case R_NDS32_PLT_GOTREL_HI20: case R_NDS32_PLT_GOTREL_LO12: case R_NDS32_PLT_GOTREL_LO15: case R_NDS32_PLT_GOTREL_LO19: case R_NDS32_PLT_GOTREL_LO20: case R_NDS32_17IFC_PCREL_RELA: case R_NDS32_10IFCU_PCREL_RELA: case R_NDS32_TLS_LE_HI20: case R_NDS32_TLS_LE_LO12: case R_NDS32_TLS_IE_HI20: case R_NDS32_TLS_IE_LO12S2: case R_NDS32_TLS_LE_20: case R_NDS32_TLS_LE_15S0: case R_NDS32_TLS_LE_15S1: case R_NDS32_TLS_LE_15S2: /* Instruction related relocs must handle endian properly. */ /* NOTE: PIC IS NOT HANDLE YET; DO IT LATER. */ r = nds32_elf_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; default: /* All other relocs can use default handler. */ r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; } check_reloc: if (r != bfd_reloc_ok) { /* FIXME: This should be generic enough to go in a utility. */ const char *name; if (h != NULL) name = h->root.root.string; else { name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (name == NULL || *name == '\0') name = bfd_section_name (input_bfd, sec); } if (errmsg != NULL) goto common_error; switch (r) { case bfd_reloc_overflow: (*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, offset); break; case bfd_reloc_undefined: (*info->callbacks->undefined_symbol) (info, name, input_bfd, input_section, offset, TRUE); break; case bfd_reloc_outofrange: errmsg = _("internal error: out of range error"); goto common_error; case bfd_reloc_notsupported: errmsg = _("internal error: unsupported relocation error"); goto common_error; case bfd_reloc_dangerous: errmsg = _("internal error: dangerous error"); goto common_error; default: errmsg = _("internal error: unknown error"); /* Fall through. */ common_error: (*info->callbacks->warning) (info, errmsg, name, input_bfd, input_section, offset); break; } } } return ret; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean nds32_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { struct elf_nds32_link_hash_table *htab; bfd_byte *loc; htab = nds32_elf_hash_table (info); if (h->plt.offset != (bfd_vma) - 1) { asection *splt; asection *sgot; asection *srela; bfd_vma plt_index; bfd_vma got_offset; bfd_vma local_plt_offset; Elf_Internal_Rela rela; /* This symbol has an entry in the procedure linkage table. Set it up. */ BFD_ASSERT (h->dynindx != -1); splt = htab->root.splt; sgot = htab->root.sgotplt; srela = htab->root.srelplt; BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first entry in the procedure linkage table is reserved. */ plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; /* Get the offset into the .got table of the entry that corresponds to this function. Each .got entry is 4 bytes. The first three are reserved. */ got_offset = (plt_index + 3) * 4; /* Fill in the entry in the procedure linkage table. */ if (!bfd_link_pic (info)) { unsigned long insn; insn = PLT_ENTRY_WORD0 + (((sgot->output_section->vma + sgot->output_offset + got_offset) >> 12) & 0xfffff); bfd_putb32 (insn, splt->contents + h->plt.offset); insn = PLT_ENTRY_WORD1 + (((sgot->output_section->vma + sgot->output_offset + got_offset) & 0x0fff) >> 2); bfd_putb32 (insn, splt->contents + h->plt.offset + 4); insn = PLT_ENTRY_WORD2; bfd_putb32 (insn, splt->contents + h->plt.offset + 8); insn = PLT_ENTRY_WORD3 + (plt_index & 0x7ffff); bfd_putb32 (insn, splt->contents + h->plt.offset + 12); insn = PLT_ENTRY_WORD4 + (((unsigned int) ((-(h->plt.offset + 16)) >> 1)) & 0xffffff); bfd_putb32 (insn, splt->contents + h->plt.offset + 16); local_plt_offset = 12; } else { /* sda_base must be set at this time. */ unsigned long insn; long offset; /* FIXME, sda_base is 65536, it will damage opcode. */ /* insn = PLT_PIC_ENTRY_WORD0 + (((got_offset - sda_base) >> 2) & 0x7fff); */ offset = sgot->output_section->vma + sgot->output_offset + got_offset - elf_gp (output_bfd); insn = PLT_PIC_ENTRY_WORD0 + ((offset >> 12) & 0xfffff); bfd_putb32 (insn, splt->contents + h->plt.offset); insn = PLT_PIC_ENTRY_WORD1 + (offset & 0xfff); bfd_putb32 (insn, splt->contents + h->plt.offset + 4); insn = PLT_PIC_ENTRY_WORD2; bfd_putb32 (insn, splt->contents + h->plt.offset + 8); insn = PLT_PIC_ENTRY_WORD3; bfd_putb32 (insn, splt->contents + h->plt.offset + 12); insn = PLT_PIC_ENTRY_WORD4 + (plt_index & 0x7fffff); bfd_putb32 (insn, splt->contents + h->plt.offset + 16); insn = PLT_PIC_ENTRY_WORD5 + (((unsigned int) ((-(h->plt.offset + 20)) >> 1)) & 0xffffff); bfd_putb32 (insn, splt->contents + h->plt.offset + 20); local_plt_offset = 16; } /* Fill in the entry in the global offset table, so it will fall through to the next instruction for the first time. */ bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset + h->plt.offset + local_plt_offset), sgot->contents + got_offset); /* Fill in the entry in the .rela.plt section. */ rela.r_offset = (sgot->output_section->vma + sgot->output_offset + got_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_NDS32_JMP_SLOT); rela.r_addend = 0; loc = srela->contents; loc += plt_index * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; if (!h->ref_regular_nonweak) sym->st_value = 0; } } if (h->got.offset != (bfd_vma) - 1) { asection *sgot; asection *srela; Elf_Internal_Rela rela; /* This symbol has an entry in the global offset table. Set it up. */ sgot = htab->root.sgot; srela = htab->root.srelgot; BFD_ASSERT (sgot != NULL && srela != NULL); rela.r_offset = (sgot->output_section->vma + sgot->output_offset + (h->got.offset & ~1)); /* If this is a -Bsymbolic link, and the symbol is defined locally, we just want to emit a RELATIVE reloc. Likewise if the symbol was forced to be local because of a version file. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (bfd_link_pic (info) && (info->symbolic || h->dynindx == -1 || h->forced_local) && h->def_regular) { rela.r_info = ELF32_R_INFO (0, R_NDS32_RELATIVE); rela.r_addend = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else { BFD_ASSERT ((h->got.offset & 1) == 0); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_NDS32_GLOB_DAT); rela.r_addend = 0; } loc = srela->contents; loc += srela->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); ++srela->reloc_count; } if (h->needs_copy) { asection *s; Elf_Internal_Rela rela; /* This symbols needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)); s = bfd_get_section_by_name (h->root.u.def.section->owner, ".rela.bss"); BFD_ASSERT (s != NULL); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_NDS32_COPY); rela.r_addend = 0; loc = s->contents; loc += s->reloc_count * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); ++s->reloc_count; } /* Mark some specially defined symbols as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; return TRUE; } /* Finish up the dynamic sections. */ static bfd_boolean nds32_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { struct elf_nds32_link_hash_table *htab; bfd *dynobj; asection *sdyn; asection *sgot; htab = nds32_elf_hash_table (info); dynobj = htab->root.dynobj; sgot = htab->root.sgotplt; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (htab->root.dynamic_sections_created) { asection *splt; Elf32_External_Dyn *dyncon, *dynconend; BFD_ASSERT (sgot != NULL && sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: break; case DT_PLTGOT: s = htab->root.sgotplt; goto get_vma; case DT_JMPREL: s = htab->root.srelplt; get_vma: dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTRELSZ: s = htab->root.srelplt; dyn.d_un.d_val = s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } /* Fill in the first entry in the procedure linkage table. */ splt = htab->root.splt; if (splt && splt->size > 0) { if (bfd_link_pic (info)) { unsigned long insn; long offset; /* FIXME, sda_base is 65536, it will damage opcode. */ /* insn = PLT_PIC_ENTRY_WORD0 + (((got_offset - sda_base) >> 2) & 0x7fff); */ offset = sgot->output_section->vma + sgot->output_offset + 4 - elf_gp (output_bfd); insn = PLT0_PIC_ENTRY_WORD0 | ((offset >> 12) & 0xfffff); bfd_putb32 (insn, splt->contents); /* insn = PLT0_PIC_ENTRY_WORD0 | (((8 - sda_base) >> 2) & 0x7fff) ; */ /* here has a typo? */ insn = PLT0_PIC_ENTRY_WORD1 | (offset & 0xfff); bfd_putb32 (insn, splt->contents + 4); insn = PLT0_PIC_ENTRY_WORD2; bfd_putb32 (insn, splt->contents + 8); insn = PLT0_PIC_ENTRY_WORD3; bfd_putb32 (insn, splt->contents + 12); insn = PLT0_PIC_ENTRY_WORD4; bfd_putb32 (insn, splt->contents + 16); insn = PLT0_PIC_ENTRY_WORD5; bfd_putb32 (insn, splt->contents + 20); } else { unsigned long insn; unsigned long addr; /* addr = .got + 4 */ addr = sgot->output_section->vma + sgot->output_offset + 4; insn = PLT0_ENTRY_WORD0 | ((addr >> 12) & 0xfffff); bfd_putb32 (insn, splt->contents); insn = PLT0_ENTRY_WORD1 | (addr & 0x0fff); bfd_putb32 (insn, splt->contents + 4); insn = PLT0_ENTRY_WORD2; bfd_putb32 (insn, splt->contents + 8); insn = PLT0_ENTRY_WORD3; bfd_putb32 (insn, splt->contents + 12); insn = PLT0_ENTRY_WORD4; bfd_putb32 (insn, splt->contents + 16); } elf_section_data (splt->output_section)->this_hdr.sh_entsize = PLT_ENTRY_SIZE; } } /* Fill in the first three entries in the global offset table. */ if (sgot && sgot->size > 0) { if (sdyn == NULL) bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); else bfd_put_32 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgot->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; } return TRUE; } /* Set the right machine number. */ static bfd_boolean nds32_elf_object_p (bfd *abfd) { static unsigned int cur_arch = 0; if (E_N1_ARCH != (elf_elfheader (abfd)->e_flags & EF_NDS_ARCH)) { /* E_N1_ARCH is a wild card, so it is set only when no others exist. */ cur_arch = (elf_elfheader (abfd)->e_flags & EF_NDS_ARCH); } switch (cur_arch) { default: case E_N1_ARCH: bfd_default_set_arch_mach (abfd, bfd_arch_nds32, bfd_mach_n1); break; case E_N1H_ARCH: bfd_default_set_arch_mach (abfd, bfd_arch_nds32, bfd_mach_n1h); break; case E_NDS_ARCH_STAR_V2_0: bfd_default_set_arch_mach (abfd, bfd_arch_nds32, bfd_mach_n1h_v2); break; case E_NDS_ARCH_STAR_V3_0: bfd_default_set_arch_mach (abfd, bfd_arch_nds32, bfd_mach_n1h_v3); break; case E_NDS_ARCH_STAR_V3_M: bfd_default_set_arch_mach (abfd, bfd_arch_nds32, bfd_mach_n1h_v3m); break; } return TRUE; } /* Store the machine number in the flags field. */ static void nds32_elf_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED) { unsigned long val; static unsigned int cur_mach = 0; if (bfd_mach_n1 != bfd_get_mach (abfd)) { cur_mach = bfd_get_mach (abfd); } switch (cur_mach) { case bfd_mach_n1: /* Only happen when object is empty, since the case is abandon. */ val = E_N1_ARCH; val |= E_NDS_ABI_AABI; val |= E_NDS32_ELF_VER_1_4; break; case bfd_mach_n1h: val = E_N1H_ARCH; break; case bfd_mach_n1h_v2: val = E_NDS_ARCH_STAR_V2_0; break; case bfd_mach_n1h_v3: val = E_NDS_ARCH_STAR_V3_0; break; case bfd_mach_n1h_v3m: val = E_NDS_ARCH_STAR_V3_M; break; default: val = 0; break; } elf_elfheader (abfd)->e_flags &= ~EF_NDS_ARCH; elf_elfheader (abfd)->e_flags |= val; } /* Function to keep NDS32 specific file flags. */ static bfd_boolean nds32_elf_set_private_flags (bfd *abfd, flagword flags) { BFD_ASSERT (!elf_flags_init (abfd) || elf_elfheader (abfd)->e_flags == flags); elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return TRUE; } static unsigned int convert_e_flags (unsigned int e_flags, unsigned int arch) { if ((e_flags & EF_NDS_ARCH) == E_NDS_ARCH_STAR_V0_9) { /* From 0.9 to 1.0. */ e_flags = (e_flags & (~EF_NDS_ARCH)) | E_NDS_ARCH_STAR_V1_0; /* Invert E_NDS32_HAS_NO_MAC_INST. */ e_flags ^= E_NDS32_HAS_NO_MAC_INST; if (arch == E_NDS_ARCH_STAR_V1_0) { /* Done. */ return e_flags; } } /* From 1.0 to 2.0. */ e_flags = (e_flags & (~EF_NDS_ARCH)) | E_NDS_ARCH_STAR_V2_0; /* Clear E_NDS32_HAS_MFUSR_PC_INST. */ e_flags &= ~E_NDS32_HAS_MFUSR_PC_INST; /* Invert E_NDS32_HAS_NO_MAC_INST. */ e_flags ^= E_NDS32_HAS_NO_MAC_INST; return e_flags; } static bfd_boolean nds32_check_vec_size (bfd *ibfd) { static unsigned int nds32_vec_size = 0; asection *sec_t = NULL; bfd_byte *contents = NULL; sec_t = bfd_get_section_by_name (ibfd, ".nds32_e_flags"); if (sec_t && sec_t->size >= 4) { /* Get vec_size in file. */ unsigned int flag_t; nds32_get_section_contents (ibfd, sec_t, &contents, TRUE); flag_t = bfd_get_32 (ibfd, contents); /* The value could only be 4 or 16. */ if (!nds32_vec_size) /* Set if not set yet. */ nds32_vec_size = (flag_t & 0x3); else if (nds32_vec_size != (flag_t & 0x3)) { _bfd_error_handler /* xgettext:c-format */ (_("%B: ISR vector size mismatch" " with previous modules, previous %u-byte, current %u-byte"), ibfd, nds32_vec_size == 1 ? 4 : nds32_vec_size == 2 ? 16 : 0xffffffff, (flag_t & 0x3) == 1 ? 4 : (flag_t & 0x3) == 2 ? 16 : 0xffffffff); return FALSE; } else /* Only keep the first vec_size section. */ sec_t->flags |= SEC_EXCLUDE; } return TRUE; } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean nds32_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) { bfd *obfd = info->output_bfd; flagword out_flags; flagword in_flags; flagword out_16regs; flagword in_no_mac; flagword out_no_mac; flagword in_16regs; flagword out_version; flagword in_version; flagword out_fpu_config; flagword in_fpu_config; /* TODO: Revise to use object-attributes instead. */ if (!nds32_check_vec_size (ibfd)) return FALSE; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; if (bfd_little_endian (ibfd) != bfd_little_endian (obfd)) { _bfd_error_handler (_("%B: warning: Endian mismatch with previous modules."), ibfd); bfd_set_error (bfd_error_bad_value); return FALSE; } in_version = elf_elfheader (ibfd)->e_flags & EF_NDS32_ELF_VERSION; if (in_version == E_NDS32_ELF_VER_1_2) { _bfd_error_handler (_("%B: warning: Older version of object file encountered, " "Please recompile with current tool chain."), ibfd); } /* We may need to merge V1 and V2 arch object files to V2. */ if ((elf_elfheader (ibfd)->e_flags & EF_NDS_ARCH) != (elf_elfheader (obfd)->e_flags & EF_NDS_ARCH)) { /* Need to convert version. */ if ((elf_elfheader (ibfd)->e_flags & EF_NDS_ARCH) == E_NDS_ARCH_STAR_RESERVED) { elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; } else if ((elf_elfheader (obfd)->e_flags & EF_NDS_ARCH) == E_NDS_ARCH_STAR_V0_9 || (elf_elfheader (ibfd)->e_flags & EF_NDS_ARCH) > (elf_elfheader (obfd)->e_flags & EF_NDS_ARCH)) { elf_elfheader (obfd)->e_flags = convert_e_flags (elf_elfheader (obfd)->e_flags, (elf_elfheader (ibfd)->e_flags & EF_NDS_ARCH)); } else { elf_elfheader (ibfd)->e_flags = convert_e_flags (elf_elfheader (ibfd)->e_flags, (elf_elfheader (obfd)->e_flags & EF_NDS_ARCH)); } } /* Extract some flags. */ in_flags = elf_elfheader (ibfd)->e_flags & (~(E_NDS32_HAS_REDUCED_REGS | EF_NDS32_ELF_VERSION | E_NDS32_HAS_NO_MAC_INST | E_NDS32_FPU_REG_CONF)); /* The following flags need special treatment. */ in_16regs = elf_elfheader (ibfd)->e_flags & E_NDS32_HAS_REDUCED_REGS; in_no_mac = elf_elfheader (ibfd)->e_flags & E_NDS32_HAS_NO_MAC_INST; in_fpu_config = elf_elfheader (ibfd)->e_flags & E_NDS32_FPU_REG_CONF; /* Extract some flags. */ out_flags = elf_elfheader (obfd)->e_flags & (~(E_NDS32_HAS_REDUCED_REGS | EF_NDS32_ELF_VERSION | E_NDS32_HAS_NO_MAC_INST | E_NDS32_FPU_REG_CONF)); /* The following flags need special treatment. */ out_16regs = elf_elfheader (obfd)->e_flags & E_NDS32_HAS_REDUCED_REGS; out_no_mac = elf_elfheader (obfd)->e_flags & E_NDS32_HAS_NO_MAC_INST; out_fpu_config = elf_elfheader (obfd)->e_flags & E_NDS32_FPU_REG_CONF; out_version = elf_elfheader (obfd)->e_flags & EF_NDS32_ELF_VERSION; if (!elf_flags_init (obfd)) { /* If the input is the default architecture then do not bother setting the flags for the output architecture, instead allow future merges to do this. If no future merges ever set these flags then they will retain their unitialised values, which surprise surprise, correspond to the default values. */ if (bfd_get_arch_info (ibfd)->the_default) return TRUE; elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) && bfd_get_arch_info (obfd)->the_default) { return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); } return TRUE; } /* Check flag compatibility. */ if ((in_flags & EF_NDS_ABI) != (out_flags & EF_NDS_ABI)) { _bfd_error_handler (_("%B: error: ABI mismatch with previous modules."), ibfd); bfd_set_error (bfd_error_bad_value); return FALSE; } if ((in_flags & EF_NDS_ARCH) != (out_flags & EF_NDS_ARCH)) { if (((in_flags & EF_NDS_ARCH) != E_N1_ARCH)) { _bfd_error_handler (_("%B: error: Instruction set mismatch with previous modules."), ibfd); bfd_set_error (bfd_error_bad_value); return FALSE; } } /* When linking with V1.2 and V1.3 objects together the output is V1.2. and perf ext1 and DIV are mergerd to perf ext1. */ if (in_version == E_NDS32_ELF_VER_1_2 || out_version == E_NDS32_ELF_VER_1_2) { elf_elfheader (obfd)->e_flags = (in_flags & (~(E_NDS32_HAS_EXT_INST | E_NDS32_HAS_DIV_INST))) | (out_flags & (~(E_NDS32_HAS_EXT_INST | E_NDS32_HAS_DIV_INST))) | (((in_flags & (E_NDS32_HAS_EXT_INST | E_NDS32_HAS_DIV_INST))) ? E_NDS32_HAS_EXT_INST : 0) | (((out_flags & (E_NDS32_HAS_EXT_INST | E_NDS32_HAS_DIV_INST))) ? E_NDS32_HAS_EXT_INST : 0) | (in_16regs & out_16regs) | (in_no_mac & out_no_mac) | ((in_version > out_version) ? out_version : in_version); } else { if (in_version != out_version) _bfd_error_handler /* xgettext:c-format */ (_("%B: warning: Incompatible elf-versions %s and %s."), ibfd, nds32_elfver_strtab[out_version], nds32_elfver_strtab[in_version]); elf_elfheader (obfd)->e_flags = in_flags | out_flags | (in_16regs & out_16regs) | (in_no_mac & out_no_mac) | (in_fpu_config > out_fpu_config ? in_fpu_config : out_fpu_config) | (in_version > out_version ? out_version : in_version); } return TRUE; } /* Display the flags field. */ static bfd_boolean nds32_elf_print_private_bfd_data (bfd *abfd, void *ptr) { FILE *file = (FILE *) ptr; BFD_ASSERT (abfd != NULL && ptr != NULL); _bfd_elf_print_private_bfd_data (abfd, ptr); fprintf (file, _("private flags = %lx"), elf_elfheader (abfd)->e_flags); switch (elf_elfheader (abfd)->e_flags & EF_NDS_ARCH) { default: case E_N1_ARCH: fprintf (file, _(": n1 instructions")); break; case E_N1H_ARCH: fprintf (file, _(": n1h instructions")); break; } fputc ('\n', file); return TRUE; } static unsigned int nds32_elf_action_discarded (asection *sec) { if (strncmp (".gcc_except_table", sec->name, sizeof (".gcc_except_table") - 1) == 0) return 0; return _bfd_elf_default_action_discarded (sec); } static asection * nds32_elf_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELF32_R_TYPE (rel->r_info)) { case R_NDS32_GNU_VTINHERIT: case R_NDS32_GNU_VTENTRY: case R_NDS32_RELA_GNU_VTINHERIT: case R_NDS32_RELA_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } static bfd_boolean nds32_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { /* Update the got entry reference counts for the section being removed. */ Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; elf_section_data (sec)->local_dynrel = NULL; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h = NULL; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { /* External symbol. */ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } switch (ELF32_R_TYPE (rel->r_info)) { case R_NDS32_GOT_HI20: case R_NDS32_GOT_LO12: case R_NDS32_GOT_LO15: case R_NDS32_GOT_LO19: case R_NDS32_GOT17S2_RELA: case R_NDS32_GOT15S2_RELA: case R_NDS32_GOTOFF: case R_NDS32_GOTOFF_HI20: case R_NDS32_GOTOFF_LO12: case R_NDS32_GOTOFF_LO15: case R_NDS32_GOTOFF_LO19: case R_NDS32_GOT20: case R_NDS32_GOTPC_HI20: case R_NDS32_GOTPC_LO12: case R_NDS32_GOTPC20: if (h != NULL) { if (h->got.refcount > 0) h->got.refcount--; } else { if (local_got_refcounts && local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx]--; } break; case R_NDS32_16_RELA: case R_NDS32_20_RELA: case R_NDS32_5_RELA: case R_NDS32_32_RELA: case R_NDS32_HI20_RELA: case R_NDS32_LO12S3_RELA: case R_NDS32_LO12S2_RELA: case R_NDS32_LO12S2_DP_RELA: case R_NDS32_LO12S2_SP_RELA: case R_NDS32_LO12S1_RELA: case R_NDS32_LO12S0_RELA: case R_NDS32_LO12S0_ORI_RELA: case R_NDS32_SDA16S3_RELA: case R_NDS32_SDA17S2_RELA: case R_NDS32_SDA18S1_RELA: case R_NDS32_SDA19S0_RELA: case R_NDS32_SDA15S3_RELA: case R_NDS32_SDA15S2_RELA: case R_NDS32_SDA12S2_DP_RELA: case R_NDS32_SDA12S2_SP_RELA: case R_NDS32_SDA15S1_RELA: case R_NDS32_SDA15S0_RELA: case R_NDS32_SDA_FP7U2_RELA: case R_NDS32_15_PCREL_RELA: case R_NDS32_17_PCREL_RELA: case R_NDS32_25_PCREL_RELA: if (h != NULL) { struct elf_nds32_link_hash_entry *eh; struct elf_nds32_dyn_relocs **pp; struct elf_nds32_dyn_relocs *p; if (!bfd_link_pic (info) && h->plt.refcount > 0) h->plt.refcount -= 1; eh = (struct elf_nds32_link_hash_entry *) h; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { if (ELF32_R_TYPE (rel->r_info) == R_NDS32_15_PCREL_RELA || ELF32_R_TYPE (rel->r_info) == R_NDS32_17_PCREL_RELA || ELF32_R_TYPE (rel->r_info) == R_NDS32_25_PCREL_RELA) p->pc_count -= 1; p->count -= 1; if (p->count == 0) *pp = p->next; break; } } break; case R_NDS32_9_PLTREL: case R_NDS32_25_PLTREL: if (h != NULL) { if (h->plt.refcount > 0) h->plt.refcount--; } break; default: break; } } return TRUE; } /* Look through the relocs for a section during the first phase. Since we don't do .gots or .plts, we just need to consider the virtual table relocs for gc. */ static bfd_boolean nds32_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; struct elf_nds32_link_hash_table *htab; bfd *dynobj; asection *sreloc = NULL; if (bfd_link_relocatable (info)) return TRUE; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym); if (!elf_bad_symtab (abfd)) sym_hashes_end -= symtab_hdr->sh_info; htab = nds32_elf_hash_table (info); dynobj = htab->root.dynobj; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { enum elf_nds32_reloc_type r_type; struct elf_link_hash_entry *h; unsigned long r_symndx; int tls_type, old_tls_type; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } /* Some relocs require a global offset table. We create got section here, since these relocation need got section and it is not created yet. */ if (htab->root.sgot == NULL) { switch (r_type) { case R_NDS32_GOT_HI20: case R_NDS32_GOT_LO12: case R_NDS32_GOT_LO15: case R_NDS32_GOT_LO19: case R_NDS32_GOT17S2_RELA: case R_NDS32_GOT15S2_RELA: case R_NDS32_GOTOFF: case R_NDS32_GOTOFF_HI20: case R_NDS32_GOTOFF_LO12: case R_NDS32_GOTOFF_LO15: case R_NDS32_GOTOFF_LO19: case R_NDS32_GOTPC20: case R_NDS32_GOTPC_HI20: case R_NDS32_GOTPC_LO12: case R_NDS32_GOT20: case R_NDS32_TLS_IE_HI20: case R_NDS32_TLS_IE_LO12S2: if (dynobj == NULL) htab->root.dynobj = dynobj = abfd; if (!_bfd_elf_create_got_section (dynobj, info)) return FALSE; break; default: break; } } switch ((int) r_type) { case R_NDS32_GOT_HI20: case R_NDS32_GOT_LO12: case R_NDS32_GOT_LO15: case R_NDS32_GOT_LO19: case R_NDS32_GOT20: case R_NDS32_TLS_IE_HI20: case R_NDS32_TLS_IE_LO12S2: switch (r_type) { case R_NDS32_TLS_IE_HI20: case R_NDS32_TLS_IE_LO12S2: tls_type = GOT_TLS_IE; break; default: tls_type = GOT_NORMAL; break; } if (h != NULL) { old_tls_type = elf32_nds32_hash_entry (h)->tls_type; h->got.refcount += 1; } else { bfd_signed_vma *local_got_refcounts; /* This is a global offset table entry for a local symbol. */ local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; size = symtab_hdr->sh_info; size *= sizeof (bfd_signed_vma); local_got_refcounts = (bfd_signed_vma *) bfd_zalloc (abfd, size); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; } local_got_refcounts[r_symndx] += 1; old_tls_type = elf32_nds32_local_got_tls_type (abfd)[r_symndx]; } /* We will already have issued an error message if there is a TLS/non-TLS mismatch, based on the symbol type. So just combine any TLS types needed. */ if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL && tls_type != GOT_NORMAL) tls_type |= old_tls_type; if (old_tls_type != tls_type) { if (h != NULL) elf32_nds32_hash_entry (h)->tls_type = tls_type; else elf32_nds32_local_got_tls_type (abfd)[r_symndx] = tls_type; } break; case R_NDS32_9_PLTREL: case R_NDS32_25_PLTREL: case R_NDS32_PLTREL_HI20: case R_NDS32_PLTREL_LO12: case R_NDS32_PLT_GOTREL_HI20: case R_NDS32_PLT_GOTREL_LO12: case R_NDS32_PLT_GOTREL_LO15: case R_NDS32_PLT_GOTREL_LO19: case R_NDS32_PLT_GOTREL_LO20: /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code without linking in any dynamic objects, in which case we don't need to generate a procedure linkage table after all. */ /* If this is a local symbol, we resolve it directly without creating a procedure linkage table entry. */ if (h == NULL) continue; if (h->forced_local) break; elf32_nds32_hash_entry (h)->tls_type = GOT_NORMAL; h->needs_plt = 1; h->plt.refcount += 1; break; case R_NDS32_16_RELA: case R_NDS32_20_RELA: case R_NDS32_5_RELA: case R_NDS32_32_RELA: case R_NDS32_HI20_RELA: case R_NDS32_LO12S3_RELA: case R_NDS32_LO12S2_RELA: case R_NDS32_LO12S2_DP_RELA: case R_NDS32_LO12S2_SP_RELA: case R_NDS32_LO12S1_RELA: case R_NDS32_LO12S0_RELA: case R_NDS32_LO12S0_ORI_RELA: case R_NDS32_SDA16S3_RELA: case R_NDS32_SDA17S2_RELA: case R_NDS32_SDA18S1_RELA: case R_NDS32_SDA19S0_RELA: case R_NDS32_SDA15S3_RELA: case R_NDS32_SDA15S2_RELA: case R_NDS32_SDA12S2_DP_RELA: case R_NDS32_SDA12S2_SP_RELA: case R_NDS32_SDA15S1_RELA: case R_NDS32_SDA15S0_RELA: case R_NDS32_SDA_FP7U2_RELA: case R_NDS32_15_PCREL_RELA: case R_NDS32_17_PCREL_RELA: case R_NDS32_25_PCREL_RELA: if (h != NULL && !bfd_link_pic (info)) { h->non_got_ref = 1; h->plt.refcount += 1; } /* If we are creating a shared library, and this is a reloc against a global symbol, or a non PC relative reloc against a local symbol, then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we do not need to copy a reloc against a global symbol which is defined in an object we are including in the link (i.e., DEF_REGULAR is set). At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). We account for that possibility below by storing information in the dyn_relocs field of the hash table entry. A similar situation occurs when creating shared libraries and symbol visibility changes render the symbol local. If on the other hand, we are creating an executable, we may need to keep relocations for symbols satisfied by a dynamic library if we manage to avoid copy relocs for the symbol. */ if ((bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0 && ((r_type != R_NDS32_25_PCREL_RELA && r_type != R_NDS32_15_PCREL_RELA && r_type != R_NDS32_17_PCREL_RELA && !(r_type == R_NDS32_32_RELA && strcmp (sec->name, ".eh_frame") == 0)) || (h != NULL && (!info->symbolic || h->root.type == bfd_link_hash_defweak || !h->def_regular)))) || (!bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0 && h != NULL && (h->root.type == bfd_link_hash_defweak || !h->def_regular))) { struct elf_nds32_dyn_relocs *p; struct elf_nds32_dyn_relocs **head; if (dynobj == NULL) htab->root.dynobj = dynobj = abfd; /* When creating a shared object, we must copy these relocs into the output file. We create a reloc section in dynobj and make room for the reloc. */ if (sreloc == NULL) { const char *name; name = bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rela.hdr->sh_name); if (name == NULL) return FALSE; BFD_ASSERT (strncmp (name, ".rela", 5) == 0 && strcmp (bfd_get_section_name (abfd, sec), name + 5) == 0); sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { flagword flags; sreloc = bfd_make_section (dynobj, name); flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED); if ((sec->flags & SEC_ALLOC) != 0) flags |= SEC_ALLOC | SEC_LOAD; if (sreloc == NULL || !bfd_set_section_flags (dynobj, sreloc, flags) || !bfd_set_section_alignment (dynobj, sreloc, 2)) return FALSE; elf_section_type (sreloc) = SHT_RELA; } elf_section_data (sec)->sreloc = sreloc; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) head = &((struct elf_nds32_link_hash_entry *) h)->dyn_relocs; else { asection *s; void *vpp; Elf_Internal_Sym *isym; isym = bfd_sym_from_r_symndx (&htab->sym_cache, abfd, r_symndx); if (isym == NULL) return FALSE; /* Track dynamic relocs needed for local syms too. */ s = bfd_section_from_elf_index (abfd, isym->st_shndx); if (s == NULL) return FALSE; vpp = &elf_section_data (s)->local_dynrel; head = (struct elf_nds32_dyn_relocs **) vpp; } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof (*p); p = (struct elf_nds32_dyn_relocs *) bfd_alloc (dynobj, amt); if (p == NULL) return FALSE; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } p->count += 1; if (ELF32_R_TYPE (rel->r_info) == R_NDS32_25_PCREL_RELA || ELF32_R_TYPE (rel->r_info) == R_NDS32_15_PCREL_RELA || ELF32_R_TYPE (rel->r_info) == R_NDS32_17_PCREL_RELA) p->pc_count += 1; } break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_NDS32_RELA_GNU_VTINHERIT: case R_NDS32_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_NDS32_GNU_VTENTRY: if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) return FALSE; break; case R_NDS32_RELA_GNU_VTENTRY: if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; } } return TRUE; } /* Write VAL in uleb128 format to P, returning a pointer to the following byte. This code is copied from elf-attr.c. */ static bfd_byte * write_uleb128 (bfd_byte *p, unsigned int val) { bfd_byte c; do { c = val & 0x7f; val >>= 7; if (val) c |= 0x80; *(p++) = c; } while (val); return p; } static bfd_signed_vma calculate_offset (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr, int *pic_ext_target) { bfd_signed_vma foff; bfd_vma symval, addend; asection *sym_sec; /* Get the value of the symbol referred to by the reloc. */ if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) { Elf_Internal_Sym *isym; /* A local symbol. */ isym = isymbuf + ELF32_R_SYM (irel->r_info); if (isym->st_shndx == SHN_UNDEF) sym_sec = bfd_und_section_ptr; else if (isym->st_shndx == SHN_ABS) sym_sec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) sym_sec = bfd_com_section_ptr; else sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); symval = isym->st_value + sym_sec->output_section->vma + sym_sec->output_offset; } else { unsigned long indx; struct elf_link_hash_entry *h; bfd *owner; /* An external symbol. */ indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); if (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) /* This appears to be a reference to an undefined symbol. Just ignore it--it will be caught by the regular reloc processing. */ return 0; owner = h->root.u.def.section->owner; if (owner && (elf_elfheader (owner)->e_flags & E_NDS32_HAS_PIC)) *pic_ext_target = 1; if (h->root.u.def.section->flags & SEC_MERGE) { sym_sec = h->root.u.def.section; symval = _bfd_merged_section_offset (abfd, &sym_sec, elf_section_data (sym_sec)->sec_info, h->root.u.def.value); symval = symval + sym_sec->output_section->vma + sym_sec->output_offset; } else symval = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } addend = irel->r_addend; foff = (symval + addend - (irel->r_offset + sec->output_section->vma + sec->output_offset)); return foff; } static bfd_vma calculate_plt_memory_address (bfd *abfd, struct bfd_link_info *link_info, Elf_Internal_Sym *isymbuf, Elf_Internal_Rela *irel, Elf_Internal_Shdr *symtab_hdr) { bfd_vma symval; if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) { Elf_Internal_Sym *isym; asection *sym_sec; /* A local symbol. */ isym = isymbuf + ELF32_R_SYM (irel->r_info); if (isym->st_shndx == SHN_UNDEF) sym_sec = bfd_und_section_ptr; else if (isym->st_shndx == SHN_ABS) sym_sec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) sym_sec = bfd_com_section_ptr; else sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); symval = isym->st_value + sym_sec->output_section->vma + sym_sec->output_offset; } else { unsigned long indx; struct elf_link_hash_entry *h; struct elf_nds32_link_hash_table *htab; asection *splt; /* An external symbol. */ indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); htab = nds32_elf_hash_table (link_info); splt = htab->root.splt; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; if (h->plt.offset == (bfd_vma) - 1) { if (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) /* This appears to be a reference to an undefined * symbol. Just ignore it--it will be caught by the * regular reloc processing. */ return 0; symval = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else symval = splt->output_section->vma + h->plt.offset; } return symval; } static bfd_signed_vma calculate_plt_offset (bfd *abfd, asection *sec, struct bfd_link_info *link_info, Elf_Internal_Sym *isymbuf, Elf_Internal_Rela *irel, Elf_Internal_Shdr *symtab_hdr) { bfd_vma foff; if ((foff = calculate_plt_memory_address (abfd, link_info, isymbuf, irel, symtab_hdr)) == 0) return 0; else return foff - (irel->r_offset + sec->output_section->vma + sec->output_offset); } /* Convert a 32-bit instruction to 16-bit one. INSN is the input 32-bit instruction, INSN16 is the output 16-bit instruction. If INSN_TYPE is not NULL, it the CGEN instruction type of INSN16. Return 1 if successful. */ static int nds32_convert_32_to_16_alu1 (bfd *abfd, uint32_t insn, uint16_t *pinsn16, int *pinsn_type) { uint16_t insn16 = 0; int insn_type = 0; unsigned long mach = bfd_get_mach (abfd); if (N32_SH5 (insn) != 0) return 0; switch (N32_SUB5 (insn)) { case N32_ALU1_ADD_SLLI: case N32_ALU1_ADD_SRLI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_IS_RB3 (insn)) { insn16 = N16_TYPE333 (ADD333, N32_RT5 (insn), N32_RA5 (insn), N32_RB5 (insn)); insn_type = NDS32_INSN_ADD333; } else if (N32_IS_RT4 (insn)) { if (N32_RT5 (insn) == N32_RA5 (insn)) insn16 = N16_TYPE45 (ADD45, N32_RT54 (insn), N32_RB5 (insn)); else if (N32_RT5 (insn) == N32_RB5 (insn)) insn16 = N16_TYPE45 (ADD45, N32_RT54 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_ADD45; } break; case N32_ALU1_SUB_SLLI: case N32_ALU1_SUB_SRLI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_IS_RB3 (insn)) { insn16 = N16_TYPE333 (SUB333, N32_RT5 (insn), N32_RA5 (insn), N32_RB5 (insn)); insn_type = NDS32_INSN_SUB333; } else if (N32_IS_RT4 (insn) && N32_RT5 (insn) == N32_RA5 (insn)) { insn16 = N16_TYPE45 (SUB45, N32_RT54 (insn), N32_RB5 (insn)); insn_type = NDS32_INSN_SUB45; } break; case N32_ALU1_AND_SLLI: case N32_ALU1_AND_SRLI: /* and $rt, $rt, $rb -> and33 for v3, v3m. */ if (mach >= MACH_V3 && N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_IS_RB3 (insn)) { if (N32_RT5 (insn) == N32_RA5 (insn)) insn16 = N16_MISC33 (AND33, N32_RT5 (insn), N32_RB5 (insn)); else if (N32_RT5 (insn) == N32_RB5 (insn)) insn16 = N16_MISC33 (AND33, N32_RT5 (insn), N32_RA5 (insn)); if (insn16) insn_type = NDS32_INSN_AND33; } break; case N32_ALU1_XOR_SLLI: case N32_ALU1_XOR_SRLI: /* xor $rt, $rt, $rb -> xor33 for v3, v3m. */ if (mach >= MACH_V3 && N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_IS_RB3 (insn)) { if (N32_RT5 (insn) == N32_RA5 (insn)) insn16 = N16_MISC33 (XOR33, N32_RT5 (insn), N32_RB5 (insn)); else if (N32_RT5 (insn) == N32_RB5 (insn)) insn16 = N16_MISC33 (XOR33, N32_RT5 (insn), N32_RA5 (insn)); if (insn16) insn_type = NDS32_INSN_XOR33; } break; case N32_ALU1_OR_SLLI: case N32_ALU1_OR_SRLI: /* or $rt, $rt, $rb -> or33 for v3, v3m. */ if (mach >= MACH_V3 && N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_IS_RB3 (insn)) { if (N32_RT5 (insn) == N32_RA5 (insn)) insn16 = N16_MISC33 (OR33, N32_RT5 (insn), N32_RB5 (insn)); else if (N32_RT5 (insn) == N32_RB5 (insn)) insn16 = N16_MISC33 (OR33, N32_RT5 (insn), N32_RA5 (insn)); if (insn16) insn_type = NDS32_INSN_OR33; } break; case N32_ALU1_NOR: /* nor $rt, $ra, $ra -> not33 for v3, v3m. */ if (mach >= MACH_V3 && N32_IS_RT3 (insn) && N32_IS_RB3 (insn) && N32_RA5 (insn) == N32_RB5 (insn)) { insn16 = N16_MISC33 (NOT33, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_NOT33; } break; case N32_ALU1_SRAI: if (N32_IS_RT4 (insn) && N32_RT5 (insn) == N32_RA5 (insn)) { insn16 = N16_TYPE45 (SRAI45, N32_RT54 (insn), N32_UB5 (insn)); insn_type = NDS32_INSN_SRAI45; } break; case N32_ALU1_SRLI: if (N32_IS_RT4 (insn) && N32_RT5 (insn) == N32_RA5 (insn)) { insn16 = N16_TYPE45 (SRLI45, N32_RT54 (insn), N32_UB5 (insn)); insn_type = NDS32_INSN_SRLI45; } break; case N32_ALU1_SLLI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_UB5 (insn) < 8) { insn16 = N16_TYPE333 (SLLI333, N32_RT5 (insn), N32_RA5 (insn), N32_UB5 (insn)); insn_type = NDS32_INSN_SLLI333; } break; case N32_ALU1_ZEH: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn)) { insn16 = N16_BFMI333 (ZEH33, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_ZEH33; } break; case N32_ALU1_SEB: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn)) { insn16 = N16_BFMI333 (SEB33, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_SEB33; } break; case N32_ALU1_SEH: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn)) { insn16 = N16_BFMI333 (SEH33, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_SEH33; } break; case N32_ALU1_SLT: if (N32_RT5 (insn) == REG_R15 && N32_IS_RA4 (insn)) { /* Implicit r15. */ insn16 = N16_TYPE45 (SLT45, N32_RA54 (insn), N32_RB5 (insn)); insn_type = NDS32_INSN_SLT45; } break; case N32_ALU1_SLTS: if (N32_RT5 (insn) == REG_R15 && N32_IS_RA4 (insn)) { /* Implicit r15. */ insn16 = N16_TYPE45 (SLTS45, N32_RA54 (insn), N32_RB5 (insn)); insn_type = NDS32_INSN_SLTS45; } break; } if ((insn16 & 0x8000) == 0) return 0; if (pinsn16) *pinsn16 = insn16; if (pinsn_type) *pinsn_type = insn_type; return 1; } static int nds32_convert_32_to_16_alu2 (bfd *abfd, uint32_t insn, uint16_t *pinsn16, int *pinsn_type) { uint16_t insn16 = 0; int insn_type; unsigned long mach = bfd_get_mach (abfd); /* TODO: bset, bclr, btgl, btst. */ if (__GF (insn, 6, 4) != 0) return 0; switch (N32_IMMU (insn, 6)) { case N32_ALU2_MUL: if (mach >= MACH_V3 && N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_IS_RB3 (insn)) { if (N32_RT5 (insn) == N32_RA5 (insn)) insn16 = N16_MISC33 (MUL33, N32_RT5 (insn), N32_RB5 (insn)); else if (N32_RT5 (insn) == N32_RB5 (insn)) insn16 = N16_MISC33 (MUL33, N32_RT5 (insn), N32_RA5 (insn)); if (insn16) insn_type = NDS32_INSN_MUL33; } } if ((insn16 & 0x8000) == 0) return 0; if (pinsn16) *pinsn16 = insn16; if (pinsn_type) *pinsn_type = insn_type; return 1; } int nds32_convert_32_to_16 (bfd *abfd, uint32_t insn, uint16_t *pinsn16, int *pinsn_type) { int op6; uint16_t insn16 = 0; int insn_type; unsigned long mach = bfd_get_mach (abfd); /* Decode 32-bit instruction. */ if (insn & 0x80000000) { /* Not 32-bit insn. */ return 0; } op6 = N32_OP6 (insn); /* Convert it to 16-bit instruction. */ switch (op6) { case N32_OP6_MOVI: if (IS_WITHIN_S (N32_IMM20S (insn), 5)) { insn16 = N16_TYPE55 (MOVI55, N32_RT5 (insn), N32_IMM20S (insn)); insn_type = NDS32_INSN_MOVI55; } else if (mach >= MACH_V3 && N32_IMM20S (insn) >= 16 && N32_IMM20S (insn) < 48 && N32_IS_RT4 (insn)) { insn16 = N16_TYPE45 (MOVPI45, N32_RT54 (insn), N32_IMM20S (insn) - 16); insn_type = NDS32_INSN_MOVPI45; } break; case N32_OP6_ADDI: if (N32_IMM15S (insn) == 0) { /* Do not convert `addi $sp, $sp, 0' to `mov55 $sp, $sp', because `mov55 $sp, $sp' is ifret16 in V3 ISA. */ if (mach <= MACH_V2 || N32_RT5 (insn) != REG_SP || N32_RA5 (insn) != REG_SP) { insn16 = N16_TYPE55 (MOV55, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_MOV55; } } else if (N32_IMM15S (insn) > 0) { if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_IMM15S (insn) < 8) { insn16 = N16_TYPE333 (ADDI333, N32_RT5 (insn), N32_RA5 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_ADDI333; } else if (N32_IS_RT4 (insn) && N32_RT5 (insn) == N32_RA5 (insn) && N32_IMM15S (insn) < 32) { insn16 = N16_TYPE45 (ADDI45, N32_RT54 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_ADDI45; } else if (mach >= MACH_V2 && N32_RT5 (insn) == REG_SP && N32_RT5 (insn) == N32_RA5 (insn) && N32_IMM15S (insn) < 512) { insn16 = N16_TYPE10 (ADDI10S, N32_IMM15S (insn)); insn_type = NDS32_INSN_ADDI10_SP; } else if (mach >= MACH_V3 && N32_IS_RT3 (insn) && N32_RA5 (insn) == REG_SP && N32_IMM15S (insn) < 256 && (N32_IMM15S (insn) % 4 == 0)) { insn16 = N16_TYPE36 (ADDRI36_SP, N32_RT5 (insn), N32_IMM15S (insn) >> 2); insn_type = NDS32_INSN_ADDRI36_SP; } } else { /* Less than 0. */ if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_IMM15S (insn) > -8) { insn16 = N16_TYPE333 (SUBI333, N32_RT5 (insn), N32_RA5 (insn), 0 - N32_IMM15S (insn)); insn_type = NDS32_INSN_SUBI333; } else if (N32_IS_RT4 (insn) && N32_RT5 (insn) == N32_RA5 (insn) && N32_IMM15S (insn) > -32) { insn16 = N16_TYPE45 (SUBI45, N32_RT54 (insn), 0 - N32_IMM15S (insn)); insn_type = NDS32_INSN_SUBI45; } else if (mach >= MACH_V2 && N32_RT5 (insn) == REG_SP && N32_RT5 (insn) == N32_RA5 (insn) && N32_IMM15S (insn) >= -512) { insn16 = N16_TYPE10 (ADDI10S, N32_IMM15S (insn)); insn_type = NDS32_INSN_ADDI10_SP; } } break; case N32_OP6_ORI: if (N32_IMM15S (insn) == 0) { /* Do not convert `ori $sp, $sp, 0' to `mov55 $sp, $sp', because `mov55 $sp, $sp' is ifret16 in V3 ISA. */ if (mach <= MACH_V2 || N32_RT5 (insn) != REG_SP || N32_RA5 (insn) != REG_SP) { insn16 = N16_TYPE55 (MOV55, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_MOV55; } } break; case N32_OP6_SUBRI: if (mach >= MACH_V3 && N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && N32_IMM15S (insn) == 0) { insn16 = N16_MISC33 (NEG33, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_NEG33; } break; case N32_OP6_ANDI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn)) { if (N32_IMM15U (insn) == 1) { insn16 = N16_BFMI333 (XLSB33, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_XLSB33; } else if (N32_IMM15U (insn) == 0x7ff) { insn16 = N16_BFMI333 (X11B33, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_X11B33; } else if (N32_IMM15U (insn) == 0xff) { insn16 = N16_BFMI333 (ZEB33, N32_RT5 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_ZEB33; } else if (mach >= MACH_V3 && N32_RT5 (insn) == N32_RA5 (insn) && N32_IMM15U (insn) < 256) { int imm15u = N32_IMM15U (insn); if (__builtin_popcount (imm15u) == 1) { /* BMSKI33 */ int imm3u = __builtin_ctz (imm15u); insn16 = N16_BFMI333 (BMSKI33, N32_RT5 (insn), imm3u); insn_type = NDS32_INSN_BMSKI33; } else if (imm15u != 0 && __builtin_popcount (imm15u + 1) == 1) { /* FEXTI33 */ int imm3u = __builtin_ctz (imm15u + 1) - 1; insn16 = N16_BFMI333 (FEXTI33, N32_RT5 (insn), imm3u); insn_type = NDS32_INSN_FEXTI33; } } } break; case N32_OP6_SLTI: if (N32_RT5 (insn) == REG_R15 && N32_IS_RA4 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 5)) { insn16 = N16_TYPE45 (SLTI45, N32_RA54 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_SLTI45; } break; case N32_OP6_SLTSI: if (N32_RT5 (insn) == REG_R15 && N32_IS_RA4 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 5)) { insn16 = N16_TYPE45 (SLTSI45, N32_RA54 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_SLTSI45; } break; case N32_OP6_LWI: if (N32_IS_RT4 (insn) && N32_IMM15S (insn) == 0) { insn16 = N16_TYPE45 (LWI450, N32_RT54 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_LWI450; } else if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 3)) { insn16 = N16_TYPE333 (LWI333, N32_RT5 (insn), N32_RA5 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_LWI333; } else if (N32_IS_RT3 (insn) && N32_RA5 (insn) == REG_FP && IS_WITHIN_U (N32_IMM15S (insn), 7)) { insn16 = N16_TYPE37 (XWI37, N32_RT5 (insn), 0, N32_IMM15S (insn)); insn_type = NDS32_INSN_LWI37; } else if (mach >= MACH_V2 && N32_IS_RT3 (insn) && N32_RA5 (insn) == REG_SP && IS_WITHIN_U (N32_IMM15S (insn), 7)) { insn16 = N16_TYPE37 (XWI37SP, N32_RT5 (insn), 0, N32_IMM15S (insn)); insn_type = NDS32_INSN_LWI37_SP; } else if (mach >= MACH_V2 && N32_IS_RT4 (insn) && N32_RA5 (insn) == REG_R8 && -32 <= N32_IMM15S (insn) && N32_IMM15S (insn) < 0) { insn16 = N16_TYPE45 (LWI45_FE, N32_RT54 (insn), N32_IMM15S (insn) + 32); insn_type = NDS32_INSN_LWI45_FE; } break; case N32_OP6_SWI: if (N32_IS_RT4 (insn) && N32_IMM15S (insn) == 0) { insn16 = N16_TYPE45 (SWI450, N32_RT54 (insn), N32_RA5 (insn)); insn_type = NDS32_INSN_SWI450; } else if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 3)) { insn16 = N16_TYPE333 (SWI333, N32_RT5 (insn), N32_RA5 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_SWI333; } else if (N32_IS_RT3 (insn) && N32_RA5 (insn) == REG_FP && IS_WITHIN_U (N32_IMM15S (insn), 7)) { insn16 = N16_TYPE37 (XWI37, N32_RT5 (insn), 1, N32_IMM15S (insn)); insn_type = NDS32_INSN_SWI37; } else if (mach >= MACH_V2 && N32_IS_RT3 (insn) && N32_RA5 (insn) == REG_SP && IS_WITHIN_U (N32_IMM15S (insn), 7)) { insn16 = N16_TYPE37 (XWI37SP, N32_RT5 (insn), 1, N32_IMM15S (insn)); insn_type = NDS32_INSN_SWI37_SP; } break; case N32_OP6_LWI_BI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 3)) { insn16 = N16_TYPE333 (LWI333_BI, N32_RT5 (insn), N32_RA5 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_LWI333_BI; } break; case N32_OP6_SWI_BI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 3)) { insn16 = N16_TYPE333 (SWI333_BI, N32_RT5 (insn), N32_RA5 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_SWI333_BI; } break; case N32_OP6_LHI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 3)) { insn16 = N16_TYPE333 (LHI333, N32_RT5 (insn), N32_RA5 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_LHI333; } break; case N32_OP6_SHI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 3)) { insn16 = N16_TYPE333 (SHI333, N32_RT5 (insn), N32_RA5 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_SHI333; } break; case N32_OP6_LBI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 3)) { insn16 = N16_TYPE333 (LBI333, N32_RT5 (insn), N32_RA5 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_LBI333; } break; case N32_OP6_SBI: if (N32_IS_RT3 (insn) && N32_IS_RA3 (insn) && IS_WITHIN_U (N32_IMM15S (insn), 3)) { insn16 = N16_TYPE333 (SBI333, N32_RT5 (insn), N32_RA5 (insn), N32_IMM15S (insn)); insn_type = NDS32_INSN_SBI333; } break; case N32_OP6_ALU1: return nds32_convert_32_to_16_alu1 (abfd, insn, pinsn16, pinsn_type); case N32_OP6_ALU2: return nds32_convert_32_to_16_alu2 (abfd, insn, pinsn16, pinsn_type); case N32_OP6_BR1: if (!IS_WITHIN_S (N32_IMM14S (insn), 8)) goto done; if ((insn & __BIT (14)) == 0) { /* N32_BR1_BEQ */ if (N32_IS_RT3 (insn) && N32_RA5 (insn) == REG_R5 && N32_RT5 (insn) != REG_R5) insn16 = N16_TYPE38 (BEQS38, N32_RT5 (insn), N32_IMM14S (insn)); else if (N32_IS_RA3 (insn) && N32_RT5 (insn) == REG_R5 && N32_RA5 (insn) != REG_R5) insn16 = N16_TYPE38 (BEQS38, N32_RA5 (insn), N32_IMM14S (insn)); insn_type = NDS32_INSN_BEQS38; break; } else { /* N32_BR1_BNE */ if (N32_IS_RT3 (insn) && N32_RA5 (insn) == REG_R5 && N32_RT5 (insn) != REG_R5) insn16 = N16_TYPE38 (BNES38, N32_RT5 (insn), N32_IMM14S (insn)); else if (N32_IS_RA3 (insn) && N32_RT5 (insn) == REG_R5 && N32_RA5 (insn) != REG_R5) insn16 = N16_TYPE38 (BNES38, N32_RA5 (insn), N32_IMM14S (insn)); insn_type = NDS32_INSN_BNES38; break; } break; case N32_OP6_BR2: switch (N32_BR2_SUB (insn)) { case N32_BR2_BEQZ: if (N32_IS_RT3 (insn) && IS_WITHIN_S (N32_IMM16S (insn), 8)) { insn16 = N16_TYPE38 (BEQZ38, N32_RT5 (insn), N32_IMM16S (insn)); insn_type = NDS32_INSN_BEQZ38; } else if (N32_RT5 (insn) == REG_R15 && IS_WITHIN_S (N32_IMM16S (insn), 8)) { insn16 = N16_TYPE8 (BEQZS8, N32_IMM16S (insn)); insn_type = NDS32_INSN_BEQZS8; } break; case N32_BR2_BNEZ: if (N32_IS_RT3 (insn) && IS_WITHIN_S (N32_IMM16S (insn), 8)) { insn16 = N16_TYPE38 (BNEZ38, N32_RT5 (insn), N32_IMM16S (insn)); insn_type = NDS32_INSN_BNEZ38; } else if (N32_RT5 (insn) == REG_R15 && IS_WITHIN_S (N32_IMM16S (insn), 8)) { insn16 = N16_TYPE8 (BNEZS8, N32_IMM16S (insn)); insn_type = NDS32_INSN_BNEZS8; } break; case N32_BR2_IFCALL: if (IS_WITHIN_U (N32_IMM16S (insn), 9)) { insn16 = N16_TYPE9 (IFCALL9, N32_IMM16S (insn)); insn_type = NDS32_INSN_IFCALL9; } break; } break; case N32_OP6_JI: if ((insn & __BIT (24)) == 0) { /* N32_JI_J */ if (IS_WITHIN_S (N32_IMM24S (insn), 8)) { insn16 = N16_TYPE8 (J8, N32_IMM24S (insn)); insn_type = NDS32_INSN_J8; } } break; case N32_OP6_JREG: if (__GF (insn, 8, 2) != 0) goto done; switch (N32_IMMU (insn, 5)) { case N32_JREG_JR: if (N32_JREG_HINT (insn) == 0) { /* jr */ insn16 = N16_TYPE5 (JR5, N32_RB5 (insn)); insn_type = NDS32_INSN_JR5; } else if (N32_JREG_HINT (insn) == 1) { /* ret */ insn16 = N16_TYPE5 (RET5, N32_RB5 (insn)); insn_type = NDS32_INSN_RET5; } else if (N32_JREG_HINT (insn) == 3) { /* ifret = mov55 $sp, $sp */ insn16 = N16_TYPE55 (MOV55, REG_SP, REG_SP); insn_type = NDS32_INSN_IFRET; } break; case N32_JREG_JRAL: /* It's convertible when return rt5 is $lp and address translation is kept. */ if (N32_RT5 (insn) == REG_LP && N32_JREG_HINT (insn) == 0) { insn16 = N16_TYPE5 (JRAL5, N32_RB5 (insn)); insn_type = NDS32_INSN_JRAL5; } break; } break; case N32_OP6_MISC: if (N32_SUB5 (insn) == N32_MISC_BREAK && N32_SWID (insn) < 32) { /* For v3, swid above 31 are used for ex9.it. */ insn16 = N16_TYPE5 (BREAK16, N32_SWID (insn)); insn_type = NDS32_INSN_BREAK16; } break; default: /* This instruction has no 16-bit variant. */ goto done; } done: /* Bit-15 of insn16 should be set for a valid instruction. */ if ((insn16 & 0x8000) == 0) return 0; if (pinsn16) *pinsn16 = insn16; if (pinsn_type) *pinsn_type = insn_type; return 1; } static int special_convert_32_to_16 (unsigned long insn, uint16_t *pinsn16, Elf_Internal_Rela *reloc) { uint16_t insn16 = 0; if ((reloc->r_addend & R_NDS32_INSN16_FP7U2_FLAG) == 0 || (ELF32_R_TYPE (reloc->r_info) != R_NDS32_INSN16)) return 0; if (!N32_IS_RT3 (insn)) return 0; switch (N32_OP6 (insn)) { case N32_OP6_LWI: if (N32_RA5 (insn) == REG_GP && IS_WITHIN_U (N32_IMM15S (insn), 7)) insn16 = N16_TYPE37 (XWI37, N32_RT5 (insn), 0, N32_IMM15S (insn)); break; case N32_OP6_SWI: if (N32_RA5 (insn) == REG_GP && IS_WITHIN_U (N32_IMM15S (insn), 7)) insn16 = N16_TYPE37 (XWI37, N32_RT5 (insn), 1, N32_IMM15S (insn)); break; case N32_OP6_HWGP: if (!IS_WITHIN_U (N32_IMM17S (insn), 7)) break; if (__GF (insn, 17, 3) == 6) insn16 = N16_TYPE37 (XWI37, N32_RT5 (insn), 0, N32_IMM17S (insn)); else if (__GF (insn, 17, 3) == 7) insn16 = N16_TYPE37 (XWI37, N32_RT5 (insn), 1, N32_IMM17S (insn)); break; } if ((insn16 & 0x8000) == 0) return 0; *pinsn16 = insn16; return 1; } /* Convert a 16-bit instruction to 32-bit one. INSN16 it the input and PINSN it the point to output. Return non-zero on successful. Otherwise 0 is returned. */ int nds32_convert_16_to_32 (bfd *abfd, uint16_t insn16, uint32_t *pinsn) { uint32_t insn = 0xffffffff; unsigned long mach = bfd_get_mach (abfd); /* NOTE: push25, pop25 and movd44 do not have 32-bit variants. */ switch (__GF (insn16, 9, 6)) { case 0x4: /* add45 */ insn = N32_ALU1 (ADD, N16_RT4 (insn16), N16_RT4 (insn16), N16_RA5 (insn16)); goto done; case 0x5: /* sub45 */ insn = N32_ALU1 (SUB, N16_RT4 (insn16), N16_RT4 (insn16), N16_RA5 (insn16)); goto done; case 0x6: /* addi45 */ insn = N32_TYPE2 (ADDI, N16_RT4 (insn16), N16_RT4 (insn16), N16_IMM5U (insn16)); goto done; case 0x7: /* subi45 */ insn = N32_TYPE2 (ADDI, N16_RT4 (insn16), N16_RT4 (insn16), -N16_IMM5U (insn16)); goto done; case 0x8: /* srai45 */ insn = N32_ALU1 (SRAI, N16_RT4 (insn16), N16_RT4 (insn16), N16_IMM5U (insn16)); goto done; case 0x9: /* srli45 */ insn = N32_ALU1 (SRLI, N16_RT4 (insn16), N16_RT4 (insn16), N16_IMM5U (insn16)); goto done; case 0xa: /* slli333 */ insn = N32_ALU1 (SLLI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0xc: /* add333 */ insn = N32_ALU1 (ADD, N16_RT3 (insn16), N16_RA3 (insn16), N16_RB3 (insn16)); goto done; case 0xd: /* sub333 */ insn = N32_ALU1 (SUB, N16_RT3 (insn16), N16_RA3 (insn16), N16_RB3 (insn16)); goto done; case 0xe: /* addi333 */ insn = N32_TYPE2 (ADDI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0xf: /* subi333 */ insn = N32_TYPE2 (ADDI, N16_RT3 (insn16), N16_RA3 (insn16), -N16_IMM3U (insn16)); goto done; case 0x10: /* lwi333 */ insn = N32_TYPE2 (LWI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0x12: /* lhi333 */ insn = N32_TYPE2 (LHI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0x13: /* lbi333 */ insn = N32_TYPE2 (LBI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0x11: /* lwi333.bi */ insn = N32_TYPE2 (LWI_BI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0x14: /* swi333 */ insn = N32_TYPE2 (SWI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0x16: /* shi333 */ insn = N32_TYPE2 (SHI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0x17: /* sbi333 */ insn = N32_TYPE2 (SBI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0x15: /* swi333.bi */ insn = N32_TYPE2 (SWI_BI, N16_RT3 (insn16), N16_RA3 (insn16), N16_IMM3U (insn16)); goto done; case 0x18: /* addri36.sp */ insn = N32_TYPE2 (ADDI, N16_RT3 (insn16), REG_SP, N16_IMM6U (insn16) << 2); goto done; case 0x19: /* lwi45.fe */ insn = N32_TYPE2 (LWI, N16_RT4 (insn16), REG_R8, (N16_IMM5U (insn16) - 32)); goto done; case 0x1a: /* lwi450 */ insn = N32_TYPE2 (LWI, N16_RT4 (insn16), N16_RA5 (insn16), 0); goto done; case 0x1b: /* swi450 */ insn = N32_TYPE2 (SWI, N16_RT4 (insn16), N16_RA5 (insn16), 0); goto done; /* These are r15 implied instructions. */ case 0x30: /* slts45 */ insn = N32_ALU1 (SLTS, REG_TA, N16_RT4 (insn16), N16_RA5 (insn16)); goto done; case 0x31: /* slt45 */ insn = N32_ALU1 (SLT, REG_TA, N16_RT4 (insn16), N16_RA5 (insn16)); goto done; case 0x32: /* sltsi45 */ insn = N32_TYPE2 (SLTSI, REG_TA, N16_RT4 (insn16), N16_IMM5U (insn16)); goto done; case 0x33: /* slti45 */ insn = N32_TYPE2 (SLTI, REG_TA, N16_RT4 (insn16), N16_IMM5U (insn16)); goto done; case 0x34: /* beqzs8, bnezs8 */ if (insn16 & __BIT (8)) insn = N32_BR2 (BNEZ, REG_TA, N16_IMM8S (insn16)); else insn = N32_BR2 (BEQZ, REG_TA, N16_IMM8S (insn16)); goto done; case 0x35: /* break16, ex9.it */ /* Only consider range of v3 break16. */ insn = N32_TYPE0 (MISC, (N16_IMM5U (insn16) << 5) | N32_MISC_BREAK); goto done; case 0x3c: /* ifcall9 */ insn = N32_BR2 (IFCALL, 0, N16_IMM9U (insn16)); goto done; case 0x3d: /* movpi45 */ insn = N32_TYPE1 (MOVI, N16_RT4 (insn16), N16_IMM5U (insn16) + 16); goto done; case 0x3f: /* MISC33 */ switch (insn16 & 0x7) { case 2: /* neg33 */ insn = N32_TYPE2 (SUBRI, N16_RT3 (insn16), N16_RA3 (insn16), 0); break; case 3: /* not33 */ insn = N32_ALU1 (NOR, N16_RT3 (insn16), N16_RA3 (insn16), N16_RA3 (insn16)); break; case 4: /* mul33 */ insn = N32_ALU2 (MUL, N16_RT3 (insn16), N16_RT3 (insn16), N16_RA3 (insn16)); break; case 5: /* xor33 */ insn = N32_ALU1 (XOR, N16_RT3 (insn16), N16_RT3 (insn16), N16_RA3 (insn16)); break; case 6: /* and33 */ insn = N32_ALU1 (AND, N16_RT3 (insn16), N16_RT3 (insn16), N16_RA3 (insn16)); break; case 7: /* or33 */ insn = N32_ALU1 (OR, N16_RT3 (insn16), N16_RT3 (insn16), N16_RA3 (insn16)); break; } goto done; case 0xb: switch (insn16 & 0x7) { case 0: /* zeb33 */ insn = N32_TYPE2 (ANDI, N16_RT3 (insn16), N16_RA3 (insn16), 0xff); break; case 1: /* zeh33 */ insn = N32_ALU1 (ZEH, N16_RT3 (insn16), N16_RA3 (insn16), 0); break; case 2: /* seb33 */ insn = N32_ALU1 (SEB, N16_RT3 (insn16), N16_RA3 (insn16), 0); break; case 3: /* seh33 */ insn = N32_ALU1 (SEH, N16_RT3 (insn16), N16_RA3 (insn16), 0); break; case 4: /* xlsb33 */ insn = N32_TYPE2 (ANDI, N16_RT3 (insn16), N16_RA3 (insn16), 1); break; case 5: /* x11b33 */ insn = N32_TYPE2 (ANDI, N16_RT3 (insn16), N16_RA3 (insn16), 0x7ff); break; case 6: /* bmski33 */ insn = N32_TYPE2 (ANDI, N16_RT3 (insn16), N16_RT3 (insn16), 1 << __GF (insn16, 3, 3)); break; case 7: /* fexti33 */ insn = N32_TYPE2 (ANDI, N16_RT3 (insn16), N16_RT3 (insn16), (1 << (__GF (insn16, 3, 3) + 1)) - 1); break; } goto done; } switch (__GF (insn16, 10, 5)) { case 0x0: /* mov55 or ifret16 */ if (mach >= MACH_V3 && N16_RT5 (insn16) == REG_SP && N16_RT5 (insn16) == N16_RA5 (insn16)) insn = N32_JREG (JR, 0, 0, 0, 3); else insn = N32_TYPE2 (ADDI, N16_RT5 (insn16), N16_RA5 (insn16), 0); goto done; case 0x1: /* movi55 */ insn = N32_TYPE1 (MOVI, N16_RT5 (insn16), N16_IMM5S (insn16)); goto done; case 0x1b: /* addi10s (V2) */ insn = N32_TYPE2 (ADDI, REG_SP, REG_SP, N16_IMM10S (insn16)); goto done; } switch (__GF (insn16, 11, 4)) { case 0x7: /* lwi37.fp/swi37.fp */ if (insn16 & __BIT (7)) /* swi37.fp */ insn = N32_TYPE2 (SWI, N16_RT38 (insn16), REG_FP, N16_IMM7U (insn16)); else /* lwi37.fp */ insn = N32_TYPE2 (LWI, N16_RT38 (insn16), REG_FP, N16_IMM7U (insn16)); goto done; case 0x8: /* beqz38 */ insn = N32_BR2 (BEQZ, N16_RT38 (insn16), N16_IMM8S (insn16)); goto done; case 0x9: /* bnez38 */ insn = N32_BR2 (BNEZ, N16_RT38 (insn16), N16_IMM8S (insn16)); goto done; case 0xa: /* beqs38/j8, implied r5 */ if (N16_RT38 (insn16) == 5) insn = N32_JI (J, N16_IMM8S (insn16)); else insn = N32_BR1 (BEQ, N16_RT38 (insn16), REG_R5, N16_IMM8S (insn16)); goto done; case 0xb: /* bnes38 and others */ if (N16_RT38 (insn16) == 5) { switch (__GF (insn16, 5, 3)) { case 0: /* jr5 */ insn = N32_JREG (JR, 0, N16_RA5 (insn16), 0, 0); break; case 4: /* ret5 */ insn = N32_JREG (JR, 0, N16_RA5 (insn16), 0, 1); break; case 1: /* jral5 */ insn = N32_JREG (JRAL, REG_LP, N16_RA5 (insn16), 0, 0); break; case 2: /* ex9.it imm5 */ /* ex9.it had no 32-bit variantl. */ break; case 5: /* add5.pc */ /* add5.pc had no 32-bit variantl. */ break; } } else /* bnes38 */ insn = N32_BR1 (BNE, N16_RT38 (insn16), REG_R5, N16_IMM8S (insn16)); goto done; case 0xe: /* lwi37/swi37 */ if (insn16 & (1 << 7)) /* swi37.sp */ insn = N32_TYPE2 (SWI, N16_RT38 (insn16), REG_SP, N16_IMM7U (insn16)); else /* lwi37.sp */ insn = N32_TYPE2 (LWI, N16_RT38 (insn16), REG_SP, N16_IMM7U (insn16)); goto done; } done: if (insn & 0x80000000) return 0; if (pinsn) *pinsn = insn; return 1; } static bfd_boolean is_sda_access_insn (unsigned long insn) { switch (N32_OP6 (insn)) { case N32_OP6_LWI: case N32_OP6_LHI: case N32_OP6_LHSI: case N32_OP6_LBI: case N32_OP6_LBSI: case N32_OP6_SWI: case N32_OP6_SHI: case N32_OP6_SBI: case N32_OP6_LWC: case N32_OP6_LDC: case N32_OP6_SWC: case N32_OP6_SDC: return TRUE; default: ; } return FALSE; } static unsigned long turn_insn_to_sda_access (uint32_t insn, bfd_signed_vma type, uint32_t *pinsn) { uint32_t oinsn = 0; switch (type) { case R_NDS32_GOT_LO12: case R_NDS32_GOTOFF_LO12: case R_NDS32_PLTREL_LO12: case R_NDS32_PLT_GOTREL_LO12: case R_NDS32_LO12S0_RELA: switch (N32_OP6 (insn)) { case N32_OP6_LBI: /* lbi.gp */ oinsn = N32_TYPE1 (LBGP, N32_RT5 (insn), 0); break; case N32_OP6_LBSI: /* lbsi.gp */ oinsn = N32_TYPE1 (LBGP, N32_RT5 (insn), __BIT (19)); break; case N32_OP6_SBI: /* sbi.gp */ oinsn = N32_TYPE1 (SBGP, N32_RT5 (insn), 0); break; case N32_OP6_ORI: /* addi.gp */ oinsn = N32_TYPE1 (SBGP, N32_RT5 (insn), __BIT (19)); break; } break; case R_NDS32_LO12S1_RELA: switch (N32_OP6 (insn)) { case N32_OP6_LHI: /* lhi.gp */ oinsn = N32_TYPE1 (HWGP, N32_RT5 (insn), 0); break; case N32_OP6_LHSI: /* lhsi.gp */ oinsn = N32_TYPE1 (HWGP, N32_RT5 (insn), __BIT (18)); break; case N32_OP6_SHI: /* shi.gp */ oinsn = N32_TYPE1 (HWGP, N32_RT5 (insn), __BIT (19)); break; } break; case R_NDS32_LO12S2_RELA: switch (N32_OP6 (insn)) { case N32_OP6_LWI: /* lwi.gp */ oinsn = N32_TYPE1 (HWGP, N32_RT5 (insn), __MF (6, 17, 3)); break; case N32_OP6_SWI: /* swi.gp */ oinsn = N32_TYPE1 (HWGP, N32_RT5 (insn), __MF (7, 17, 3)); break; } break; case R_NDS32_LO12S2_DP_RELA: case R_NDS32_LO12S2_SP_RELA: oinsn = (insn & 0x7ff07000) | (REG_GP << 15); break; } if (oinsn) *pinsn = oinsn; return oinsn != 0; } /* Linker hasn't found the correct merge section for non-section symbol in relax time, this work is left to the function elf_link_input_bfd(). So for non-section symbol, _bfd_merged_section_offset is also needed to find the correct symbol address. */ static bfd_vma nds32_elf_rela_local_sym (bfd *abfd, Elf_Internal_Sym *sym, asection **psec, Elf_Internal_Rela *rel) { asection *sec = *psec; bfd_vma relocation; relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); if ((sec->flags & SEC_MERGE) && sec->sec_info_type == SEC_INFO_TYPE_MERGE) { if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) rel->r_addend = _bfd_merged_section_offset (abfd, psec, elf_section_data (sec)->sec_info, sym->st_value + rel->r_addend); else rel->r_addend = _bfd_merged_section_offset (abfd, psec, elf_section_data (sec)->sec_info, sym->st_value) + rel->r_addend; if (sec != *psec) { /* If we have changed the section, and our original section is marked with SEC_EXCLUDE, it means that the original SEC_MERGE section has been completely subsumed in some other SEC_MERGE section. In this case, we need to leave some info around for --emit-relocs. */ if ((sec->flags & SEC_EXCLUDE) != 0) sec->kept_section = *psec; sec = *psec; } rel->r_addend -= relocation; rel->r_addend += sec->output_section->vma + sec->output_offset; } return relocation; } static bfd_vma calculate_memory_address (bfd *abfd, Elf_Internal_Rela *irel, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { bfd_signed_vma foff; bfd_vma symval, addend; Elf_Internal_Rela irel_fn; Elf_Internal_Sym *isym; asection *sym_sec; /* Get the value of the symbol referred to by the reloc. */ if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) { /* A local symbol. */ isym = isymbuf + ELF32_R_SYM (irel->r_info); if (isym->st_shndx == SHN_UNDEF) sym_sec = bfd_und_section_ptr; else if (isym->st_shndx == SHN_ABS) sym_sec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) sym_sec = bfd_com_section_ptr; else sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); memcpy (&irel_fn, irel, sizeof (Elf_Internal_Rela)); symval = nds32_elf_rela_local_sym (abfd, isym, &sym_sec, &irel_fn); addend = irel_fn.r_addend; } else { unsigned long indx; struct elf_link_hash_entry *h; /* An external symbol. */ indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; if (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) /* This appears to be a reference to an undefined symbol. Just ignore it--it will be caught by the regular reloc processing. */ return 0; if (h->root.u.def.section->flags & SEC_MERGE) { sym_sec = h->root.u.def.section; symval = _bfd_merged_section_offset (abfd, &sym_sec, elf_section_data (sym_sec)->sec_info, h->root.u.def.value); symval = symval + sym_sec->output_section->vma + sym_sec->output_offset; } else symval = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); addend = irel->r_addend; } foff = symval + addend; return foff; } static bfd_vma calculate_got_memory_address (bfd *abfd, struct bfd_link_info *link_info, Elf_Internal_Rela *irel, Elf_Internal_Shdr *symtab_hdr) { int symndx; bfd_vma *local_got_offsets; /* Get the value of the symbol referred to by the reloc. */ struct elf_link_hash_entry *h; struct elf_nds32_link_hash_table *htab = nds32_elf_hash_table (link_info); /* An external symbol. */ symndx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[symndx]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; if (symndx >= 0) { BFD_ASSERT (h != NULL); return (htab->root.sgot->output_section->vma + htab->root.sgot->output_offset + h->got.offset); } else { local_got_offsets = elf_local_got_offsets (abfd); BFD_ASSERT (local_got_offsets != NULL); return (htab->root.sgot->output_section->vma + htab->root.sgot->output_offset + local_got_offsets[ELF32_R_SYM (irel->r_info)]); } /* The _GLOBAL_OFFSET_TABLE_ may be undefweak(or should be?). */ /* The check of h->root.type is passed. */ } static int is_16bit_NOP (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, Elf_Internal_Rela *rel) { bfd_byte *contents; unsigned short insn16; if (!(rel->r_addend & R_NDS32_INSN16_CONVERT_FLAG)) return FALSE; contents = elf_section_data (sec)->this_hdr.contents; insn16 = bfd_getb16 (contents + rel->r_offset); if (insn16 == NDS32_NOP16) return TRUE; return FALSE; } /* It checks whether the instruction could be converted to 16-bit form and returns the converted one. `internal_relocs' is supposed to be sorted. */ static int is_convert_32_to_16 (bfd *abfd, asection *sec, Elf_Internal_Rela *reloc, Elf_Internal_Rela *internal_relocs, Elf_Internal_Rela *irelend, uint16_t *insn16) { #define NORMAL_32_TO_16 (1 << 0) #define SPECIAL_32_TO_16 (1 << 1) bfd_byte *contents = NULL; bfd_signed_vma off; bfd_vma mem_addr; uint32_t insn = 0; Elf_Internal_Rela *pc_rel; int pic_ext_target = 0; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Sym *isymbuf = NULL; int convert_type; bfd_vma offset; if (reloc->r_offset + 4 > sec->size) return FALSE; offset = reloc->r_offset; if (!nds32_get_section_contents (abfd, sec, &contents, TRUE)) return FALSE; insn = bfd_getb32 (contents + offset); if (nds32_convert_32_to_16 (abfd, insn, insn16, NULL)) convert_type = NORMAL_32_TO_16; else if (special_convert_32_to_16 (insn, insn16, reloc)) convert_type = SPECIAL_32_TO_16; else return FALSE; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; if (!nds32_get_local_syms (abfd, sec, &isymbuf)) return FALSE; /* Find the first relocation of the same relocation-type, so we iteratie them forward. */ pc_rel = reloc; while ((pc_rel - 1) >= internal_relocs && pc_rel[-1].r_offset == offset) pc_rel--; for (; pc_rel < irelend && pc_rel->r_offset == offset; pc_rel++) { if (ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_15_PCREL_RELA || ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_17_PCREL_RELA || ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_25_PCREL_RELA || ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_25_PLTREL) { off = calculate_offset (abfd, sec, pc_rel, isymbuf, symtab_hdr, &pic_ext_target); if (off >= ACCURATE_8BIT_S1 || off < -ACCURATE_8BIT_S1 || off == 0) return FALSE; break; } else if (ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_20_RELA) { /* movi => movi55 */ mem_addr = calculate_memory_address (abfd, pc_rel, isymbuf, symtab_hdr); /* mem_addr is unsigned, but the value should be between [-16, 15]. */ if ((mem_addr + 0x10) >> 5) return FALSE; break; } else if ((ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_TLS_LE_20) || (ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_TLS_LE_LO12)) { /* It never happen movi to movi55 for R_NDS32_TLS_LE_20, because it can be relaxed to addi for TLS_LE_ADD. */ return FALSE; } else if ((ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_SDA15S2_RELA || ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_SDA17S2_RELA) && (reloc->r_addend & R_NDS32_INSN16_FP7U2_FLAG) && convert_type == SPECIAL_32_TO_16) { /* fp-as-gp We've selected a best fp-base for this access, so we can always resolve it anyway. Do nothing. */ break; } else if ((ELF32_R_TYPE (pc_rel->r_info) > R_NDS32_NONE && (ELF32_R_TYPE (pc_rel->r_info) < R_NDS32_RELA_GNU_VTINHERIT)) || ((ELF32_R_TYPE (pc_rel->r_info) > R_NDS32_RELA_GNU_VTENTRY) && (ELF32_R_TYPE (pc_rel->r_info) < R_NDS32_INSN16)) || ((ELF32_R_TYPE (pc_rel->r_info) > R_NDS32_LOADSTORE) && (ELF32_R_TYPE (pc_rel->r_info) < R_NDS32_DWARF2_OP1_RELA))) { /* Prevent unresolved addi instruction translate to addi45 or addi333. */ return FALSE; } else if ((ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_17IFC_PCREL_RELA)) { off = calculate_offset (abfd, sec, pc_rel, isymbuf, symtab_hdr, &pic_ext_target); if (off >= ACCURATE_U9BIT_S1 || off <= 0) return FALSE; break; } } return TRUE; } static void nds32_elf_write_16 (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *contents, Elf_Internal_Rela *reloc, Elf_Internal_Rela *internal_relocs, Elf_Internal_Rela *irelend, unsigned short insn16) { Elf_Internal_Rela *pc_rel; bfd_vma offset; offset = reloc->r_offset; bfd_putb16 (insn16, contents + offset); /* Find the first relocation of the same relocation-type, so we iteratie them forward. */ pc_rel = reloc; while ((pc_rel - 1) > internal_relocs && pc_rel[-1].r_offset == offset) pc_rel--; for (; pc_rel < irelend && pc_rel->r_offset == offset; pc_rel++) { if (ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_15_PCREL_RELA || ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_17_PCREL_RELA || ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_25_PCREL_RELA) { pc_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (pc_rel->r_info), R_NDS32_9_PCREL_RELA); } else if (ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_25_PLTREL) pc_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (pc_rel->r_info), R_NDS32_9_PLTREL); else if (ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_20_RELA) pc_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (pc_rel->r_info), R_NDS32_5_RELA); else if (ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_SDA15S2_RELA || ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_SDA17S2_RELA) pc_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (pc_rel->r_info), R_NDS32_SDA_FP7U2_RELA); else if ((ELF32_R_TYPE (pc_rel->r_info) == R_NDS32_17IFC_PCREL_RELA)) pc_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (pc_rel->r_info), R_NDS32_10IFCU_PCREL_RELA); } } /* Find a relocation of type specified by `reloc_type' of the same r_offset with reloc. If not found, return irelend. Assuming relocations are sorted by r_offset, we find the relocation from `reloc' backward untill relocs, or find it from `reloc' forward untill irelend. */ static Elf_Internal_Rela * find_relocs_at_address (Elf_Internal_Rela *reloc, Elf_Internal_Rela *relocs, Elf_Internal_Rela *irelend, enum elf_nds32_reloc_type reloc_type) { Elf_Internal_Rela *rel_t; /* Find backward. */ for (rel_t = reloc; rel_t >= relocs && rel_t->r_offset == reloc->r_offset; rel_t--) if (ELF32_R_TYPE (rel_t->r_info) == reloc_type) return rel_t; /* We didn't find it backward. Try find it forward. */ for (rel_t = reloc; rel_t < irelend && rel_t->r_offset == reloc->r_offset; rel_t++) if (ELF32_R_TYPE (rel_t->r_info) == reloc_type) return rel_t; return irelend; } /* Find a relocation of specified type and offset. `reloc' is just a refence point to find a relocation at specified offset. If not found, return irelend. Assuming relocations are sorted by r_offset, we find the relocation from `reloc' backward untill relocs, or find it from `reloc' forward untill irelend. */ static Elf_Internal_Rela * find_relocs_at_address_addr (Elf_Internal_Rela *reloc, Elf_Internal_Rela *relocs, Elf_Internal_Rela *irelend, enum elf_nds32_reloc_type reloc_type, bfd_vma offset_p) { Elf_Internal_Rela *rel_t = NULL; /* First, we try to find a relocation of offset `offset_p', and then we use find_relocs_at_address to find specific type. */ if (reloc->r_offset > offset_p) { /* Find backward. */ for (rel_t = reloc; rel_t >= relocs && rel_t->r_offset > offset_p; rel_t--) /* Do nothing. */; } else if (reloc->r_offset < offset_p) { /* Find forward. */ for (rel_t = reloc; rel_t < irelend && rel_t->r_offset < offset_p; rel_t++) /* Do nothing. */; } else rel_t = reloc; /* Not found? */ if (rel_t < relocs || rel_t == irelend || rel_t->r_offset != offset_p) return irelend; return find_relocs_at_address (rel_t, relocs, irelend, reloc_type); } static bfd_boolean nds32_elf_check_dup_relocs (Elf_Internal_Rela *reloc, Elf_Internal_Rela *internal_relocs, Elf_Internal_Rela *irelend, unsigned char reloc_type) { Elf_Internal_Rela *rel_t; for (rel_t = reloc; rel_t >= internal_relocs && rel_t->r_offset == reloc->r_offset; rel_t--) if (ELF32_R_TYPE (rel_t->r_info) == reloc_type) { if (ELF32_R_SYM (rel_t->r_info) == ELF32_R_SYM (reloc->r_info) && rel_t->r_addend == reloc->r_addend) continue; return TRUE; } for (rel_t = reloc; rel_t < irelend && rel_t->r_offset == reloc->r_offset; rel_t++) if (ELF32_R_TYPE (rel_t->r_info) == reloc_type) { if (ELF32_R_SYM (rel_t->r_info) == ELF32_R_SYM (reloc->r_info) && rel_t->r_addend == reloc->r_addend) continue; return TRUE; } return FALSE; } typedef struct nds32_elf_blank nds32_elf_blank_t; struct nds32_elf_blank { /* Where the blank begins. */ bfd_vma offset; /* The size of the blank. */ bfd_vma size; /* The accumulative size before this blank. */ bfd_vma total_size; nds32_elf_blank_t *next; nds32_elf_blank_t *prev; }; static nds32_elf_blank_t *blank_free_list = NULL; static nds32_elf_blank_t * create_nds32_elf_blank (bfd_vma offset_p, bfd_vma size_p) { nds32_elf_blank_t *blank_t; if (blank_free_list) { blank_t = blank_free_list; blank_free_list = blank_free_list->next; } else blank_t = bfd_malloc (sizeof (nds32_elf_blank_t)); if (blank_t == NULL) return NULL; blank_t->offset = offset_p; blank_t->size = size_p; blank_t->total_size = 0; blank_t->next = NULL; blank_t->prev = NULL; return blank_t; } static void remove_nds32_elf_blank (nds32_elf_blank_t *blank_p) { if (blank_free_list) { blank_free_list->prev = blank_p; blank_p->next = blank_free_list; } else blank_p->next = NULL; blank_p->prev = NULL; blank_free_list = blank_p; } static void clean_nds32_elf_blank (void) { nds32_elf_blank_t *blank_t; while (blank_free_list) { blank_t = blank_free_list; blank_free_list = blank_free_list->next; free (blank_t); } } static nds32_elf_blank_t * search_nds32_elf_blank (nds32_elf_blank_t *blank_p, bfd_vma addr) { nds32_elf_blank_t *blank_t; if (!blank_p) return NULL; blank_t = blank_p; while (blank_t && addr < blank_t->offset) blank_t = blank_t->prev; while (blank_t && blank_t->next && addr >= blank_t->next->offset) blank_t = blank_t->next; return blank_t; } static bfd_vma get_nds32_elf_blank_total (nds32_elf_blank_t **blank_p, bfd_vma addr, int overwrite) { nds32_elf_blank_t *blank_t; blank_t = search_nds32_elf_blank (*blank_p, addr); if (!blank_t) return 0; if (overwrite) *blank_p = blank_t; if (addr < blank_t->offset + blank_t->size) return blank_t->total_size + (addr - blank_t->offset); else return blank_t->total_size + blank_t->size; } static bfd_boolean insert_nds32_elf_blank (nds32_elf_blank_t **blank_p, bfd_vma addr, bfd_vma len) { nds32_elf_blank_t *blank_t, *blank_t2; if (!*blank_p) { *blank_p = create_nds32_elf_blank (addr, len); return *blank_p ? TRUE : FALSE; } blank_t = search_nds32_elf_blank (*blank_p, addr); if (blank_t == NULL) { blank_t = create_nds32_elf_blank (addr, len); if (!blank_t) return FALSE; while ((*blank_p)->prev != NULL) *blank_p = (*blank_p)->prev; blank_t->next = *blank_p; (*blank_p)->prev = blank_t; (*blank_p) = blank_t; return TRUE; } if (addr < blank_t->offset + blank_t->size) { if (addr > blank_t->offset + blank_t->size) blank_t->size = addr - blank_t->offset; } else { blank_t2 = create_nds32_elf_blank (addr, len); if (!blank_t2) return FALSE; if (blank_t->next) { blank_t->next->prev = blank_t2; blank_t2->next = blank_t->next; } blank_t2->prev = blank_t; blank_t->next = blank_t2; *blank_p = blank_t2; } return TRUE; } static bfd_boolean insert_nds32_elf_blank_recalc_total (nds32_elf_blank_t **blank_p, bfd_vma addr, bfd_vma len) { nds32_elf_blank_t *blank_t; if (!insert_nds32_elf_blank (blank_p, addr, len)) return FALSE; blank_t = *blank_p; if (!blank_t->prev) { blank_t->total_size = 0; blank_t = blank_t->next; } while (blank_t) { blank_t->total_size = blank_t->prev->total_size + blank_t->prev->size; blank_t = blank_t->next; } return TRUE; } static void calc_nds32_blank_total (nds32_elf_blank_t *blank_p) { nds32_elf_blank_t *blank_t; bfd_vma total_size = 0; if (!blank_p) return; blank_t = blank_p; while (blank_t->prev) blank_t = blank_t->prev; while (blank_t) { blank_t->total_size = total_size; total_size += blank_t->size; blank_t = blank_t->next; } } static bfd_boolean nds32_elf_relax_delete_blanks (bfd *abfd, asection *sec, nds32_elf_blank_t *blank_p) { Elf_Internal_Shdr *symtab_hdr; /* Symbol table header of this bfd. */ Elf_Internal_Sym *isym = NULL; /* Symbol table of this bfd. */ Elf_Internal_Sym *isymend; /* Symbol entry iterator. */ unsigned int sec_shndx; /* The section the be relaxed. */ bfd_byte *contents; /* Contents data of iterating section. */ Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irel; Elf_Internal_Rela *irelend; struct elf_link_hash_entry **sym_hashes; struct elf_link_hash_entry **end_hashes; unsigned int symcount; asection *sect; nds32_elf_blank_t *blank_t; nds32_elf_blank_t *blank_t2; nds32_elf_blank_t *blank_head; blank_head = blank_t = blank_p; while (blank_head->prev != NULL) blank_head = blank_head->prev; while (blank_t->next != NULL) blank_t = blank_t->next; if (blank_t->offset + blank_t->size <= sec->size) { blank_t->next = create_nds32_elf_blank (sec->size + 4, 0); blank_t->next->prev = blank_t; } if (blank_head->offset > 0) { blank_head->prev = create_nds32_elf_blank (0, 0); blank_head->prev->next = blank_head; blank_head = blank_head->prev; } sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); /* The deletion must stop at the next ALIGN reloc for an alignment power larger than the number of bytes we are deleting. */ symtab_hdr = &elf_tdata (abfd)->symtab_hdr; if (!nds32_get_local_syms (abfd, sec, &isym)) return FALSE; if (isym == NULL) { isym = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); symtab_hdr->contents = (bfd_byte *) isym; } if (isym == NULL || symtab_hdr->sh_info == 0) return FALSE; blank_t = blank_head; calc_nds32_blank_total (blank_head); for (sect = abfd->sections; sect != NULL; sect = sect->next) { /* Adjust all the relocs. */ /* Relocations MUST be kept in memory, because relaxation adjust them. */ internal_relocs = _bfd_elf_link_read_relocs (abfd, sect, NULL, NULL, TRUE /* keep_memory */); irelend = internal_relocs + sect->reloc_count; blank_t = blank_head; blank_t2 = blank_head; if (!(sect->flags & SEC_RELOC)) continue; nds32_get_section_contents (abfd, sect, &contents, TRUE); for (irel = internal_relocs; irel < irelend; irel++) { bfd_vma raddr; if (ELF32_R_TYPE (irel->r_info) >= R_NDS32_DIFF8 && ELF32_R_TYPE (irel->r_info) <= R_NDS32_DIFF32 && isym[ELF32_R_SYM (irel->r_info)].st_shndx == sec_shndx) { unsigned long val = 0; unsigned long mask; long before, between; long offset = 0; switch (ELF32_R_TYPE (irel->r_info)) { case R_NDS32_DIFF8: offset = bfd_get_8 (abfd, contents + irel->r_offset); break; case R_NDS32_DIFF16: offset = bfd_get_16 (abfd, contents + irel->r_offset); break; case R_NDS32_DIFF32: val = bfd_get_32 (abfd, contents + irel->r_offset); /* Get the signed bit and mask for the high part. The gcc will alarm when right shift 32-bit since the type size of long may be 32-bit. */ mask = 0 - (val >> 31); if (mask) offset = (val | (mask - 0xffffffff)); else offset = val; break; default: BFD_ASSERT (0); } /* DIFF value 0 |encoded in location| |------------|-------------------|--------- sym+off(addend) -- before ---| ***************** --------------------- between ---| We only care how much data are relax between DIFF, marked as ***. */ before = get_nds32_elf_blank_total (&blank_t, irel->r_addend, 0); between = get_nds32_elf_blank_total (&blank_t, irel->r_addend + offset, 0); if (between == before) goto done_adjust_diff; switch (ELF32_R_TYPE (irel->r_info)) { case R_NDS32_DIFF8: bfd_put_8 (abfd, offset - (between - before), contents + irel->r_offset); break; case R_NDS32_DIFF16: bfd_put_16 (abfd, offset - (between - before), contents + irel->r_offset); break; case R_NDS32_DIFF32: bfd_put_32 (abfd, offset - (between - before), contents + irel->r_offset); break; } } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_DIFF_ULEB128 && isym[ELF32_R_SYM (irel->r_info)].st_shndx == sec_shndx) { bfd_vma val = 0; unsigned int len = 0; unsigned long before, between; bfd_byte *endp, *p; val = _bfd_read_unsigned_leb128 (abfd, contents + irel->r_offset, &len); before = get_nds32_elf_blank_total (&blank_t, irel->r_addend, 0); between = get_nds32_elf_blank_total (&blank_t, irel->r_addend + val, 0); if (between == before) goto done_adjust_diff; p = contents + irel->r_offset; endp = p + len -1; memset (p, 0x80, len); *(endp) = 0; p = write_uleb128 (p, val - (between - before)) - 1; if (p < endp) *p |= 0x80; } done_adjust_diff: if (sec == sect) { raddr = irel->r_offset; irel->r_offset -= get_nds32_elf_blank_total (&blank_t2, irel->r_offset, 1); if (ELF32_R_TYPE (irel->r_info) == R_NDS32_NONE) continue; if (blank_t2 && blank_t2->next && (blank_t2->offset > raddr || blank_t2->next->offset <= raddr)) _bfd_error_handler (_("%B: Error: search_nds32_elf_blank reports wrong node\n"), abfd); /* Mark reloc in deleted portion as NONE. For some relocs like R_NDS32_LABEL that doesn't modify the content in the section. R_NDS32_LABEL doesn't belong to the instruction in the section, so we should preserve it. */ if (raddr >= blank_t2->offset && raddr < blank_t2->offset + blank_t2->size && ELF32_R_TYPE (irel->r_info) != R_NDS32_LABEL && ELF32_R_TYPE (irel->r_info) != R_NDS32_RELAX_REGION_BEGIN && ELF32_R_TYPE (irel->r_info) != R_NDS32_RELAX_REGION_END && ELF32_R_TYPE (irel->r_info) != R_NDS32_RELAX_ENTRY && ELF32_R_TYPE (irel->r_info) != R_NDS32_SUBTRAHEND && ELF32_R_TYPE (irel->r_info) != R_NDS32_MINUEND) { irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); continue; } } if (ELF32_R_TYPE (irel->r_info) == R_NDS32_NONE || ELF32_R_TYPE (irel->r_info) == R_NDS32_LABEL || ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_ENTRY) continue; if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info && isym[ELF32_R_SYM (irel->r_info)].st_shndx == sec_shndx && ELF_ST_TYPE (isym[ELF32_R_SYM (irel->r_info)].st_info) == STT_SECTION) { if (irel->r_addend <= sec->size) irel->r_addend -= get_nds32_elf_blank_total (&blank_t, irel->r_addend, 1); } } } /* Adjust the local symbols defined in this section. */ blank_t = blank_head; for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) { if (isym->st_shndx == sec_shndx) { if (isym->st_value <= sec->size) { bfd_vma ahead; bfd_vma orig_addr = isym->st_value; ahead = get_nds32_elf_blank_total (&blank_t, isym->st_value, 1); isym->st_value -= ahead; /* Adjust function size. */ if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC && isym->st_size > 0) isym->st_size -= get_nds32_elf_blank_total (&blank_t, orig_addr + isym->st_size, 0) - ahead; } } } /* Now adjust the global symbols defined in this section. */ symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) - symtab_hdr->sh_info); sym_hashes = elf_sym_hashes (abfd); end_hashes = sym_hashes + symcount; blank_t = blank_head; for (; sym_hashes < end_hashes; sym_hashes++) { struct elf_link_hash_entry *sym_hash = *sym_hashes; if ((sym_hash->root.type == bfd_link_hash_defined || sym_hash->root.type == bfd_link_hash_defweak) && sym_hash->root.u.def.section == sec) { if (sym_hash->root.u.def.value <= sec->size) { bfd_vma ahead; bfd_vma orig_addr = sym_hash->root.u.def.value; ahead = get_nds32_elf_blank_total (&blank_t, sym_hash->root.u.def.value, 1); sym_hash->root.u.def.value -= ahead; /* Adjust function size. */ if (sym_hash->type == STT_FUNC) sym_hash->size -= get_nds32_elf_blank_total (&blank_t, orig_addr + sym_hash->size, 0) - ahead; } } } contents = elf_section_data (sec)->this_hdr.contents; blank_t = blank_head; while (blank_t->next) { /* Actually delete the bytes. */ /* If current blank is the last blank overlap with current section, go to finish process. */ if (sec->size <= (blank_t->next->offset)) break; memmove (contents + blank_t->offset - blank_t->total_size, contents + blank_t->offset + blank_t->size, blank_t->next->offset - (blank_t->offset + blank_t->size)); blank_t = blank_t->next; } if (sec->size > (blank_t->offset + blank_t->size)) { /* There are remaining code between blank and section boundary. Move the remaining code to appropriate location. */ memmove (contents + blank_t->offset - blank_t->total_size, contents + blank_t->offset + blank_t->size, sec->size - (blank_t->offset + blank_t->size)); sec->size -= blank_t->total_size + blank_t->size; } else /* This blank is not entirely included in the section, reduce the section size by only part of the blank size. */ sec->size -= blank_t->total_size + (sec->size - blank_t->offset); while (blank_head) { blank_t = blank_head; blank_head = blank_head->next; remove_nds32_elf_blank (blank_t); } return TRUE; } /* Get the contents of a section. */ static int nds32_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents_p, bfd_boolean cache) { /* Get the section contents. */ if (elf_section_data (sec)->this_hdr.contents != NULL) *contents_p = elf_section_data (sec)->this_hdr.contents; else { if (!bfd_malloc_and_get_section (abfd, sec, contents_p)) return FALSE; if (cache) elf_section_data (sec)->this_hdr.contents = *contents_p; } return TRUE; } /* Get the contents of the internal symbol of abfd. */ static int nds32_get_local_syms (bfd *abfd, asection *sec ATTRIBUTE_UNUSED, Elf_Internal_Sym **isymbuf_p) { Elf_Internal_Shdr *symtab_hdr; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* Read this BFD's local symbols if we haven't done so already. */ if (*isymbuf_p == NULL && symtab_hdr->sh_info != 0) { *isymbuf_p = (Elf_Internal_Sym *) symtab_hdr->contents; if (*isymbuf_p == NULL) { *isymbuf_p = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (*isymbuf_p == NULL) return FALSE; } } symtab_hdr->contents = (bfd_byte *) (*isymbuf_p); return TRUE; } /* Range of small data. */ static bfd_vma sdata_range[2][2]; static bfd_vma const sdata_init_range[2] = { ACCURATE_12BIT_S1, ACCURATE_19BIT }; static int nds32_elf_insn_size (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *contents, bfd_vma addr) { unsigned long insn = bfd_getb32 (contents + addr); if (insn & 0x80000000) return 2; return 4; } /* Set the gp relax range. We have to measure the safe range to do gp relaxation. */ static void relax_range_measurement (bfd *abfd) { asection *sec_f, *sec_b; /* For upper bound. */ bfd_vma maxpgsz = get_elf_backend_data (abfd)->maxpagesize; bfd_vma align; static int decide_relax_range = 0; int i; int range_number = sizeof (sdata_init_range) / sizeof (sdata_init_range[0]); if (decide_relax_range) return; decide_relax_range = 1; if (sda_rela_sec == NULL) { /* Since there is no data sections, we assume the range is page size. */ for (i = 0; i < range_number; i++) { sdata_range[i][0] = sdata_init_range[i] - 0x1000; sdata_range[i][1] = sdata_init_range[i] - 0x1000; } return; } /* Get the biggest alignment power after the gp located section. */ sec_f = sda_rela_sec->output_section; sec_b = sec_f->next; align = 0; while (sec_b != NULL) { if ((unsigned)(1 << sec_b->alignment_power) > align) align = (1 << sec_b->alignment_power); sec_b = sec_b->next; } /* I guess we can not determine the section before gp located section, so we assume the align is max page size. */ for (i = 0; i < range_number; i++) { sdata_range[i][1] = sdata_init_range[i] - align; BFD_ASSERT (sdata_range[i][1] <= sdata_init_range[i]); sdata_range[i][0] = sdata_init_range[i] - maxpgsz; BFD_ASSERT (sdata_range[i][0] <= sdata_init_range[i]); } } /* These are macros used to check flags encoded in r_addend. They are only used by nds32_elf_relax_section (). */ #define GET_SEQ_LEN(addend) ((addend) & 0x000000ff) #define IS_1ST_CONVERT(addend) ((addend) & 0x80000000) #define IS_OPTIMIZE(addend) ((addend) & 0x40000000) #define IS_16BIT_ON(addend) ((addend) & 0x20000000) static const char * unrecognized_reloc_msg = /* xgettext:c-format */ N_("%B: warning: %s points to unrecognized reloc at 0x%lx."); /* Relax LONGCALL1 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longcall1 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* There are 3 variations for LONGCALL1 case 4-4-2; 16-bit on, optimize off or optimize for space sethi ta, hi20(symbol) ; LONGCALL1/HI20 ori ta, ta, lo12(symbol) ; LO12S0 jral5 ta ; case 4-4-4; 16-bit off, optimize don't care sethi ta, hi20(symbol) ; LONGCALL1/HI20 ori ta, ta, lo12(symbol) ; LO12S0 jral ta ; case 4-4-4; 16-bit on, optimize for speed sethi ta, hi20(symbol) ; LONGCALL1/HI20 ori ta, ta, lo12(symbol) ; LO12S0 jral ta ; Check code for -mlong-calls output. */ /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ bfd_vma laddr; int seq_len; /* Original length of instruction sequence. */ uint32_t insn; Elf_Internal_Rela *hi_irelfn, *lo_irelfn, *irelend; int pic_ext_target = 0; bfd_signed_vma foff; uint16_t insn16; irelend = internal_relocs + sec->reloc_count; seq_len = GET_SEQ_LEN (irel->r_addend); laddr = irel->r_offset; *insn_len = seq_len; hi_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_HI20_RELA, laddr); lo_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_LO12S0_ORI_RELA, laddr + 4); if (hi_irelfn == irelend || lo_irelfn == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGCALL1", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, hi_irelfn, isymbuf, symtab_hdr, &pic_ext_target); /* This condition only happened when symbol is undefined. */ if (pic_ext_target || foff == 0 || foff < -CONSERVATIVE_24BIT_S1 || foff >= CONSERVATIVE_24BIT_S1) return FALSE; /* Relax to: jal symbol; 25_PCREL */ /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ /* Replace the long call with a jal. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_NDS32_25_PCREL_RELA); irel->r_addend = hi_irelfn->r_addend; /* We don't resolve this here but resolve it in relocate_section. */ insn = INSN_JAL; bfd_putb32 (insn, contents + irel->r_offset); hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_NDS32_NONE); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_NDS32_NONE); *insn_len = 4; if (seq_len & 0x2) { insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + irel->r_offset + *insn_len); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_NDS32_INSN16); lo_irelfn->r_addend = R_NDS32_INSN16_CONVERT_FLAG; *insn_len += 2; } return TRUE; } #define CONVERT_CONDITION_CALL(insn) (((insn) & 0xffff0000) ^ 0x90000) /* Relax LONGCALL2 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longcall2 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* bltz rt, .L1 ; LONGCALL2 jal symbol ; 25_PCREL .L1: */ /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ bfd_vma laddr; uint32_t insn; Elf_Internal_Rela *i1_irelfn, *cond_irelfn, *irelend; int pic_ext_target = 0; bfd_signed_vma foff; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; i1_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_25_PCREL_RELA, laddr + 4); if (i1_irelfn == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGCALL2", (long) irel->r_offset); return FALSE; } insn = bfd_getb32 (contents + laddr); /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, i1_irelfn, isymbuf, symtab_hdr, &pic_ext_target); if (foff == 0 || foff < -CONSERVATIVE_16BIT_S1 || foff >= CONSERVATIVE_16BIT_S1) return FALSE; /* Relax to bgezal rt, label ; 17_PCREL or bltzal rt, label ; 17_PCREL */ /* Convert to complimentary conditional call. */ insn = CONVERT_CONDITION_CALL (insn); /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ /* Clean unnessary relocations. */ i1_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (i1_irelfn->r_info), R_NDS32_NONE); cond_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_17_PCREL_RELA, laddr); if (cond_irelfn != irelend) cond_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irelfn->r_info), R_NDS32_NONE); /* Replace the long call with a bgezal. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (i1_irelfn->r_info), R_NDS32_17_PCREL_RELA); irel->r_addend = i1_irelfn->r_addend; bfd_putb32 (insn, contents + irel->r_offset); *insn_len = 4; return TRUE; } /* Relax LONGCALL3 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longcall3 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* There are 3 variations for LONGCALL3 case 4-4-4-2; 16-bit on, optimize off or optimize for space bltz rt, $1 ; LONGCALL3 sethi ta, hi20(symbol) ; HI20 ori ta, ta, lo12(symbol) ; LO12S0 jral5 ta ; $1 case 4-4-4-4; 16-bit off, optimize don't care bltz rt, $1 ; LONGCALL3 sethi ta, hi20(symbol) ; HI20 ori ta, ta, lo12(symbol) ; LO12S0 jral ta ; $1 case 4-4-4-4; 16-bit on, optimize for speed bltz rt, $1 ; LONGCALL3 sethi ta, hi20(symbol) ; HI20 ori ta, ta, lo12(symbol) ; LO12S0 jral ta ; $1 */ /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ bfd_vma laddr; int seq_len; /* Original length of instruction sequence. */ uint32_t insn; Elf_Internal_Rela *hi_irelfn, *lo_irelfn, *cond_irelfn, *irelend; int pic_ext_target = 0; bfd_signed_vma foff; uint16_t insn16; irelend = internal_relocs + sec->reloc_count; seq_len = GET_SEQ_LEN (irel->r_addend); laddr = irel->r_offset; *insn_len = seq_len; hi_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_HI20_RELA, laddr + 4); lo_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_LO12S0_ORI_RELA, laddr + 8); if (hi_irelfn == irelend || lo_irelfn == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGCALL3", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, hi_irelfn, isymbuf, symtab_hdr, &pic_ext_target); if (pic_ext_target || foff == 0 || foff < -CONSERVATIVE_24BIT_S1 || foff >= CONSERVATIVE_24BIT_S1) return FALSE; insn = bfd_getb32 (contents + laddr); if (foff >= -CONSERVATIVE_16BIT_S1 && foff < CONSERVATIVE_16BIT_S1) { /* Relax to bgezal rt, label ; 17_PCREL or bltzal rt, label ; 17_PCREL */ /* Convert to complimentary conditional call. */ insn = CONVERT_CONDITION_CALL (insn); bfd_putb32 (insn, contents + irel->r_offset); *insn_len = 4; irel->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_NDS32_NONE); hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_NDS32_NONE); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_NDS32_NONE); cond_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_17_PCREL_RELA, laddr); if (cond_irelfn != irelend) { cond_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_NDS32_17_PCREL_RELA); cond_irelfn->r_addend = hi_irelfn->r_addend; } if (seq_len & 0x2) { insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + irel->r_offset + *insn_len); hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_NDS32_INSN16); hi_irelfn->r_addend = R_NDS32_INSN16_CONVERT_FLAG; insn_len += 2; } } else if (foff >= -CONSERVATIVE_24BIT_S1 && foff < CONSERVATIVE_24BIT_S1) { /* Relax to the following instruction sequence bltz rt, $1 ; LONGCALL2 jal symbol ; 25_PCREL $1 */ *insn_len = 8; insn = INSN_JAL; bfd_putb32 (insn, contents + hi_irelfn->r_offset); hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_NDS32_25_PCREL_RELA); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_LONGCALL2); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_NDS32_NONE); if (seq_len & 0x2) { insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + irel->r_offset + *insn_len); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_NDS32_INSN16); lo_irelfn->r_addend = R_NDS32_INSN16_CONVERT_FLAG; insn_len += 2; } } return TRUE; } /* Relax LONGJUMP1 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longjump1 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* There are 3 variations for LONGJUMP1 case 4-4-2; 16-bit bit on, optimize off or optimize for space sethi ta, hi20(symbol) ; LONGJUMP1/HI20 ori ta, ta, lo12(symbol) ; LO12S0 jr5 ta ; case 4-4-4; 16-bit off, optimize don't care sethi ta, hi20(symbol) ; LONGJUMP1/HI20 ori ta, ta, lo12(symbol) ; LO12S0 jr ta ; case 4-4-4; 16-bit on, optimize for speed sethi ta, hi20(symbol) ; LONGJUMP1/HI20 ori ta, ta, lo12(symbol) ; LO12S0 jr ta ; */ /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ bfd_vma laddr; int seq_len; /* Original length of instruction sequence. */ int insn16_on; /* 16-bit on/off. */ uint32_t insn; Elf_Internal_Rela *hi_irelfn, *lo_irelfn, *irelend; int pic_ext_target = 0; bfd_signed_vma foff; uint16_t insn16; unsigned long reloc; irelend = internal_relocs + sec->reloc_count; seq_len = GET_SEQ_LEN (irel->r_addend); laddr = irel->r_offset; *insn_len = seq_len; insn16_on = IS_16BIT_ON (irel->r_addend); hi_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_HI20_RELA, laddr); lo_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_LO12S0_ORI_RELA, laddr + 4); if (hi_irelfn == irelend || lo_irelfn == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGJUMP1", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, hi_irelfn, isymbuf, symtab_hdr, &pic_ext_target); if (pic_ext_target || foff == 0 || foff >= CONSERVATIVE_24BIT_S1 || foff < -CONSERVATIVE_24BIT_S1) return FALSE; if (insn16_on && foff >= -ACCURATE_8BIT_S1 && foff < ACCURATE_8BIT_S1 && (seq_len & 0x2)) { /* j8 label */ /* 16-bit on, but not optimized for speed. */ reloc = R_NDS32_9_PCREL_RELA; insn16 = INSN_J8; bfd_putb16 (insn16, contents + irel->r_offset); *insn_len = 2; irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); } else { /* j label */ reloc = R_NDS32_25_PCREL_RELA; insn = INSN_J; bfd_putb32 (insn, contents + irel->r_offset); *insn_len = 4; irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_INSN16); irel->r_addend = 0; } hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), reloc); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_NDS32_NONE); if ((seq_len & 0x2) && ((*insn_len & 2) == 0)) { insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + irel->r_offset + *insn_len); lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_NDS32_INSN16); lo_irelfn->r_addend = R_NDS32_INSN16_CONVERT_FLAG; *insn_len += 2; } return TRUE; } /* Revert condition branch. This function does not check if the input instruction is condition branch or not. */ static void nds32_elf_convert_branch (uint16_t insn16, uint32_t insn, uint16_t *re_insn16, uint32_t *re_insn) { uint32_t comp_insn = 0; uint16_t comp_insn16 = 0; if (insn) { if (N32_OP6 (insn) == N32_OP6_BR1) { /* beqs label. */ comp_insn = (insn ^ 0x4000) & 0xffffc000; if (N32_IS_RT3 (insn) && N32_RA5 (insn) == REG_R5) { /* Insn can be contracted to 16-bit implied r5. */ comp_insn16 = (comp_insn & 0x4000) ? INSN_BNES38 : INSN_BEQS38; comp_insn16 |= (N32_RT5 (insn) & 0x7) << 8; } } else if (N32_OP6 (insn) == N32_OP6_BR3) { /* bnec $ta, imm11, label. */ comp_insn = (insn ^ 0x80000) & 0xffffff00; } else { comp_insn = (insn ^ 0x10000) & 0xffffc000; if (N32_BR2_SUB (insn) == N32_BR2_BEQZ || N32_BR2_SUB (insn) == N32_BR2_BNEZ) { if (N32_IS_RT3 (insn)) { /* Insn can be contracted to 16-bit. */ comp_insn16 = (comp_insn & 0x10000) ? INSN_BNEZ38 : INSN_BEQZ38; comp_insn16 |= (N32_RT5 (insn) & 0x7) << 8; } else if (N32_RT5 (insn) == REG_R15) { /* Insn can be contracted to 16-bit. */ comp_insn16 = (comp_insn & 0x10000) ? INSN_BNES38 : INSN_BEQS38; } } } } else { switch ((insn16 & 0xf000) >> 12) { case 0xc: /* beqz38 or bnez38 */ comp_insn16 = (insn16 ^ 0x0800) & 0xff00; comp_insn = (comp_insn16 & 0x0800) ? INSN_BNEZ : INSN_BEQZ; comp_insn |= ((comp_insn16 & 0x0700) >> 8) << 20; break; case 0xd: /* beqs38 or bnes38 */ comp_insn16 = (insn16 ^ 0x0800) & 0xff00; comp_insn = (comp_insn16 & 0x0800) ? INSN_BNE : INSN_BEQ; comp_insn |= (((comp_insn16 & 0x0700) >> 8) << 20) | (REG_R5 << 15); break; case 0xe: /* beqzS8 or bnezS8 */ comp_insn16 = (insn16 ^ 0x0100) & 0xff00; comp_insn = (comp_insn16 & 0x0100) ? INSN_BNEZ : INSN_BEQZ; comp_insn |= REG_R15 << 20; break; default: break; } } if (comp_insn && re_insn) *re_insn = comp_insn; if (comp_insn16 && re_insn16) *re_insn16 = comp_insn16; } /* Relax LONGJUMP2 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longjump2 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* There are 3 variations for LONGJUMP2 case 2-4; 1st insn convertible, 16-bit on, optimize off or optimize for space bnes38 rt, ra, $1 ; LONGJUMP2 j label ; 25_PCREL $1: case 4-4; 1st insn not convertible bne rt, ra, $1 ; LONGJUMP2 j label ; 25_PCREL $1: case 4-4; 1st insn convertible, 16-bit on, optimize for speed bne rt, ra, $1 ; LONGJUMP2 j label ; 25_PCREL $1: */ /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ bfd_vma laddr; int seq_len; /* Original length of instruction sequence. */ Elf_Internal_Rela *i2_irelfn, *cond_irelfn, *irelend; int pic_ext_target = 0, first_size; unsigned int i; bfd_signed_vma foff; uint32_t insn, re_insn = 0; uint16_t insn16, re_insn16 = 0; unsigned long reloc, cond_reloc; enum elf_nds32_reloc_type checked_types[] = { R_NDS32_15_PCREL_RELA, R_NDS32_9_PCREL_RELA }; irelend = internal_relocs + sec->reloc_count; seq_len = GET_SEQ_LEN (irel->r_addend); laddr = irel->r_offset; *insn_len = seq_len; first_size = (seq_len == 6) ? 2 : 4; i2_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_25_PCREL_RELA, laddr + first_size); for (i = 0; i < sizeof (checked_types) / sizeof(checked_types[0]); i++) { cond_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, checked_types[i], laddr); if (cond_irelfn != irelend) break; } if (i2_irelfn == irelend || cond_irelfn == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGJUMP2", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, i2_irelfn, isymbuf, symtab_hdr, &pic_ext_target); if (pic_ext_target || foff == 0 || foff < -CONSERVATIVE_16BIT_S1 || foff >= CONSERVATIVE_16BIT_S1) return FALSE; /* Get the all corresponding instructions. */ if (first_size == 4) { insn = bfd_getb32 (contents + laddr); nds32_elf_convert_branch (0, insn, &re_insn16, &re_insn); } else { insn16 = bfd_getb16 (contents + laddr); nds32_elf_convert_branch (insn16, 0, &re_insn16, &re_insn); } if (re_insn16 && foff >= -(ACCURATE_8BIT_S1 - first_size) && foff < ACCURATE_8BIT_S1 - first_size) { if (first_size == 4) { /* Don't convert it to 16-bit now, keep this as relaxable for ``label reloc; INSN16''. */ /* Save comp_insn32 to buffer. */ bfd_putb32 (re_insn, contents + irel->r_offset); *insn_len = 4; reloc = (N32_OP6 (re_insn) == N32_OP6_BR1) ? R_NDS32_15_PCREL_RELA : R_NDS32_17_PCREL_RELA; cond_reloc = R_NDS32_INSN16; } else { bfd_putb16 (re_insn16, contents + irel->r_offset); *insn_len = 2; reloc = R_NDS32_9_PCREL_RELA; cond_reloc = R_NDS32_NONE; } } else if (N32_OP6 (re_insn) == N32_OP6_BR1 && (foff >= -(ACCURATE_14BIT_S1 - first_size) && foff < ACCURATE_14BIT_S1 - first_size)) { /* beqs label ; 15_PCREL */ bfd_putb32 (re_insn, contents + irel->r_offset); *insn_len = 4; reloc = R_NDS32_15_PCREL_RELA; cond_reloc = R_NDS32_NONE; } else if (N32_OP6 (re_insn) == N32_OP6_BR2 && foff >= -CONSERVATIVE_16BIT_S1 && foff < CONSERVATIVE_16BIT_S1) { /* beqz label ; 17_PCREL */ bfd_putb32 (re_insn, contents + irel->r_offset); *insn_len = 4; reloc = R_NDS32_17_PCREL_RELA; cond_reloc = R_NDS32_NONE; } else return FALSE; /* Set all relocations. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (i2_irelfn->r_info), reloc); irel->r_addend = i2_irelfn->r_addend; cond_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irelfn->r_info), cond_reloc); cond_irelfn->r_addend = 0; if ((seq_len ^ *insn_len ) & 0x2) { insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + irel->r_offset + 4); i2_irelfn->r_offset = 4; i2_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (i2_irelfn->r_info), R_NDS32_INSN16); i2_irelfn->r_addend = R_NDS32_INSN16_CONVERT_FLAG; *insn_len += 2; } else i2_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (i2_irelfn->r_info), R_NDS32_NONE); return TRUE; } /* Relax LONGJUMP3 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longjump3 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* There are 5 variations for LONGJUMP3 case 1: 2-4-4-2; 1st insn convertible, 16-bit on, optimize off or optimize for space bnes38 rt, ra, $1 ; LONGJUMP3 sethi ta, hi20(symbol) ; HI20 ori ta, ta, lo12(symbol) ; LO12S0 jr5 ta ; $1: ; case 2: 2-4-4-2; 1st insn convertible, 16-bit on, optimize for speed bnes38 rt, ra, $1 ; LONGJUMP3 sethi ta, hi20(symbol) ; HI20 ori ta, ta, lo12(symbol) ; LO12S0 jr5 ta ; $1: ; LABEL case 3: 4-4-4-2; 1st insn not convertible, 16-bit on, optimize off or optimize for space bne rt, ra, $1 ; LONGJUMP3 sethi ta, hi20(symbol) ; HI20 ori ta, ta, lo12(symbol) ; LO12S0 jr5 ta ; $1: ; case 4: 4-4-4-4; 1st insn don't care, 16-bit off, optimize don't care 16-bit off if no INSN16 bne rt, ra, $1 ; LONGJUMP3 sethi ta, hi20(symbol) ; HI20 ori ta, ta, lo12(symbol) ; LO12S0 jr ta ; $1: ; case 5: 4-4-4-4; 1st insn not convertible, 16-bit on, optimize for speed 16-bit off if no INSN16 bne rt, ra, $1 ; LONGJUMP3 sethi ta, hi20(symbol) ; HI20 ori ta, ta, lo12(symbol) ; LO12S0 jr ta ; $1: ; LABEL */ /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ enum elf_nds32_reloc_type checked_types[] = { R_NDS32_15_PCREL_RELA, R_NDS32_9_PCREL_RELA }; int reloc_off = 0, cond_removed = 0, convertible; bfd_vma laddr; int seq_len; /* Original length of instruction sequence. */ Elf_Internal_Rela *hi_irelfn, *lo_irelfn, *cond_irelfn, *irelend; int pic_ext_target = 0, first_size; unsigned int i; bfd_signed_vma foff; uint32_t insn, re_insn = 0; uint16_t insn16, re_insn16 = 0; unsigned long reloc, cond_reloc; irelend = internal_relocs + sec->reloc_count; seq_len = GET_SEQ_LEN (irel->r_addend); laddr = irel->r_offset; *insn_len = seq_len; convertible = IS_1ST_CONVERT (irel->r_addend); if (convertible) first_size = 2; else first_size = 4; /* Get all needed relocations. */ hi_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_HI20_RELA, laddr + first_size); lo_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_LO12S0_ORI_RELA, laddr + first_size + 4); for (i = 0; i < sizeof (checked_types) / sizeof (checked_types[0]); i++) { cond_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, checked_types[i], laddr); if (cond_irelfn != irelend) break; } if (hi_irelfn == irelend || lo_irelfn == irelend || cond_irelfn == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGJUMP3", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, hi_irelfn, isymbuf, symtab_hdr, &pic_ext_target); if (pic_ext_target || foff == 0 || foff < -CONSERVATIVE_24BIT_S1 || foff >= CONSERVATIVE_24BIT_S1) return FALSE; /* Get the all corresponding instructions. */ if (first_size == 4) { insn = bfd_getb32 (contents + laddr); nds32_elf_convert_branch (0, insn, &re_insn16, &re_insn); } else { insn16 = bfd_getb16 (contents + laddr); nds32_elf_convert_branch (insn16, 0, &re_insn16, &re_insn); } /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ if (re_insn16 && foff >= -ACCURATE_8BIT_S1 - first_size && foff < ACCURATE_8BIT_S1 - first_size) { if (!(seq_len & 0x2)) { /* Don't convert it to 16-bit now, keep this as relaxable for ``label reloc; INSN1a''6. */ /* Save comp_insn32 to buffer. */ bfd_putb32 (re_insn, contents + irel->r_offset); *insn_len = 4; reloc = (N32_OP6 (re_insn) == N32_OP6_BR1) ? R_NDS32_15_PCREL_RELA : R_NDS32_17_PCREL_RELA; cond_reloc = R_NDS32_INSN16; } else { /* Not optimize for speed; convert sequence to 16-bit. */ /* Save comp_insn16 to buffer. */ bfd_putb16 (re_insn16, contents + irel->r_offset); *insn_len = 2; reloc = R_NDS32_9_PCREL_RELA; cond_reloc = R_NDS32_NONE; } cond_removed = 1; } else if (N32_OP6 (re_insn) == N32_OP6_BR1 && (foff >= -(ACCURATE_14BIT_S1 - first_size) && foff < ACCURATE_14BIT_S1 - first_size)) { /* beqs label ; 15_PCREL */ bfd_putb32 (re_insn, contents + irel->r_offset); *insn_len = 4; reloc = R_NDS32_15_PCREL_RELA; cond_reloc = R_NDS32_NONE; cond_removed = 1; } else if (N32_OP6 (re_insn) == N32_OP6_BR2 && foff >= -CONSERVATIVE_16BIT_S1 && foff < CONSERVATIVE_16BIT_S1) { /* beqz label ; 17_PCREL */ bfd_putb32 (re_insn, contents + irel->r_offset); *insn_len = 4; reloc = R_NDS32_17_PCREL_RELA; cond_reloc = R_NDS32_NONE; cond_removed = 1; } else if (foff >= -CONSERVATIVE_24BIT_S1 - reloc_off && foff < CONSERVATIVE_24BIT_S1 - reloc_off) { /* Relax to one of the following 3 variations case 2-4; 1st insn convertible, 16-bit on, optimize off or optimize for space bnes38 rt, $1 ; LONGJUMP2 j label ; 25_PCREL $1 case 4-4; 1st insn not convertible, others don't care bne rt, ra, $1 ; LONGJUMP2 j label ; 25_PCREL $1 case 4-4; 1st insn convertible, 16-bit on, optimize for speed bne rt, ra, $1 ; LONGJUMP2 j label ; 25_PCREL $1 */ /* Offset for first instruction. */ /* Use j label as second instruction. */ *insn_len = 4 + first_size; insn = INSN_J; bfd_putb32 (insn, contents + hi_irelfn->r_offset); reloc = R_NDS32_LONGJUMP2; cond_reloc = R_NDS32_25_PLTREL; } else return FALSE; if (cond_removed == 1) { /* Set all relocations. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), reloc); irel->r_addend = hi_irelfn->r_addend; cond_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irelfn->r_info), cond_reloc); cond_irelfn->r_addend = 0; hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_NDS32_NONE); } else { irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), reloc); irel->r_addend = irel->r_addend; hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), cond_reloc); } if ((seq_len ^ *insn_len ) & 0x2) { insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + irel->r_offset + *insn_len); lo_irelfn->r_offset = *insn_len; lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_NDS32_INSN16); lo_irelfn->r_addend = R_NDS32_INSN16_CONVERT_FLAG; *insn_len += 2; } else lo_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (lo_irelfn->r_info), R_NDS32_NONE); return TRUE; } /* Relax LONGCALL4 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longcall4 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* The pattern for LONGCALL4. Support for function cse. sethi ta, hi20(symbol) ; LONGCALL4/HI20 ori ta, ta, lo12(symbol) ; LO12S0_ORI/PTR jral ta ; PTR_RES/EMPTY/INSN16 */ bfd_vma laddr; uint32_t insn; Elf_Internal_Rela *hi_irel, *ptr_irel, *insn_irel, *em_irel, *call_irel; Elf_Internal_Rela *irelend; int pic_ext_target = 0; bfd_signed_vma foff; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ hi_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_HI20_RELA, laddr); if (hi_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGCALL4", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, hi_irel, isymbuf, symtab_hdr, &pic_ext_target); /* This condition only happened when symbol is undefined. */ if (pic_ext_target || foff == 0 || foff < -CONSERVATIVE_24BIT_S1 || foff >= CONSERVATIVE_24BIT_S1) return FALSE; /* Relax to: jal symbol; 25_PCREL */ /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ ptr_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED, irel->r_addend); em_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_EMPTY, irel->r_addend); if (ptr_irel == irelend || em_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGCALL4", (long) irel->r_offset); return FALSE; } /* Check these is enough space to insert jal in R_NDS32_EMPTY. */ insn = bfd_getb32 (contents + irel->r_addend); if (insn & 0x80000000) return FALSE; /* Replace the long call with a jal. */ em_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (em_irel->r_info), R_NDS32_25_PCREL_RELA); ptr_irel->r_addend = 1; /* We don't resolve this here but resolve it in relocate_section. */ insn = INSN_JAL; bfd_putb32 (insn, contents + em_irel->r_offset); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); /* If there is function cse, HI20 can not remove now. */ call_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_LONGCALL4, laddr); if (call_irel == irelend) { *insn_len = 0; hi_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irel->r_info), R_NDS32_NONE); } insn_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_INSN16, irel->r_addend); if (insn_irel != irelend) insn_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); return TRUE; } /* Relax LONGCALL5 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longcall5 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* The pattern for LONGCALL5. bltz rt, .L1 ; LONGCALL5/17_PCREL jal symbol ; 25_PCREL .L1: */ bfd_vma laddr; uint32_t insn; Elf_Internal_Rela *cond_irel, *irelend; int pic_ext_target = 0; bfd_signed_vma foff; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; insn = bfd_getb32 (contents + laddr); /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_25_PCREL_RELA, irel->r_addend); if (cond_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGCALL5", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, cond_irel, isymbuf, symtab_hdr, &pic_ext_target); if (foff == 0 || foff < -CONSERVATIVE_16BIT_S1 || foff >= CONSERVATIVE_16BIT_S1) return FALSE; /* Relax to bgezal rt, label ; 17_PCREL or bltzal rt, label ; 17_PCREL */ /* Convert to complimentary conditional call. */ insn = CONVERT_CONDITION_CALL (insn); /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ /* Modify relocation and contents. */ cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_17_PCREL_RELA); /* Replace the long call with a bgezal. */ bfd_putb32 (insn, contents + cond_irel->r_offset); *insn_len = 0; /* Clean unnessary relocations. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_17_PCREL_RELA, laddr); cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_NONE); return TRUE; } /* Relax LONGCALL6 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longcall6 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* The pattern for LONGCALL6. bltz rt, .L1 ; LONGCALL6/17_PCREL sethi ta, hi20(symbol) ; HI20/PTR ori ta, ta, lo12(symbol) ; LO12S0_ORI/PTR jral ta ; PTR_RES/EMPTY/INSN16 .L1 */ bfd_vma laddr; uint32_t insn; Elf_Internal_Rela *em_irel, *cond_irel, *irelend; int pic_ext_target = 0; bfd_signed_vma foff; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ em_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_EMPTY, irel->r_addend); if (em_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGCALL6", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, em_irel, isymbuf, symtab_hdr, &pic_ext_target); if (pic_ext_target || foff == 0 || foff < -CONSERVATIVE_24BIT_S1 || foff >= CONSERVATIVE_24BIT_S1) return FALSE; /* Check these is enough space to insert jal in R_NDS32_EMPTY. */ insn = bfd_getb32 (contents + irel->r_addend); if (insn & 0x80000000) return FALSE; insn = bfd_getb32 (contents + laddr); if (foff >= -CONSERVATIVE_16BIT_S1 && foff < CONSERVATIVE_16BIT_S1) { /* Relax to bgezal rt, label ; 17_PCREL or bltzal rt, label ; 17_PCREL */ /* Convert to complimentary conditional call. */ *insn_len = 0; insn = CONVERT_CONDITION_CALL (insn); bfd_putb32 (insn, contents + em_irel->r_offset); em_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (em_irel->r_info), R_NDS32_17_PCREL_RELA); /* Set resolved relocation. */ cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED, irel->r_addend); if (cond_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGCALL6", (long) irel->r_offset); return FALSE; } cond_irel->r_addend = 1; /* Clear relocations. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_17_PCREL_RELA, laddr); if (cond_irel != irelend) cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_NONE); cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_INSN16, irel->r_addend); if (cond_irel != irelend) cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_NONE); } else if (foff >= -CONSERVATIVE_24BIT_S1 && foff < CONSERVATIVE_24BIT_S1) { /* Relax to the following instruction sequence bltz rt, .L1 ; LONGCALL2/17_PCREL jal symbol ; 25_PCREL/PTR_RES .L1 */ *insn_len = 4; /* Convert instruction. */ insn = INSN_JAL; bfd_putb32 (insn, contents + em_irel->r_offset); /* Convert relocations. */ em_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (em_irel->r_info), R_NDS32_25_PCREL_RELA); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_LONGCALL5); /* Set resolved relocation. */ cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED, irel->r_addend); if (cond_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGCALL6", (long) irel->r_offset); return FALSE; } cond_irel->r_addend = 1; cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_INSN16, irel->r_addend); if (cond_irel != irelend) cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_NONE); } return TRUE; } /* Relax LONGJUMP4 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longjump4 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* The pattern for LONGJUMP4. sethi ta, hi20(symbol) ; LONGJUMP4/HI20 ori ta, ta, lo12(symbol) ; LO12S0_ORI/PTR jr ta ; PTR_RES/INSN16/EMPTY */ bfd_vma laddr; int seq_len; /* Original length of instruction sequence. */ uint32_t insn; Elf_Internal_Rela *hi_irel, *ptr_irel, *em_irel, *call_irel, *irelend; int pic_ext_target = 0; bfd_signed_vma foff; irelend = internal_relocs + sec->reloc_count; seq_len = GET_SEQ_LEN (irel->r_addend); laddr = irel->r_offset; *insn_len = seq_len; /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ hi_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_HI20_RELA, laddr); if (hi_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGJUMP4", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, hi_irel, isymbuf, symtab_hdr, &pic_ext_target); if (pic_ext_target || foff == 0 || foff >= CONSERVATIVE_24BIT_S1 || foff < -CONSERVATIVE_24BIT_S1) return FALSE; /* Convert it to "j label", it may be converted to j8 in the final pass of relaxation. Therefore, we do not consider this currently. */ ptr_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED, irel->r_addend); em_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_EMPTY, irel->r_addend); if (ptr_irel == irelend || em_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGJUMP4", (long) irel->r_offset); return FALSE; } em_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (em_irel->r_info), R_NDS32_25_PCREL_RELA); ptr_irel->r_addend = 1; /* Write instruction. */ insn = INSN_J; bfd_putb32 (insn, contents + em_irel->r_offset); /* Clear relocations. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); /* If there is function cse, HI20 can not remove now. */ call_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_LONGJUMP4, laddr); if (call_irel == irelend) { *insn_len = 0; hi_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irel->r_info), R_NDS32_NONE); } return TRUE; } /* Relax LONGJUMP5 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longjump5 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, int *seq_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* There are 2 variations for LONGJUMP5 case 2-4; 1st insn convertible, 16-bit on. bnes38 rt, ra, .L1 ; LONGJUMP5/9_PCREL/INSN16 j label ; 25_PCREL/INSN16 $1: case 4-4; 1st insn not convertible bne rt, ra, .L1 ; LONGJUMP5/15_PCREL/INSN16 j label ; 25_PCREL/INSN16 .L1: */ bfd_vma laddr; Elf_Internal_Rela *cond_irel, *irelend; int pic_ext_target = 0; unsigned int i; bfd_signed_vma foff; uint32_t insn, re_insn = 0; uint16_t insn16, re_insn16 = 0; unsigned long reloc; enum elf_nds32_reloc_type checked_types[] = { R_NDS32_17_PCREL_RELA, R_NDS32_15_PCREL_RELA, R_NDS32_9_PCREL_RELA, R_NDS32_INSN16 }; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_25_PCREL_RELA, irel->r_addend); if (cond_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGJUMP5", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, cond_irel, isymbuf, symtab_hdr, &pic_ext_target); if (pic_ext_target || foff == 0 || foff < -CONSERVATIVE_16BIT_S1 || foff >= CONSERVATIVE_16BIT_S1) return FALSE; /* Get the all corresponding instructions. */ insn = bfd_getb32 (contents + laddr); /* Check instruction size. */ if (insn & 0x80000000) { *seq_len = 0; insn16 = insn >> 16; nds32_elf_convert_branch (insn16, 0, &re_insn16, &re_insn); } else nds32_elf_convert_branch (0, insn, &re_insn16, &re_insn); if (N32_OP6 (re_insn) == N32_OP6_BR1 && (foff >= -CONSERVATIVE_14BIT_S1 && foff < CONSERVATIVE_14BIT_S1)) { /* beqs label ; 15_PCREL. */ bfd_putb32 (re_insn, contents + cond_irel->r_offset); reloc = R_NDS32_15_PCREL_RELA; } else if (N32_OP6 (re_insn) == N32_OP6_BR2 && foff >= -CONSERVATIVE_16BIT_S1 && foff < CONSERVATIVE_16BIT_S1) { /* beqz label ; 17_PCREL. */ bfd_putb32 (re_insn, contents + cond_irel->r_offset); reloc = R_NDS32_17_PCREL_RELA; } else if ( N32_OP6 (re_insn) == N32_OP6_BR3 && foff >= -CONSERVATIVE_8BIT_S1 && foff < CONSERVATIVE_8BIT_S1) { /* beqc label ; 9_PCREL. */ bfd_putb32 (re_insn, contents + cond_irel->r_offset); reloc = R_NDS32_WORD_9_PCREL_RELA; } else return FALSE; /* Set all relocations. */ cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), reloc); /* Clean relocations. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); for (i = 0; i < sizeof (checked_types) / sizeof (checked_types[0]); i++) { cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, checked_types[i], laddr); if (cond_irel != irelend) { if (*seq_len == 0 && (ELF32_R_TYPE (cond_irel->r_info) == R_NDS32_INSN16)) { /* If the branch instruction is 2 byte, it cannot remove directly. Only convert it to nop16 and remove it after checking alignment issue. */ insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + laddr); cond_irel->r_addend = R_NDS32_INSN16_CONVERT_FLAG; } else cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_NONE); } } *insn_len = 0; return TRUE; } /* Relax LONGJUMP6 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longjump6 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, int *seq_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* There are 5 variations for LONGJUMP6 case : 2-4-4-4; 1st insn convertible, 16-bit on. bnes38 rt, ra, .L1 ; LONGJUMP6/15_PCREL/INSN16 sethi ta, hi20(symbol) ; HI20/PTR ori ta, ta, lo12(symbol) ; LO12S0_ORI/PTR jr ta ; PTR_RES/INSN16/EMPTY .L1: case : 4-4-4-4; 1st insn not convertible, 16-bit on. bne rt, ra, .L1 ; LONGJUMP6/15_PCREL/INSN16 sethi ta, hi20(symbol) ; HI20/PTR ori ta, ta, lo12(symbol) ; LO12S0_ORI/PTR jr ta ; PTR_RES/INSN16/EMPTY .L1: */ enum elf_nds32_reloc_type checked_types[] = { R_NDS32_17_PCREL_RELA, R_NDS32_15_PCREL_RELA, R_NDS32_9_PCREL_RELA, R_NDS32_INSN16 }; int reloc_off = 0, cond_removed = 0; bfd_vma laddr; Elf_Internal_Rela *cond_irel, *em_irel, *irelend, *insn_irel; int pic_ext_target = 0; unsigned int i; bfd_signed_vma foff; uint32_t insn, re_insn = 0; uint16_t insn16, re_insn16 = 0; unsigned long reloc; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ em_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_EMPTY, irel->r_addend); if (em_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGJUMP6", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, em_irel, isymbuf, symtab_hdr, &pic_ext_target); if (pic_ext_target || foff == 0 || foff < -CONSERVATIVE_24BIT_S1 || foff >= CONSERVATIVE_24BIT_S1) return FALSE; insn = bfd_getb32 (contents + laddr); /* Check instruction size. */ if (insn & 0x80000000) { *seq_len = 0; insn16 = insn >> 16; nds32_elf_convert_branch (insn16, 0, &re_insn16, &re_insn); } else nds32_elf_convert_branch (0, insn, &re_insn16, &re_insn); /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ if (N32_OP6 (re_insn) == N32_OP6_BR1 && (foff >= -CONSERVATIVE_14BIT_S1 && foff < CONSERVATIVE_14BIT_S1)) { /* beqs label ; 15_PCREL */ bfd_putb32 (re_insn, contents + em_irel->r_offset); reloc = R_NDS32_15_PCREL_RELA; cond_removed = 1; } else if (N32_OP6 (re_insn) == N32_OP6_BR2 && foff >= -CONSERVATIVE_16BIT_S1 && foff < CONSERVATIVE_16BIT_S1) { /* beqz label ; 17_PCREL */ bfd_putb32 (re_insn, contents + em_irel->r_offset); reloc = R_NDS32_17_PCREL_RELA; cond_removed = 1; } else if (foff >= -CONSERVATIVE_24BIT_S1 - reloc_off && foff < CONSERVATIVE_24BIT_S1 - reloc_off) { /* Relax to one of the following 2 variations case 2-4; 1st insn convertible, 16-bit on. bnes38 rt, ra, .L1 ; LONGJUMP5/9_PCREL/INSN16 j label ; 25_PCREL/INSN16 $1: case 4-4; 1st insn not convertible bne rt, ra, .L1 ; LONGJUMP5/15_PCREL/INSN16 j label ; 25_PCREL/INSN16 .L1: */ /* Use j label as second instruction. */ insn = INSN_J; reloc = R_NDS32_25_PCREL_RELA; bfd_putb32 (insn, contents + em_irel->r_offset); } else return FALSE; /* Set all relocations. */ em_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (em_irel->r_info), reloc); cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED, em_irel->r_offset); cond_irel->r_addend = 1; /* Use INSN16 of first branch instruction to distinguish if keeping INSN16 of final instruction or not. */ insn_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_INSN16, irel->r_offset); if (insn_irel == irelend) { /* Clean the final INSN16. */ insn_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_INSN16, em_irel->r_offset); insn_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_NONE); } if (cond_removed == 1) { *insn_len = 0; /* Clear relocations. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); for (i = 0; i < sizeof (checked_types) / sizeof (checked_types[0]); i++) { cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, checked_types[i], laddr); if (cond_irel != irelend) { if (*seq_len == 0 && (ELF32_R_TYPE (cond_irel->r_info) == R_NDS32_INSN16)) { /* If the branch instruction is 2 byte, it cannot remove directly. Only convert it to nop16 and remove it after checking alignment issue. */ insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + laddr); cond_irel->r_addend = R_NDS32_INSN16_CONVERT_FLAG; } else cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_NONE); } } } else { irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_LONGJUMP5); } return TRUE; } /* Relax LONGJUMP7 relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_longjump7 (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, int *seq_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { /* There are 2 variations for LONGJUMP5 case 2-4; 1st insn convertible, 16-bit on. movi55 ta, imm11 ; LONGJUMP7/INSN16 beq rt, ta, label ; 15_PCREL case 4-4; 1st insn not convertible movi55 ta, imm11 ; LONGJUMP7/INSN16 beq rt, ta, label ; 15_PCREL */ bfd_vma laddr; Elf_Internal_Rela *cond_irel, *irelend, *insn_irel; int pic_ext_target = 0; bfd_signed_vma foff; uint32_t insn, re_insn = 0; uint16_t insn16; uint32_t imm11; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; /* Get the reloc for the address from which the register is being loaded. This reloc will tell us which function is actually being called. */ cond_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_15_PCREL_RELA, irel->r_addend); if (cond_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LONGJUMP7", (long) irel->r_offset); return FALSE; } /* Get the value of the symbol referred to by the reloc. */ foff = calculate_offset (abfd, sec, cond_irel, isymbuf, symtab_hdr, &pic_ext_target); if (pic_ext_target || foff == 0 || foff < -CONSERVATIVE_8BIT_S1 || foff >= CONSERVATIVE_8BIT_S1) return FALSE; /* Get the first instruction for its size. */ insn = bfd_getb32 (contents + laddr); if (insn & 0x80000000) { *seq_len = 0; /* Get the immediate from movi55. */ imm11 = N16_IMM5S (insn >> 16); } else { /* Get the immediate from movi. */ imm11 = N32_IMM20S (insn); } /* Get the branch instruction. */ insn = bfd_getb32 (contents + irel->r_addend); /* Convert instruction to BR3. */ if ((insn >> 14) & 0x1) re_insn = N32_BR3 (BNEC, N32_RT5 (insn), imm11, 0); else re_insn = N32_BR3 (BEQC, N32_RT5 (insn), imm11, 0); bfd_putb32 (re_insn, contents + cond_irel->r_offset); /* Set all relocations. */ cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_WORD_9_PCREL_RELA); /* Clean relocations. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); insn_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_INSN16, irel->r_offset); if (insn_irel != irelend) { if (*seq_len == 0) { /* If the first insntruction is 16bit, convert it to nop16. */ insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + laddr); insn_irel->r_addend = R_NDS32_INSN16_CONVERT_FLAG; } else cond_irel->r_info = ELF32_R_INFO (ELF32_R_SYM (cond_irel->r_info), R_NDS32_NONE); } *insn_len = 0; return TRUE; } #define GET_LOADSTORE_RANGE(addend) (((addend) >> 8) & 0x3f) /* Relax LOADSTORE relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_loadstore (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr, int load_store_relax) { int eliminate_sethi = 0, range_type; unsigned int i; bfd_vma local_sda, laddr; int seq_len; /* Original length of instruction sequence. */ uint32_t insn; Elf_Internal_Rela *hi_irelfn = NULL, *irelend; bfd_vma access_addr = 0; bfd_vma range_l = 0, range_h = 0; /* Upper/lower bound. */ enum elf_nds32_reloc_type checked_types[] = { R_NDS32_HI20_RELA, R_NDS32_GOT_HI20, R_NDS32_GOTPC_HI20, R_NDS32_GOTOFF_HI20, R_NDS32_PLTREL_HI20, R_NDS32_PLT_GOTREL_HI20, R_NDS32_TLS_LE_HI20 }; irelend = internal_relocs + sec->reloc_count; seq_len = GET_SEQ_LEN (irel->r_addend); laddr = irel->r_offset; *insn_len = seq_len; /* Get the high part relocation. */ for (i = 0; i < ARRAY_SIZE (checked_types); i++) { hi_irelfn = find_relocs_at_address_addr (irel, internal_relocs, irelend, checked_types[i], laddr); if (hi_irelfn != irelend) break; } if (hi_irelfn == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_LOADSTORE", (long) irel->r_offset); return FALSE; } range_type = GET_LOADSTORE_RANGE (irel->r_addend); nds32_elf_final_sda_base (sec->output_section->owner, link_info, &local_sda, FALSE); switch (ELF32_R_TYPE (hi_irelfn->r_info)) { case R_NDS32_HI20_RELA: insn = bfd_getb32 (contents + laddr); access_addr = calculate_memory_address (abfd, hi_irelfn, isymbuf, symtab_hdr); if (range_type == NDS32_LOADSTORE_IMM) { struct elf_link_hash_entry *h = NULL; int indx; if (ELF32_R_SYM (hi_irelfn->r_info) >= symtab_hdr->sh_info) { indx = ELF32_R_SYM (hi_irelfn->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; } if ((access_addr < CONSERVATIVE_20BIT) && (!h || (h && strcmp (h->root.root.string, FP_BASE_NAME) != 0))) { eliminate_sethi = 1; break; } /* This is avoid to relax symbol address which is fixed relocations. Ex: _stack. */ if (h && bfd_is_abs_section (h->root.u.def.section)) return FALSE; } if (!load_store_relax) return FALSE; /* Case for set gp register. */ if (N32_RT5 (insn) == REG_GP) break; if (range_type == NDS32_LOADSTORE_FLOAT_S || range_type == NDS32_LOADSTORE_FLOAT_S) { range_l = sdata_range[0][0]; range_h = sdata_range[0][1]; } else { range_l = sdata_range[1][0]; range_h = sdata_range[1][1]; } break; case R_NDS32_GOT_HI20: access_addr = calculate_got_memory_address (abfd, link_info, hi_irelfn, symtab_hdr); /* If this symbol is not in .got, the return value will be -1. Since the gp value is set to SDA_BASE but not GLOBAL_OFFSET_TABLE, a negative offset is allowed. */ if ((bfd_signed_vma) (access_addr - local_sda) < CONSERVATIVE_20BIT && (bfd_signed_vma) (access_addr - local_sda) >= -CONSERVATIVE_20BIT) eliminate_sethi = 1; break; case R_NDS32_PLT_GOTREL_HI20: access_addr = calculate_plt_memory_address (abfd, link_info, isymbuf, hi_irelfn, symtab_hdr); if ((bfd_signed_vma) (access_addr - local_sda) < CONSERVATIVE_20BIT && (bfd_signed_vma) (access_addr - local_sda) >= -CONSERVATIVE_20BIT) eliminate_sethi = 1; break; case R_NDS32_GOTOFF_HI20: access_addr = calculate_memory_address (abfd, hi_irelfn, isymbuf, symtab_hdr); if ((bfd_signed_vma) (access_addr - local_sda) < CONSERVATIVE_20BIT && (bfd_signed_vma) (access_addr - local_sda) >= -CONSERVATIVE_20BIT) eliminate_sethi = 1; break; case R_NDS32_GOTPC_HI20: /* The access_addr must consider r_addend of hi_irel. */ access_addr = sec->output_section->vma + sec->output_offset + irel->r_offset + hi_irelfn->r_addend; if ((bfd_signed_vma) (local_sda - access_addr) < CONSERVATIVE_20BIT && (bfd_signed_vma) (local_sda - access_addr) >= -CONSERVATIVE_20BIT) eliminate_sethi = 1; break; case R_NDS32_TLS_LE_HI20: access_addr = calculate_memory_address (abfd, hi_irelfn, isymbuf, symtab_hdr); BFD_ASSERT (elf_hash_table (link_info)->tls_sec != NULL); access_addr -= (elf_hash_table (link_info)->tls_sec->vma + TP_OFFSET); if ((range_type == NDS32_LOADSTORE_IMM) && (bfd_signed_vma) (access_addr) < CONSERVATIVE_20BIT && (bfd_signed_vma) (access_addr) >= -CONSERVATIVE_20BIT) eliminate_sethi = 1; break; default: return FALSE; } /* Delete sethi instruction. */ if (eliminate_sethi == 1 || (local_sda <= access_addr && (access_addr - local_sda) < range_h) || (local_sda > access_addr && (local_sda - access_addr) <= range_l)) { hi_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (hi_irelfn->r_info), R_NDS32_NONE); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); *insn_len = 0; } return TRUE; } /* Relax LO12 relocation for nds32_elf_relax_section. */ static void nds32_elf_relax_lo12 (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { uint32_t insn; bfd_vma local_sda, laddr; unsigned long reloc; bfd_vma access_addr; bfd_vma range_l = 0, range_h = 0; /* Upper/lower bound. */ Elf_Internal_Rela *irelfn = NULL, *irelend; struct elf_link_hash_entry *h = NULL; int indx; /* For SDA base relative relaxation. */ nds32_elf_final_sda_base (sec->output_section->owner, link_info, &local_sda, FALSE); irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; insn = bfd_getb32 (contents + laddr); if (!is_sda_access_insn (insn) && N32_OP6 (insn) != N32_OP6_ORI) return; access_addr = calculate_memory_address (abfd, irel, isymbuf, symtab_hdr); if (ELF32_R_SYM (irel->r_info) >= symtab_hdr->sh_info) { indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; } if (N32_OP6 (insn) == N32_OP6_ORI && access_addr < CONSERVATIVE_20BIT && (!h || (h && strcmp (h->root.root.string, FP_BASE_NAME) != 0))) { reloc = R_NDS32_20_RELA; irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), reloc); insn = N32_TYPE1 (MOVI, N32_RT5 (insn), 0); bfd_putb32 (insn, contents + laddr); } /* This is avoid to relax symbol address which is fixed relocations. Ex: _stack. */ else if (N32_OP6 (insn) == N32_OP6_ORI && h && bfd_is_abs_section (h->root.u.def.section)) return; else { range_l = sdata_range[1][0]; range_h = sdata_range[1][1]; switch (ELF32_R_TYPE (irel->r_info)) { case R_NDS32_LO12S0_RELA: reloc = R_NDS32_SDA19S0_RELA; break; case R_NDS32_LO12S1_RELA: reloc = R_NDS32_SDA18S1_RELA; break; case R_NDS32_LO12S2_RELA: reloc = R_NDS32_SDA17S2_RELA; break; case R_NDS32_LO12S2_DP_RELA: range_l = sdata_range[0][0]; range_h = sdata_range[0][1]; reloc = R_NDS32_SDA12S2_DP_RELA; break; case R_NDS32_LO12S2_SP_RELA: range_l = sdata_range[0][0]; range_h = sdata_range[0][1]; reloc = R_NDS32_SDA12S2_SP_RELA; break; default: return; } /* There are range_h and range_l because linker has to promise all sections move cross one page together. */ if ((local_sda <= access_addr && (access_addr - local_sda) < range_h) || (local_sda > access_addr && (local_sda - access_addr) <= range_l)) { if (N32_OP6 (insn) == N32_OP6_ORI && N32_RT5 (insn) == REG_GP) { /* Maybe we should add R_NDS32_INSN16 reloc type here or manually do some optimization. sethi can't be eliminated when updating $gp so the relative ori needs to be preserved. */ return; } if (!turn_insn_to_sda_access (insn, ELF32_R_TYPE (irel->r_info), &insn)) return; irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), reloc); bfd_putb32 (insn, contents + laddr); irelfn = find_relocs_at_address (irel, internal_relocs, irelend, R_NDS32_INSN16); /* SDA17 must keep INSN16 for converting fp_as_gp. */ if (irelfn != irelend && reloc != R_NDS32_SDA17S2_RELA) irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_NDS32_NONE); } } return; } /* Relax low part of PIC instruction pattern. */ static void nds32_elf_relax_piclo12 (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *irel, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { uint32_t insn; bfd_vma local_sda, laddr; bfd_signed_vma foff; unsigned long reloc; nds32_elf_final_sda_base (sec->output_section->owner, link_info, &local_sda, FALSE); laddr = irel->r_offset; insn = bfd_getb32 (contents + laddr); if (N32_OP6 (insn) != N32_OP6_ORI) return; if (ELF32_R_TYPE (irel->r_info) == R_NDS32_GOT_LO12) { foff = calculate_got_memory_address (abfd, link_info, irel, symtab_hdr) - local_sda; reloc = R_NDS32_GOT20; } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_PLT_GOTREL_LO12) { foff = calculate_plt_memory_address (abfd, link_info, isymbuf, irel, symtab_hdr) - local_sda; reloc = R_NDS32_PLT_GOTREL_LO20; } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_GOTOFF_LO12) { foff = calculate_memory_address (abfd, irel, isymbuf, symtab_hdr) - local_sda; reloc = R_NDS32_GOTOFF; } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_GOTPC_LO12) { foff = local_sda - sec->output_section->vma + sec->output_offset + irel->r_offset + irel->r_addend; reloc = R_NDS32_GOTPC20; } else return; if ((foff < CONSERVATIVE_20BIT) && (foff >= -CONSERVATIVE_20BIT)) { /* Turn into MOVI. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), reloc); insn = N32_TYPE1 (MOVI, N32_RT5 (insn), 0); bfd_putb32 (insn, contents + laddr); } } /* Relax low part of LE TLS instruction pattern. */ static void nds32_elf_relax_letlslo12 (struct bfd_link_info *link_info, bfd *abfd, Elf_Internal_Rela *irel, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr) { uint32_t insn; bfd_vma laddr; bfd_signed_vma foff; unsigned long reloc; laddr = irel->r_offset; foff = calculate_memory_address (abfd, irel, isymbuf, symtab_hdr); BFD_ASSERT (elf_hash_table (link_info)->tls_sec != NULL); foff -= (elf_hash_table (link_info)->tls_sec->vma + TP_OFFSET); insn = bfd_getb32 (contents + laddr); if ( (bfd_signed_vma) (foff) < CONSERVATIVE_20BIT && (bfd_signed_vma) (foff) >= -CONSERVATIVE_20BIT) { /* Pattern sethi-ori transform to movi. */ reloc = R_NDS32_TLS_LE_20; irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), reloc); insn = N32_TYPE1 (MOVI, N32_RT5 (insn), 0); bfd_putb32 (insn, contents + laddr); } } /* Relax LE TLS calculate address instruction pattern. */ static void nds32_elf_relax_letlsadd (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr, bfd_boolean *again) { /* Local TLS non-pic sethi ta, hi20(symbol@tpoff) ; TLS_LE_HI20 ori ta, ta, lo12(symbol@tpoff) ; TLS_LE_LO12 add ra, ta, tp ; TLS_LE_ADD */ uint32_t insn; bfd_vma laddr; bfd_signed_vma foff; Elf_Internal_Rela *i1_irelfn, *irelend; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; insn = bfd_getb32 (contents + laddr); i1_irelfn = find_relocs_at_address (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED); foff = calculate_memory_address (abfd, irel, isymbuf, symtab_hdr); BFD_ASSERT (elf_hash_table (link_info)->tls_sec != NULL); foff -= (elf_hash_table (link_info)->tls_sec->vma + TP_OFFSET); /* The range is +/-16k. */ if ((bfd_signed_vma) (foff) < CONSERVATIVE_15BIT && (bfd_signed_vma) (foff) >= -CONSERVATIVE_15BIT) { /* Transform add to addi. */ insn = N32_TYPE2 (ADDI, N32_RT5 (insn), N32_RB5 (insn), 0); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_TLS_LE_15S0); bfd_putb32 (insn, contents + laddr); if (i1_irelfn != irelend) { i1_irelfn->r_addend |= 1; *again = TRUE; } } } /* Relax LE TLS load store instruction pattern. */ static void nds32_elf_relax_letlsls (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr, bfd_boolean *again) { uint32_t insn; bfd_vma laddr; bfd_signed_vma foff; Elf_Internal_Rela *i1_irelfn, *irelend; int success = 0; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; insn = bfd_getb32 (contents + laddr); i1_irelfn = find_relocs_at_address (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED); foff = calculate_memory_address (abfd, irel, isymbuf, symtab_hdr); BFD_ASSERT (elf_hash_table (link_info)->tls_sec != NULL); foff -= (elf_hash_table (link_info)->tls_sec->vma + TP_OFFSET); switch ((N32_OP6 (insn) << 8) | (insn & 0xff)) { case (N32_OP6_MEM << 8) | N32_MEM_LB: case (N32_OP6_MEM << 8) | N32_MEM_SB: case (N32_OP6_MEM << 8) | N32_MEM_LBS: /* The range is +/-16k. */ if ((bfd_signed_vma) (foff) < CONSERVATIVE_15BIT && (bfd_signed_vma) (foff) >= -CONSERVATIVE_15BIT) { insn = ((insn & 0xff) << 25) | (insn & 0x1f00000) | ((insn & 0x7c00) << 5); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_TLS_LE_15S0); success = 1; break; } /* Fall through. */ case (N32_OP6_MEM << 8) | N32_MEM_LH: case (N32_OP6_MEM << 8) | N32_MEM_SH: case (N32_OP6_MEM << 8) | N32_MEM_LHS: /* The range is +/-32k. */ if ((bfd_signed_vma) (foff) < CONSERVATIVE_15BIT_S1 && (bfd_signed_vma) (foff) >= -CONSERVATIVE_15BIT_S1) { insn = ((insn & 0xff) << 25) | (insn & 0x1f00000) | ((insn & 0x7c00) << 5); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_TLS_LE_15S1); success = 1; break; } /* Fall through. */ case (N32_OP6_MEM << 8) | N32_MEM_LW: case (N32_OP6_MEM << 8) | N32_MEM_SW: /* The range is +/-64k. */ if ((bfd_signed_vma) (foff) < CONSERVATIVE_15BIT_S2 && (bfd_signed_vma) (foff) >= -CONSERVATIVE_15BIT_S2) { insn = ((insn & 0xff) << 25) | (insn & 0x1f00000) | ((insn & 0x7c00) << 5); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_TLS_LE_15S2); success = 1; break; } /* Fall through. */ default: break; } if (success) { bfd_putb32 (insn, contents + laddr); if (i1_irelfn != irelend) { i1_irelfn->r_addend |= 1; *again = TRUE; } } } /* Relax PTR relocation for nds32_elf_relax_section. */ static bfd_boolean nds32_elf_relax_ptr (bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, int *insn_len, int *seq_len, bfd_byte *contents) { Elf_Internal_Rela *ptr_irel, *irelend, *count_irel, *re_irel; irelend = internal_relocs + sec->reloc_count; re_irel = find_relocs_at_address_addr (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED, irel->r_addend); if (re_irel == irelend) { _bfd_error_handler (unrecognized_reloc_msg, abfd, "R_NDS32_PTR", (long) irel->r_offset); return FALSE; } if (re_irel->r_addend != 1) return FALSE; /* Pointed target is relaxed and no longer needs this void *, change the type to NONE. */ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); /* Find PTR_COUNT to decide remove it or not. If PTR_COUNT does not exist, it means only count 1 and remove it directly. */ /* TODO: I hope we can obsolate R_NDS32_COUNT in the future. */ count_irel = find_relocs_at_address (irel, internal_relocs, irelend, R_NDS32_PTR_COUNT); ptr_irel = find_relocs_at_address (irel, internal_relocs, irelend, R_NDS32_PTR); if (count_irel != irelend) { if (--count_irel->r_addend > 0) return FALSE; } if (ptr_irel != irelend) return FALSE; /* If the PTR_COUNT is already 0, remove current instruction. */ *seq_len = nds32_elf_insn_size (abfd, contents, irel->r_offset); *insn_len = 0; return TRUE; } /* Relax PLT_GOT_SUFF relocation for nds32_elf_relax_section. */ static void nds32_elf_relax_pltgot_suff (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr, bfd_boolean *again) { uint32_t insn; bfd_signed_vma foff; Elf_Internal_Rela *i1_irelfn, *irelend; bfd_vma local_sda, laddr; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; insn = bfd_getb32 (contents + laddr); /* FIXME: It's a little trouble to turn JRAL5 to JAL since we need additional space. It might be help if we could borrow some space from instructions to be eliminated such as sethi, ori, add. */ if (insn & 0x80000000) return; if (nds32_elf_check_dup_relocs (irel, internal_relocs, irelend, R_NDS32_PLT_GOT_SUFF)) return; i1_irelfn = find_relocs_at_address (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED); /* FIXIT 090606 The boundary should be reduced since the .plt section hasn't been created and the address of specific entry is still unknown Maybe the range between the function call and the begin of the .text section can be used to decide if the .plt is in the range of function call. */ if (N32_OP6 (insn) == N32_OP6_ALU1 && N32_SUB5 (insn) == N32_ALU1_ADD) { /* Get the value of the symbol referred to by the reloc. */ nds32_elf_final_sda_base (sec->output_section->owner, link_info, &local_sda, FALSE); foff = (bfd_signed_vma) (calculate_plt_memory_address (abfd, link_info, isymbuf, irel, symtab_hdr) - local_sda); /* This condition only happened when symbol is undefined. */ if (foff == 0) return; if (foff < -CONSERVATIVE_19BIT || foff >= CONSERVATIVE_19BIT) return; irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_PLT_GOTREL_LO19); /* addi.gp */ insn = N32_TYPE1 (SBGP, N32_RT5 (insn), __BIT (19)); } else if (N32_OP6 (insn) == N32_OP6_JREG && N32_SUB5 (insn) == N32_JREG_JRAL) { /* Get the value of the symbol referred to by the reloc. */ foff = calculate_plt_offset (abfd, sec, link_info, isymbuf, irel, symtab_hdr); /* This condition only happened when symbol is undefined. */ if (foff == 0) return; if (foff < -CONSERVATIVE_24BIT_S1 || foff >= CONSERVATIVE_24BIT_S1) return; irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_25_PLTREL); insn = INSN_JAL; } else return; bfd_putb32 (insn, contents + laddr); if (i1_irelfn != irelend) { i1_irelfn->r_addend |= 1; *again = TRUE; } } /* Relax GOT_SUFF relocation for nds32_elf_relax_section. */ static void nds32_elf_relax_got_suff (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, bfd_byte *contents, Elf_Internal_Shdr *symtab_hdr, bfd_boolean *again) { uint32_t insn; bfd_signed_vma foff; Elf_Internal_Rela *i1_irelfn, *irelend; bfd_vma local_sda, laddr; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; insn = bfd_getb32 (contents + laddr); if (insn & 0x80000000) return; if (nds32_elf_check_dup_relocs (irel, internal_relocs, irelend, R_NDS32_GOT_SUFF)) return; i1_irelfn = find_relocs_at_address (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED); nds32_elf_final_sda_base (sec->output_section->owner, link_info, &local_sda, FALSE); foff = calculate_got_memory_address (abfd, link_info, irel, symtab_hdr) - local_sda; if (foff < CONSERVATIVE_19BIT && foff >= -CONSERVATIVE_19BIT) { /* Turn LW to LWI.GP. Change relocation type to R_NDS32_GOT_REL. */ insn = N32_TYPE1 (HWGP, N32_RT5 (insn), __MF (6, 17, 3)); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_GOT17S2_RELA); bfd_putb32 (insn, contents + laddr); if (i1_irelfn != irelend) { i1_irelfn->r_addend |= 1; *again = TRUE; } } } /* Relax PLT_GOT_SUFF relocation for nds32_elf_relax_section. */ static void nds32_elf_relax_gotoff_suff (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *irel, Elf_Internal_Rela *internal_relocs, bfd_byte *contents, Elf_Internal_Sym *isymbuf, Elf_Internal_Shdr *symtab_hdr, bfd_boolean *again) { int opc_insn_gotoff; uint32_t insn; bfd_signed_vma foff; Elf_Internal_Rela *i1_irelfn, *i2_irelfn, *irelend; bfd_vma local_sda, laddr; irelend = internal_relocs + sec->reloc_count; laddr = irel->r_offset; insn = bfd_getb32 (contents + laddr); if (insn & 0x80000000) return; if (nds32_elf_check_dup_relocs (irel, internal_relocs, irelend, R_NDS32_GOTOFF_SUFF)) return; i1_irelfn = find_relocs_at_address (irel, internal_relocs, irelend, R_NDS32_PTR_RESOLVED); nds32_elf_final_sda_base (sec->output_section->owner, link_info, &local_sda, FALSE); foff = calculate_memory_address (abfd, irel, isymbuf, symtab_hdr); foff = foff - local_sda; if (foff >= CONSERVATIVE_19BIT || foff < -CONSERVATIVE_19BIT) return; /* Concatenate opcode and sub-opcode for switch case. It may be MEM or ALU1. */ opc_insn_gotoff = (N32_OP6 (insn) << 8) | (insn & 0xff); switch (opc_insn_gotoff) { case (N32_OP6_MEM << 8) | N32_MEM_LW: /* 4-byte aligned. */ insn = N32_TYPE1 (HWGP, N32_RT5 (insn), __MF (6, 17, 3)); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_SDA17S2_RELA); break; case (N32_OP6_MEM << 8) | N32_MEM_SW: insn = N32_TYPE1 (HWGP, N32_RT5 (insn), __MF (7, 17, 3)); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_SDA17S2_RELA); break; case (N32_OP6_MEM << 8) | N32_MEM_LH: /* 2-byte aligned. */ insn = N32_TYPE1 (HWGP, N32_RT5 (insn), 0); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_SDA18S1_RELA); break; case (N32_OP6_MEM << 8) | N32_MEM_LHS: insn = N32_TYPE1 (HWGP, N32_RT5 (insn), __BIT (18)); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_SDA18S1_RELA); break; case (N32_OP6_MEM << 8) | N32_MEM_SH: insn = N32_TYPE1 (HWGP, N32_RT5 (insn), __BIT (19)); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_SDA18S1_RELA); break; case (N32_OP6_MEM << 8) | N32_MEM_LB: /* 1-byte aligned. */ insn = N32_TYPE1 (LBGP, N32_RT5 (insn), 0); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_SDA19S0_RELA); break; case (N32_OP6_MEM << 8) | N32_MEM_LBS: insn = N32_TYPE1 (LBGP, N32_RT5 (insn), __BIT (19)); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_SDA19S0_RELA); break; case (N32_OP6_MEM << 8) | N32_MEM_SB: insn = N32_TYPE1 (SBGP, N32_RT5 (insn), 0); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_SDA19S0_RELA); break; case (N32_OP6_ALU1 << 8) | N32_ALU1_ADD: insn = N32_TYPE1 (SBGP, N32_RT5 (insn), __BIT (19)); irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_SDA19S0_RELA); break; default: return; } bfd_putb32 (insn, contents + laddr); if (i1_irelfn != irelend) { i1_irelfn->r_addend |= 1; *again = TRUE; } if ((i2_irelfn = find_relocs_at_address (irel, internal_relocs, irelend, R_NDS32_INSN16)) != irelend) i2_irelfn->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); } static bfd_boolean nds32_relax_adjust_label (bfd *abfd, asection *sec, Elf_Internal_Rela *internal_relocs, bfd_byte *contents, nds32_elf_blank_t **relax_blank_list, int optimize, int opt_size) { /* This code block is used to adjust 4-byte alignment by relax a pair of instruction a time. It recognizes three types of relocations. 1. R_NDS32_LABEL - a aligment. 2. R_NDS32_INSN16 - relax a 32-bit instruction to 16-bit. 3. is_16bit_NOP () - remove a 16-bit instruction. */ /* TODO: It seems currently implementation only support 4-byte aligment. We should handle any-aligment. */ Elf_Internal_Rela *insn_rel = NULL, *label_rel = NULL, *irel; Elf_Internal_Rela *tmp_rel, *tmp2_rel = NULL; Elf_Internal_Rela rel_temp; Elf_Internal_Rela *irelend; bfd_vma address; uint16_t insn16; /* Checking for branch relaxation relies on the relocations to be sorted on 'r_offset'. This is not guaranteed so we must sort. */ nds32_insertion_sort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), compar_reloc); irelend = internal_relocs + sec->reloc_count; /* Force R_NDS32_LABEL before R_NDS32_INSN16. */ /* FIXME: Can we generate the right order in assembler? So we don't have to swapping them here. */ for (label_rel = internal_relocs, insn_rel = internal_relocs; label_rel < irelend; label_rel++) { if (ELF32_R_TYPE (label_rel->r_info) != R_NDS32_LABEL) continue; /* Find the first reloc has the same offset with label_rel. */ while (insn_rel < irelend && insn_rel->r_offset < label_rel->r_offset) insn_rel++; for (;insn_rel < irelend && insn_rel->r_offset == label_rel->r_offset; insn_rel++) /* Check if there were R_NDS32_INSN16 and R_NDS32_LABEL at the same address. */ if (ELF32_R_TYPE (insn_rel->r_info) == R_NDS32_INSN16) break; if (insn_rel < irelend && insn_rel->r_offset == label_rel->r_offset && insn_rel < label_rel) { /* Swap the two reloc if the R_NDS32_INSN16 is before R_NDS32_LABEL. */ memcpy (&rel_temp, insn_rel, sizeof (Elf_Internal_Rela)); memcpy (insn_rel, label_rel, sizeof (Elf_Internal_Rela)); memcpy (label_rel, &rel_temp, sizeof (Elf_Internal_Rela)); } } label_rel = NULL; insn_rel = NULL; /* If there were a sequence of R_NDS32_LABEL end up with .align 2 or higher, remove other R_NDS32_LABEL with lower alignment. If an R_NDS32_INSN16 in between R_NDS32_LABELs must be converted, then the R_NDS32_LABEL sequence is broke. */ for (tmp_rel = internal_relocs; tmp_rel < irelend; tmp_rel++) { if (ELF32_R_TYPE (tmp_rel->r_info) == R_NDS32_LABEL) { if (label_rel == NULL) { if (tmp_rel->r_addend < 2) label_rel = tmp_rel; continue; } else if (tmp_rel->r_addend > 1) { /* Remove all LABEL relocation from label_rel to tmp_rel including relocations with same offset as tmp_rel. */ for (tmp2_rel = label_rel; tmp2_rel < tmp_rel || tmp2_rel->r_offset == tmp_rel->r_offset; tmp2_rel++) { if (ELF32_R_TYPE (tmp2_rel->r_info) == R_NDS32_LABEL && tmp2_rel->r_addend < 2) tmp2_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (tmp2_rel->r_info), R_NDS32_NONE); } label_rel = NULL; } } else if (ELF32_R_TYPE (tmp_rel->r_info) == R_NDS32_INSN16 && label_rel) { /* A new INSN16 which can be converted, so clear label_rel. */ if (is_convert_32_to_16 (abfd, sec, tmp_rel, internal_relocs, irelend, &insn16) || is_16bit_NOP (abfd, sec, tmp_rel)) label_rel = NULL; } } label_rel = NULL; insn_rel = NULL; /* Optimized for speed and nothing has not been relaxed. It's time to align labels. We may convert a 16-bit instruction right before a label to 32-bit, in order to align the label if necessary all reloc entries has been sorted by r_offset. */ for (irel = internal_relocs; irel < irelend; irel++) { if (ELF32_R_TYPE (irel->r_info) != R_NDS32_INSN16 && ELF32_R_TYPE (irel->r_info) != R_NDS32_LABEL) continue; if (ELF32_R_TYPE (irel->r_info) == R_NDS32_INSN16) { /* A new INSN16 found, resize the old one. */ if (is_convert_32_to_16 (abfd, sec, irel, internal_relocs, irelend, &insn16) || is_16bit_NOP (abfd, sec, irel)) { if (insn_rel) { /* Previous INSN16 reloc exists, reduce its size to 16-bit. */ if (is_convert_32_to_16 (abfd, sec, insn_rel, internal_relocs, irelend, &insn16)) { nds32_elf_write_16 (abfd, contents, insn_rel, internal_relocs, irelend, insn16); if (!insert_nds32_elf_blank_recalc_total (relax_blank_list, insn_rel->r_offset + 2, 2)) return FALSE; } else if (is_16bit_NOP (abfd, sec, insn_rel)) { if (!insert_nds32_elf_blank_recalc_total (relax_blank_list, insn_rel->r_offset, 2)) return FALSE; } insn_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (insn_rel->r_info), R_NDS32_NONE); } /* Save the new one for later use. */ insn_rel = irel; } else irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_LABEL) { /* Search for label. */ int force_relax = 0; /* Label on 16-bit instruction or optimization needless, just reset this reloc. */ insn16 = bfd_getb16 (contents + irel->r_offset); if ((irel->r_addend & 0x1f) < 2 && (!optimize || (insn16 & 0x8000))) { irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_NDS32_NONE); continue; } address = irel->r_offset - get_nds32_elf_blank_total (relax_blank_list, irel->r_offset, 1); if (!insn_rel) { /* Check if there is case which can not be aligned. */ if (irel->r_addend == 2 && address & 0x2) return FALSE; continue; } /* Try to align this label. */ if ((irel->r_addend & 0x1f) < 2) { /* Check if there is a INSN16 at the same address. Label_rel always seats before insn_rel after our sort. */ /* Search for INSN16 at LABEL location. If INSN16 is at same location and this LABEL alignment is lower than 2, the INSN16 can be converted to 2-byte. */ for (tmp_rel = irel; tmp_rel < irelend && tmp_rel->r_offset == irel->r_offset; tmp_rel++) { if (ELF32_R_TYPE (tmp_rel->r_info) == R_NDS32_INSN16 && (is_convert_32_to_16 (abfd, sec, tmp_rel, internal_relocs, irelend, &insn16) || is_16bit_NOP (abfd, sec, tmp_rel))) { force_relax = 1; break; } } } if (force_relax || irel->r_addend == 1 || address & 0x2) { /* Label not aligned. */ /* Previous reloc exists, reduce its size to 16-bit. */ if (is_convert_32_to_16 (abfd, sec, insn_rel, internal_relocs, irelend, &insn16)) { nds32_elf_write_16 (abfd, contents, insn_rel, internal_relocs, irelend, insn16); if (!insert_nds32_elf_blank_recalc_total (relax_blank_list, insn_rel->r_offset + 2, 2)) return FALSE; } else if (is_16bit_NOP (abfd, sec, insn_rel)) { if (!insert_nds32_elf_blank_recalc_total (relax_blank_list, insn_rel->r_offset, 2)) return FALSE; } } /* INSN16 reloc is used. */ insn_rel = NULL; } } address = sec->size - get_nds32_elf_blank_total (relax_blank_list, sec->size, 0); if (insn_rel && (address & 0x2 || opt_size)) { if (is_convert_32_to_16 (abfd, sec, insn_rel, internal_relocs, irelend, &insn16)) { nds32_elf_write_16 (abfd, contents, insn_rel, internal_relocs, irelend, insn16); if (!insert_nds32_elf_blank_recalc_total (relax_blank_list, insn_rel->r_offset + 2, 2)) return FALSE; insn_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (insn_rel->r_info), R_NDS32_NONE); } else if (is_16bit_NOP (abfd, sec, insn_rel)) { if (!insert_nds32_elf_blank_recalc_total (relax_blank_list, insn_rel->r_offset, 2)) return FALSE; insn_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (insn_rel->r_info), R_NDS32_NONE); } } insn_rel = NULL; return TRUE; } /* Pick relaxation round. */ static int nds32_elf_pick_relax (bfd_boolean init, asection *sec, bfd_boolean *again, struct elf_nds32_link_hash_table *table, struct bfd_link_info *link_info) { static asection *final_sec, *first_sec = NULL; static bfd_boolean normal_again = FALSE; static bfd_boolean set = FALSE; static bfd_boolean first = TRUE; int round_table[] = { NDS32_RELAX_NORMAL_ROUND, NDS32_RELAX_JUMP_IFC_ROUND, NDS32_RELAX_EX9_BUILD_ROUND, NDS32_RELAX_EX9_REPLACE_ROUND, }; static int pass = 0; static int relax_round; /* The new round. */ if (init && first_sec == sec) { set = TRUE; normal_again = FALSE; } if (first) { /* Run an empty run to get the final section. */ relax_round = NDS32_RELAX_EMPTY_ROUND; /* It has to enter relax again because we can not make sure what the final turn is. */ *again = TRUE; first = FALSE; first_sec = sec; } if (!set) { /* Not reenter yet. */ final_sec = sec; return relax_round; } relax_round = round_table[pass]; if (!init && relax_round == NDS32_RELAX_NORMAL_ROUND && *again) normal_again = TRUE; if (!init && final_sec == sec) { switch (relax_round) { case NDS32_RELAX_NORMAL_ROUND: if (!normal_again) { /* Normal relaxation done. */ if (table->target_optimize & NDS32_RELAX_JUMP_IFC_ON) { pass++; *again = TRUE; } else if (table->target_optimize & NDS32_RELAX_EX9_ON) { pass += 2; /* NDS32_RELAX_EX9_BUILD_ROUND */ *again = TRUE; } else if (table->ex9_import_file) { /* Import ex9 table. */ if (table->update_ex9_table) pass += 2; /* NDS32_RELAX_EX9_BUILD_ROUND */ else pass += 3; /* NDS32_RELAX_EX9_REPLACE_ROUND */ nds32_elf_ex9_import_table (link_info); *again = TRUE; } } break; case NDS32_RELAX_JUMP_IFC_ROUND: if (!nds32_elf_ifc_finish (link_info)) _bfd_error_handler (_("error: Jump IFC Fail.")); if (table->target_optimize & NDS32_RELAX_EX9_ON) { pass++; *again = TRUE; } break; case NDS32_RELAX_EX9_BUILD_ROUND: nds32_elf_ex9_finish (link_info); pass++; *again = TRUE; break; case NDS32_RELAX_EX9_REPLACE_ROUND: if (table->target_optimize & NDS32_RELAX_JUMP_IFC_ON) { /* Do jump IFC optimization again. */ if (!nds32_elf_ifc_finish (link_info)) _bfd_error_handler (_("error: Jump IFC Fail.")); } break; default: break; } } return relax_round; } static bfd_boolean nds32_elf_relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info, bfd_boolean *again) { nds32_elf_blank_t *relax_blank_list = NULL; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irel; Elf_Internal_Rela *irelend; Elf_Internal_Sym *isymbuf = NULL; bfd_byte *contents = NULL; bfd_boolean result = TRUE; int optimize = 0; int opt_size = 0; uint32_t insn; uint16_t insn16; /* Target dependnet option. */ struct elf_nds32_link_hash_table *table; int load_store_relax; int relax_round; relax_blank_list = NULL; *again = FALSE; /* Nothing to do for * relocatable link or * non-relocatable section or * non-code section or * empty content or * no reloc entry. */ if (bfd_link_relocatable (link_info) || (sec->flags & SEC_RELOC) == 0 || (sec->flags & SEC_EXCLUDE) == 1 || (sec->flags & SEC_CODE) == 0 || sec->size == 0) return TRUE; /* 09.12.11 Workaround. */ /* We have to adjust align for R_NDS32_LABEL if needed. The adjust approach only can fix 2-byte align once. */ if (sec->alignment_power > 2) return TRUE; /* The optimization type to do. */ table = nds32_elf_hash_table (link_info); relax_round = nds32_elf_pick_relax (TRUE, sec, again, table, link_info); switch (relax_round) { case NDS32_RELAX_JUMP_IFC_ROUND: /* Here is the entrance of ifc jump relaxation. */ if (!nds32_elf_ifc_calc (link_info, abfd, sec)) return FALSE; nds32_elf_pick_relax (FALSE, sec, again, table, link_info); return TRUE; case NDS32_RELAX_EX9_BUILD_ROUND: /* Here is the entrance of ex9 relaxation. There are two pass of ex9 relaxation. The one is to traverse all instructions and build the hash table. The other one is to compare instructions and replace it by ex9.it. */ if (!nds32_elf_ex9_build_hash_table (abfd, sec, link_info)) return FALSE; nds32_elf_pick_relax (FALSE, sec, again, table, link_info); return TRUE; case NDS32_RELAX_EX9_REPLACE_ROUND: if (!nds32_elf_ex9_replace_instruction (link_info, abfd, sec)) return FALSE; return TRUE; case NDS32_RELAX_EMPTY_ROUND: nds32_elf_pick_relax (FALSE, sec, again, table, link_info); return TRUE; case NDS32_RELAX_NORMAL_ROUND: default: if (sec->reloc_count == 0) return TRUE; break; } /* The begining of general relaxation. */ if (is_SDA_BASE_set == 0) { bfd_vma gp; is_SDA_BASE_set = 1; nds32_elf_final_sda_base (sec->output_section->owner, link_info, &gp, FALSE); relax_range_measurement (abfd); } if (is_ITB_BASE_set == 0) { /* Set the _ITB_BASE_. */ if (!nds32_elf_ex9_itb_base (link_info)) { _bfd_error_handler (_("%B: error: Cannot set _ITB_BASE_"), abfd); bfd_set_error (bfd_error_bad_value); } } symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* Relocations MUST be kept in memory, because relaxation adjust them. */ internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, TRUE /* keep_memory */); if (internal_relocs == NULL) goto error_return; irelend = internal_relocs + sec->reloc_count; irel = find_relocs_at_address (internal_relocs, internal_relocs, irelend, R_NDS32_RELAX_ENTRY); if (irel == irelend) return TRUE; if (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_ENTRY) { if (irel->r_addend & R_NDS32_RELAX_ENTRY_DISABLE_RELAX_FLAG) { nds32_elf_pick_relax (FALSE, sec, again, table, link_info); return TRUE; } if (irel->r_addend & R_NDS32_RELAX_ENTRY_OPTIMIZE_FLAG) optimize = 1; if (irel->r_addend & R_NDS32_RELAX_ENTRY_OPTIMIZE_FOR_SPACE_FLAG) opt_size = 1; } load_store_relax = table->load_store_relax; /* Get symbol table and section content. */ if (!nds32_get_section_contents (abfd, sec, &contents, TRUE) || !nds32_get_local_syms (abfd, sec, &isymbuf)) goto error_return; /* Do relax loop only when finalize is not done. Take care of relaxable relocs except INSN16. */ for (irel = internal_relocs; irel < irelend; irel++) { int seq_len; /* Original length of instruction sequence. */ int insn_len = 0; /* Final length of instruction sequence. */ bfd_boolean removed; insn = 0; if (ELF32_R_TYPE (irel->r_info) == R_NDS32_LABEL && (irel->r_addend & 0x1f) >= 2) optimize = 1; /* Relocation Types R_NDS32_LONGCALL1 53 R_NDS32_LONGCALL2 54 R_NDS32_LONGCALL3 55 R_NDS32_LONGJUMP1 56 R_NDS32_LONGJUMP2 57 R_NDS32_LONGJUMP3 58 R_NDS32_LOADSTORE 59 */ if (ELF32_R_TYPE (irel->r_info) >= R_NDS32_LONGCALL1 && ELF32_R_TYPE (irel->r_info) <= R_NDS32_LOADSTORE) seq_len = GET_SEQ_LEN (irel->r_addend); /* Relocation Types R_NDS32_LONGCALL4 107 R_NDS32_LONGCALL5 108 R_NDS32_LONGCALL6 109 R_NDS32_LONGJUMP4 110 R_NDS32_LONGJUMP5 111 R_NDS32_LONGJUMP6 112 R_NDS32_LONGJUMP7 113 */ else if (ELF32_R_TYPE (irel->r_info) >= R_NDS32_LONGCALL4 && ELF32_R_TYPE (irel->r_info) <= R_NDS32_LONGJUMP7) seq_len = 4; /* Relocation Types R_NDS32_LO12S0_RELA 30 R_NDS32_LO12S1_RELA 29 R_NDS32_LO12S2_RELA 28 R_NDS32_LO12S2_SP_RELA 71 R_NDS32_LO12S2_DP_RELA 70 R_NDS32_GOT_LO12 46 R_NDS32_GOTOFF_LO12 50 R_NDS32_PLTREL_LO12 65 R_NDS32_PLT_GOTREL_LO12 67 R_NDS32_17IFC_PCREL_RELA 96 R_NDS32_GOT_SUFF 193 R_NDS32_GOTOFF_SUFF 194 R_NDS32_PLT_GOT_SUFF 195 R_NDS32_MULCALL_SUFF 196 R_NDS32_PTR 197 */ else if ((ELF32_R_TYPE (irel->r_info) <= R_NDS32_LO12S0_RELA && ELF32_R_TYPE (irel->r_info) >= R_NDS32_LO12S2_RELA) || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S2_SP_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S2_DP_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_GOT_LO12 || ELF32_R_TYPE (irel->r_info) == R_NDS32_GOTOFF_LO12 || ELF32_R_TYPE (irel->r_info) == R_NDS32_GOTPC_LO12 || ELF32_R_TYPE (irel->r_info) == R_NDS32_PLTREL_LO12 || ELF32_R_TYPE (irel->r_info) == R_NDS32_PLT_GOTREL_LO12 || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_GOT_SUFF && ELF32_R_TYPE (irel->r_info) <= R_NDS32_PTR) || ELF32_R_TYPE (irel->r_info) == R_NDS32_17IFC_PCREL_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_TLS_LE_LO12 || ELF32_R_TYPE (irel->r_info) == R_NDS32_TLS_LE_ADD || ELF32_R_TYPE (irel->r_info) == R_NDS32_TLS_LE_LS) seq_len = 0; else continue; insn_len = seq_len; removed = FALSE; switch (ELF32_R_TYPE (irel->r_info)) { case R_NDS32_LONGCALL1: removed = nds32_elf_relax_longcall1 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGCALL2: removed = nds32_elf_relax_longcall2 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGCALL3: removed = nds32_elf_relax_longcall3 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGJUMP1: removed = nds32_elf_relax_longjump1 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGJUMP2: removed = nds32_elf_relax_longjump2 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGJUMP3: removed = nds32_elf_relax_longjump3 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGCALL4: removed = nds32_elf_relax_longcall4 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGCALL5: removed = nds32_elf_relax_longcall5 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGCALL6: removed = nds32_elf_relax_longcall6 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGJUMP4: removed = nds32_elf_relax_longjump4 (abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGJUMP5: removed = nds32_elf_relax_longjump5 (abfd, sec, irel, internal_relocs, &insn_len, &seq_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGJUMP6: removed = nds32_elf_relax_longjump6 (abfd, sec, irel, internal_relocs, &insn_len, &seq_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LONGJUMP7: removed = nds32_elf_relax_longjump7 (abfd, sec, irel, internal_relocs, &insn_len, &seq_len, contents, isymbuf, symtab_hdr); break; case R_NDS32_LOADSTORE: removed = nds32_elf_relax_loadstore (link_info, abfd, sec, irel, internal_relocs, &insn_len, contents, isymbuf, symtab_hdr, load_store_relax); break; case R_NDS32_LO12S0_RELA: case R_NDS32_LO12S1_RELA: case R_NDS32_LO12S2_DP_RELA: case R_NDS32_LO12S2_SP_RELA: case R_NDS32_LO12S2_RELA: /* Relax for low part. */ nds32_elf_relax_lo12 (link_info, abfd, sec, irel, internal_relocs, contents, isymbuf, symtab_hdr); /* It is impossible to delete blank, so just continue. */ continue; case R_NDS32_GOT_LO12: case R_NDS32_GOTOFF_LO12: case R_NDS32_PLTREL_LO12: case R_NDS32_PLT_GOTREL_LO12: case R_NDS32_GOTPC_LO12: /* Relax for PIC gp-relative low part. */ nds32_elf_relax_piclo12 (link_info, abfd, sec, irel, contents, isymbuf, symtab_hdr); /* It is impossible to delete blank, so just continue. */ continue; case R_NDS32_TLS_LE_LO12: /* Relax for LE TLS low part. */ nds32_elf_relax_letlslo12 (link_info, abfd, irel, contents, isymbuf, symtab_hdr); /* It is impossible to delete blank, so just continue. */ continue; case R_NDS32_TLS_LE_ADD: nds32_elf_relax_letlsadd (link_info, abfd, sec, irel, internal_relocs, contents, isymbuf, symtab_hdr, again); /* It is impossible to delete blank, so just continue. */ continue; case R_NDS32_TLS_LE_LS: nds32_elf_relax_letlsls (link_info, abfd, sec, irel, internal_relocs, contents, isymbuf, symtab_hdr, again); continue; case R_NDS32_PTR: removed = nds32_elf_relax_ptr (abfd, sec, irel, internal_relocs, &insn_len, &seq_len, contents); break; case R_NDS32_PLT_GOT_SUFF: nds32_elf_relax_pltgot_suff (link_info, abfd, sec, irel, internal_relocs, contents, isymbuf, symtab_hdr, again); /* It is impossible to delete blank, so just continue. */ continue; case R_NDS32_GOT_SUFF: nds32_elf_relax_got_suff (link_info, abfd, sec, irel, internal_relocs, contents, symtab_hdr, again); /* It is impossible to delete blank, so just continue. */ continue; case R_NDS32_GOTOFF_SUFF: nds32_elf_relax_gotoff_suff (link_info, abfd, sec, irel, internal_relocs, contents, isymbuf, symtab_hdr, again); /* It is impossible to delete blank, so just continue. */ continue; default: continue; } if (removed && seq_len - insn_len > 0) { if (!insert_nds32_elf_blank (&relax_blank_list, irel->r_offset + insn_len, seq_len - insn_len)) goto error_return; *again = TRUE; } } calc_nds32_blank_total (relax_blank_list); if (table->relax_fp_as_gp) { if (!nds32_relax_fp_as_gp (link_info, abfd, sec, internal_relocs, irelend, isymbuf)) goto error_return; if (!*again) { if (!nds32_fag_remove_unused_fpbase (abfd, sec, internal_relocs, irelend)) goto error_return; } } nds32_elf_pick_relax (FALSE, sec, again, table, link_info); if (!*again) { if (!nds32_relax_adjust_label (abfd, sec, internal_relocs, contents, &relax_blank_list, optimize, opt_size)) goto error_return; } /* It doesn't matter optimize_for_space_no_align anymore. If object file is assembled with flag '-Os', the we don't adjust jump-destination on 4-byte boundary. */ if (relax_blank_list) { nds32_elf_relax_delete_blanks (abfd, sec, relax_blank_list); relax_blank_list = NULL; } if (!*again) { /* Closing the section, so we don't relax it anymore. */ bfd_vma sec_size_align; Elf_Internal_Rela *tmp_rel; /* Pad to alignment boundary. Only handle current section alignment. */ sec_size_align = (sec->size + (~((-1U) << sec->alignment_power))) & ((-1U) << sec->alignment_power); if ((sec_size_align - sec->size) & 0x2) { insn16 = NDS32_NOP16; bfd_putb16 (insn16, contents + sec->size); sec->size += 2; } while (sec_size_align != sec->size) { insn = NDS32_NOP32; bfd_putb32 (insn, contents + sec->size); sec->size += 4; } tmp_rel = find_relocs_at_address (internal_relocs, internal_relocs, irelend, R_NDS32_RELAX_ENTRY); if (tmp_rel != irelend) tmp_rel->r_addend |= R_NDS32_RELAX_ENTRY_DISABLE_RELAX_FLAG; clean_nds32_elf_blank (); } finish: if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); if (isymbuf != NULL && symtab_hdr->contents != (bfd_byte *) isymbuf) free (isymbuf); return result; error_return: result = FALSE; goto finish; } static struct bfd_elf_special_section const nds32_elf_special_sections[] = { {".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE}, {".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE}, {NULL, 0, 0, 0, 0} }; static bfd_boolean nds32_elf_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info, void *finfo ATTRIBUTE_UNUSED, bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *) ATTRIBUTE_UNUSED) { FILE *sym_ld_script = NULL; struct elf_nds32_link_hash_table *table; table = nds32_elf_hash_table (info); sym_ld_script = table->sym_ld_script; if (check_start_export_sym) fprintf (sym_ld_script, "}\n"); return TRUE; } static enum elf_reloc_type_class nds32_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, const asection *rel_sec ATTRIBUTE_UNUSED, const Elf_Internal_Rela *rela) { switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_NDS32_RELATIVE: return reloc_class_relative; case R_NDS32_JMP_SLOT: return reloc_class_plt; case R_NDS32_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Put target dependent option into info hash table. */ void bfd_elf32_nds32_set_target_option (struct bfd_link_info *link_info, int relax_fp_as_gp, int eliminate_gc_relocs, FILE * sym_ld_script, int load_store_relax, int target_optimize, int relax_status, int relax_round, FILE * ex9_export_file, FILE * ex9_import_file, int update_ex9_table, int ex9_limit, bfd_boolean ex9_loop_aware, bfd_boolean ifc_loop_aware) { struct elf_nds32_link_hash_table *table; table = nds32_elf_hash_table (link_info); if (table == NULL) return; table->relax_fp_as_gp = relax_fp_as_gp; table->eliminate_gc_relocs = eliminate_gc_relocs; table->sym_ld_script = sym_ld_script; table ->load_store_relax = load_store_relax; table->target_optimize = target_optimize; table->relax_status = relax_status; table->relax_round = relax_round; table->ex9_export_file = ex9_export_file; table->ex9_import_file = ex9_import_file; table->update_ex9_table = update_ex9_table; table->ex9_limit = ex9_limit; table->ex9_loop_aware = ex9_loop_aware; table->ifc_loop_aware = ifc_loop_aware; } /* These functions and data-structures are used for fp-as-gp optimization. */ #define FAG_THRESHOLD 3 /* At least 3 gp-access. */ /* lwi37.fp covers 508 bytes, but there may be 32-byte padding between the read-only section and read-write section. */ #define FAG_WINDOW (508 - 32) /* An nds32_fag represent a gp-relative access. We find best fp-base by using a sliding window to find a base address which can cover most gp-access. */ struct nds32_fag { struct nds32_fag *next; /* NULL-teminated linked list. */ bfd_vma addr; /* The address of this fag. */ Elf_Internal_Rela **relas; /* The relocations associated with this fag. It is used for applying FP7U2_FLAG. */ int count; /* How many times this address is referred. There should be exactly `count' relocations in relas. */ int relas_capcity; /* The buffer size of relas. We use an array instead of linked-list, and realloc is used to adjust buffer size. */ }; static void nds32_fag_init (struct nds32_fag *head) { memset (head, 0, sizeof (struct nds32_fag)); } static void nds32_fag_verify (struct nds32_fag *head) { struct nds32_fag *iter; struct nds32_fag *prev; prev = NULL; iter = head->next; while (iter) { if (prev && prev->addr >= iter->addr) puts ("Bug in fp-as-gp insertion."); prev = iter; iter = iter->next; } } /* Insert a fag in ascending order. If a fag of the same address already exists, they are chained by relas array. */ static void nds32_fag_insert (struct nds32_fag *head, bfd_vma addr, Elf_Internal_Rela * rel) { struct nds32_fag *iter; struct nds32_fag *new_fag; const int INIT_RELAS_CAP = 4; for (iter = head; iter->next && iter->next->addr <= addr; iter = iter->next) /* Find somewhere to insert. */ ; /* `iter' will be equal to `head' if the list is empty. */ if (iter != head && iter->addr == addr) { /* The address exists in the list. Insert `rel' into relocation list, relas. */ /* Check whether relas is big enough. */ if (iter->count >= iter->relas_capcity) { iter->relas_capcity *= 2; iter->relas = bfd_realloc (iter->relas, iter->relas_capcity * sizeof (void *)); } iter->relas[iter->count++] = rel; return; } /* This is a new address. Create a fag node for it. */ new_fag = bfd_malloc (sizeof (struct nds32_fag)); memset (new_fag, 0, sizeof (*new_fag)); new_fag->addr = addr; new_fag->count = 1; new_fag->next = iter->next; new_fag->relas_capcity = INIT_RELAS_CAP; new_fag->relas = (Elf_Internal_Rela **) bfd_malloc (new_fag->relas_capcity * sizeof (void *)); new_fag->relas[0] = rel; iter->next = new_fag; nds32_fag_verify (head); } static void nds32_fag_free_list (struct nds32_fag *head) { struct nds32_fag *iter; iter = head->next; while (iter) { struct nds32_fag *tmp = iter; iter = iter->next; free (tmp->relas); tmp->relas = NULL; free (tmp); } } /* Find the best fp-base address. The relocation associated with that address is returned, so we can track the symbol instead of a fixed address. When relaxation, the address of an datum may change, because a text section is shrinked, so the data section moves forward. If the aligments of text and data section are different, their distance may change too. Therefore, tracking a fixed address is not appriate. */ static int nds32_fag_find_base (struct nds32_fag *head, struct nds32_fag **bestpp) { struct nds32_fag *base; /* First fag in the window. */ struct nds32_fag *last; /* First fag outside the window. */ int accu = 0; /* Usage accumulation. */ struct nds32_fag *best; /* Best fag. */ int baccu = 0; /* Best accumulation. */ /* Use first fag for initial, and find the last fag in the window. In each iteration, we could simply subtract previous fag and accumulate following fags which are inside the window, untill we each the end. */ if (head->next == NULL) { *bestpp = NULL; return 0; } /* Initialize base. */ base = head->next; best = base; for (last = base; last && last->addr < base->addr + FAG_WINDOW; last = last->next) accu += last->count; baccu = accu; /* Record the best base in each iteration. */ while (base->next) { accu -= base->count; base = base->next; /* Account fags in window. */ for (/* Nothing. */; last && last->addr < base->addr + FAG_WINDOW; last = last->next) accu += last->count; /* A better fp-base? */ if (accu > baccu) { best = base; baccu = accu; } } if (bestpp) *bestpp = best; return baccu; } /* Apply R_NDS32_INSN16_FP7U2_FLAG on gp-relative accesses, so we can convert it fo fp-relative access later. `best_fag' is the best fp-base. Only those inside the window of best_fag is applied the flag. */ static bfd_boolean nds32_fag_mark_relax (struct bfd_link_info *link_info, bfd *abfd, struct nds32_fag *best_fag, Elf_Internal_Rela *internal_relocs, Elf_Internal_Rela *irelend) { struct nds32_fag *ifag; bfd_vma best_fpbase, gp; bfd *output_bfd; output_bfd = abfd->sections->output_section->owner; nds32_elf_final_sda_base (output_bfd, link_info, &gp, FALSE); best_fpbase = best_fag->addr; if (best_fpbase > gp + sdata_range[1][1] || best_fpbase < gp - sdata_range[1][0]) return FALSE; /* Mark these inside the window R_NDS32_INSN16_FP7U2_FLAG flag, so we know they can be converted to lwi37.fp. */ for (ifag = best_fag; ifag && ifag->addr < best_fpbase + FAG_WINDOW; ifag = ifag->next) { int i; for (i = 0; i < ifag->count; i++) { Elf_Internal_Rela *insn16_rel; Elf_Internal_Rela *fag_rel; fag_rel = ifag->relas[i]; /* Only if this is within the WINDOWS, FP7U2_FLAG is applied. */ insn16_rel = find_relocs_at_address (fag_rel, internal_relocs, irelend, R_NDS32_INSN16); if (insn16_rel != irelend) insn16_rel->r_addend = R_NDS32_INSN16_FP7U2_FLAG; } } return TRUE; } /* Reset INSN16 to clean fp as gp. */ static void nds32_fag_unmark_relax (struct nds32_fag *fag, Elf_Internal_Rela *internal_relocs, Elf_Internal_Rela *irelend) { struct nds32_fag *ifag; int i; Elf_Internal_Rela *insn16_rel; Elf_Internal_Rela *fag_rel; for (ifag = fag; ifag; ifag = ifag->next) { for (i = 0; i < ifag->count; i++) { fag_rel = ifag->relas[i]; /* Restore the INSN16 relocation. */ insn16_rel = find_relocs_at_address (fag_rel, internal_relocs, irelend, R_NDS32_INSN16); if (insn16_rel != irelend) insn16_rel->r_addend &= ~R_NDS32_INSN16_FP7U2_FLAG; } } } /* This is the main function of fp-as-gp optimization. It should be called by relax_section. */ static bfd_boolean nds32_relax_fp_as_gp (struct bfd_link_info *link_info, bfd *abfd, asection *sec, Elf_Internal_Rela *internal_relocs, Elf_Internal_Rela *irelend, Elf_Internal_Sym *isymbuf) { Elf_Internal_Rela *begin_rel = NULL; Elf_Internal_Rela *irel; struct nds32_fag fag_head; Elf_Internal_Shdr *symtab_hdr; bfd_byte *contents; bfd_boolean ifc_inside = FALSE; /* FIXME: Can we bfd_elf_link_read_relocs for the relocs? */ /* Per-function fp-base selection. 1. Create a list for all the gp-relative access. 2. Base on those gp-relative address, find a fp-base which can cover most access. 3. Use the fp-base for fp-as-gp relaxation. NOTE: If fp-as-gp is not worth to do, (e.g., less than 3 times), we should 1. delete the `la $fp, _FP_BASE_' instruction and 2. not convert lwi.gp to lwi37.fp. To delete the _FP_BASE_ instruction, we simply apply R_NDS32_RELAX_REGION_NOT_OMIT_FP_FLAG flag in the r_addend to disable it. To suppress the conversion, we simply NOT to apply R_NDS32_INSN16_FP7U2_FLAG flag. */ symtab_hdr = &elf_tdata (abfd)->symtab_hdr; if (!nds32_get_section_contents (abfd, sec, &contents, TRUE) || !nds32_get_local_syms (abfd, sec, &isymbuf)) return FALSE; /* Check whether it is worth for fp-as-gp optimization, i.e., at least 3 gp-load. Set R_NDS32_RELAX_REGION_NOT_OMIT_FP_FLAG if we should NOT apply this optimization. */ for (irel = internal_relocs; irel < irelend; irel++) { /* We recognize R_NDS32_RELAX_REGION_BEGIN/_END for the region. One we enter the begin of the region, we track all the LW/ST instructions, so when we leave the region, we try to find the best fp-base address for those LW/ST instructions. */ if (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_REGION_BEGIN && (irel->r_addend & R_NDS32_RELAX_REGION_OMIT_FP_FLAG)) { /* Begin of the region. */ if (begin_rel) /* xgettext:c-format */ _bfd_error_handler (_("%B: Nested OMIT_FP in %A."), abfd, sec); begin_rel = irel; nds32_fag_init (&fag_head); ifc_inside = FALSE; } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_REGION_END && (irel->r_addend & R_NDS32_RELAX_REGION_OMIT_FP_FLAG)) { int accu; struct nds32_fag *best_fag, *tmp_fag; int dist; /* End of the region. Check whether it is worth to do fp-as-gp. */ if (begin_rel == NULL) { /* xgettext:c-format */ _bfd_error_handler (_("%B: Unmatched OMIT_FP in %A."), abfd, sec); continue; } accu = nds32_fag_find_base (&fag_head, &best_fag); /* Clean FP7U2_FLAG because they may set ever. */ tmp_fag = fag_head.next; nds32_fag_unmark_relax (tmp_fag, internal_relocs, irelend); /* Check if it is worth, and FP_BASE is near enough to SDA_BASE. */ if (accu < FAG_THRESHOLD || !nds32_fag_mark_relax (link_info, abfd, best_fag, internal_relocs, irelend)) { /* Not worth to do fp-as-gp. */ begin_rel->r_addend |= R_NDS32_RELAX_REGION_NOT_OMIT_FP_FLAG; begin_rel->r_addend &= ~R_NDS32_RELAX_REGION_OMIT_FP_FLAG; irel->r_addend |= R_NDS32_RELAX_REGION_NOT_OMIT_FP_FLAG; irel->r_addend &= ~R_NDS32_RELAX_REGION_OMIT_FP_FLAG; nds32_fag_free_list (&fag_head); begin_rel = NULL; continue; } /* R_SYM of R_NDS32_RELAX_REGION_BEGIN is not used by assembler, so we use it to record the distance to the reloction of best fp-base. */ dist = best_fag->relas[0] - begin_rel; BFD_ASSERT (dist > 0 && dist < 0xffffff); /* Use high 16 bits of addend to record the _FP_BASE_ matched relocation. And get the base value when relocating. */ begin_rel->r_addend &= (0x1 << 16) - 1; begin_rel->r_addend |= dist << 16; nds32_fag_free_list (&fag_head); begin_rel = NULL; } if (begin_rel == NULL || ifc_inside) /* Skip if we are not in the region of fp-as-gp. */ continue; if (ELF32_R_TYPE (irel->r_info) == R_NDS32_SDA15S2_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_SDA17S2_RELA) { bfd_vma addr; uint32_t insn; /* A gp-relative access is found. Insert it to the fag-list. */ /* Rt is necessary an RT3, so it can be converted to lwi37.fp. */ insn = bfd_getb32 (contents + irel->r_offset); if (!N32_IS_RT3 (insn)) continue; addr = calculate_memory_address (abfd, irel, isymbuf, symtab_hdr); nds32_fag_insert (&fag_head, addr, irel); } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_SDA_FP7U2_RELA) { begin_rel = NULL; } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_17IFC_PCREL_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_10IFCU_PCREL_RELA) { /* Suppress fp as gp when encounter ifc. */ ifc_inside = TRUE; } } return TRUE; } /* Remove unused `la $fp, _FD_BASE_' instruction. */ static bfd_boolean nds32_fag_remove_unused_fpbase (bfd *abfd, asection *sec, Elf_Internal_Rela *internal_relocs, Elf_Internal_Rela *irelend) { Elf_Internal_Rela *irel; Elf_Internal_Shdr *symtab_hdr; bfd_byte *contents = NULL; nds32_elf_blank_t *relax_blank_list = NULL; bfd_boolean result = TRUE; bfd_boolean unused_region = FALSE; /* NOTE: Disable fp-as-gp if we encounter ifcall relocations. * R_NDS32_17IFC_PCREL_RELA * R_NDS32_10IFCU_PCREL_RELA CASE?????????????? */ symtab_hdr = &elf_tdata (abfd)->symtab_hdr; nds32_get_section_contents (abfd, sec, &contents, TRUE); for (irel = internal_relocs; irel < irelend; irel++) { /* To remove unused fp-base, we simply find the REGION_NOT_OMIT_FP we marked to in previous pass. DO NOT scan relocations again, since we've alreadly decided it and set the flag. */ const char *syname; int syndx; uint32_t insn; if (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_REGION_BEGIN && (irel->r_addend & R_NDS32_RELAX_REGION_NOT_OMIT_FP_FLAG)) unused_region = TRUE; else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_REGION_END && (irel->r_addend & R_NDS32_RELAX_REGION_NOT_OMIT_FP_FLAG)) unused_region = FALSE; /* We're not in the region. */ if (!unused_region) continue; /* _FP_BASE_ must be a GLOBAL symbol. */ syndx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) continue; /* The symbol name must be _FP_BASE_. */ syname = elf_sym_hashes (abfd)[syndx]->root.root.string; if (strcmp (syname, FP_BASE_NAME) != 0) continue; if (ELF32_R_TYPE (irel->r_info) == R_NDS32_SDA19S0_RELA) { /* addi.gp $fp, -256 */ insn = bfd_getb32 (contents + irel->r_offset); if (insn != INSN_ADDIGP_TO_FP) continue; } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_SDA15S0_RELA) { /* addi $fp, $gp, -256 */ insn = bfd_getb32 (contents + irel->r_offset); if (insn != INSN_ADDI_GP_TO_FP) continue; } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_20_RELA) { /* movi $fp, FP_BASE */ insn = bfd_getb32 (contents + irel->r_offset); if (insn != INSN_MOVI_TO_FP) continue; } else continue; /* We got here because a FP_BASE instruction is found. */ if (!insert_nds32_elf_blank_recalc_total (&relax_blank_list, irel->r_offset, 4)) goto error_return; } finish: if (relax_blank_list) { nds32_elf_relax_delete_blanks (abfd, sec, relax_blank_list); relax_blank_list = NULL; } return result; error_return: result = FALSE; goto finish; } /* This is a version of bfd_generic_get_relocated_section_contents. We need this variety because relaxation will modify the dwarf infomation. When there is undefined symbol reference error mesage, linker need to dump line number where the symbol be used. However the address is be relaxed, it can not get the original dwarf contents. The variety only modify function call for reading in the section. */ static bfd_byte * nds32_elf_get_relocated_section_contents (bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, bfd_boolean relocatable, asymbol **symbols) { bfd *input_bfd = link_order->u.indirect.section->owner; asection *input_section = link_order->u.indirect.section; long reloc_size; arelent **reloc_vector; long reloc_count; reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); if (reloc_size < 0) return NULL; /* Read in the section. */ if (!nds32_get_section_contents (input_bfd, input_section, &data, FALSE)) return NULL; if (reloc_size == 0) return data; reloc_vector = (arelent **) bfd_malloc (reloc_size); if (reloc_vector == NULL) return NULL; reloc_count = bfd_canonicalize_reloc (input_bfd, input_section, reloc_vector, symbols); if (reloc_count < 0) goto error_return; if (reloc_count > 0) { arelent **parent; for (parent = reloc_vector; *parent != NULL; parent++) { char *error_message = NULL; asymbol *symbol; bfd_reloc_status_type r; symbol = *(*parent)->sym_ptr_ptr; if (symbol->section && discarded_section (symbol->section)) { bfd_byte *p; static reloc_howto_type none_howto = HOWTO (0, 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, "unused", FALSE, 0, 0, FALSE); p = data + (*parent)->address * bfd_octets_per_byte (input_bfd); _bfd_clear_contents ((*parent)->howto, input_bfd, input_section, p); (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; (*parent)->addend = 0; (*parent)->howto = &none_howto; r = bfd_reloc_ok; } else r = bfd_perform_relocation (input_bfd, *parent, data, input_section, relocatable ? abfd : NULL, &error_message); if (relocatable) { asection *os = input_section->output_section; /* A partial link, so keep the relocs. */ os->orelocation[os->reloc_count] = *parent; os->reloc_count++; } if (r != bfd_reloc_ok) { switch (r) { case bfd_reloc_undefined: (*link_info->callbacks->undefined_symbol) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), input_bfd, input_section, (*parent)->address, TRUE); break; case bfd_reloc_dangerous: BFD_ASSERT (error_message != NULL); (*link_info->callbacks->reloc_dangerous) (link_info, error_message, input_bfd, input_section, (*parent)->address); break; case bfd_reloc_overflow: (*link_info->callbacks->reloc_overflow) (link_info, NULL, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), (*parent)->howto->name, (*parent)->addend, input_bfd, input_section, (*parent)->address); break; case bfd_reloc_outofrange: /* PR ld/13730: This error can result when processing some partially complete binaries. Do not abort, but issue an error message instead. */ link_info->callbacks->einfo /* xgettext:c-format */ (_("%X%P: %B(%A): relocation \"%R\" goes out of range\n"), abfd, input_section, * parent); goto error_return; default: abort (); break; } } } } free (reloc_vector); return data; error_return: free (reloc_vector); return NULL; } /* Link-time IFC relaxation. In this optimization, we chains jump instructions of the same destination with ifcall. */ /* List to save jal and j relocation. */ struct elf_nds32_ifc_symbol_entry { asection *sec; struct elf_link_hash_entry *h; struct elf_nds32_ifc_irel_list *irel_head; unsigned long insn; int times; int enable; /* Apply ifc. */ int ex9_enable; /* Apply ifc after ex9. */ struct elf_nds32_ifc_symbol_entry *next; }; struct elf_nds32_ifc_irel_list { Elf_Internal_Rela *irel; asection *sec; bfd_vma addr; /* If this is set, then it is the last instruction for ifc-chain, so it must be keep for the actual branching. */ int keep; struct elf_nds32_ifc_irel_list *next; }; static struct elf_nds32_ifc_symbol_entry *ifc_symbol_head = NULL; /* Insert symbol of jal and j for ifc. */ static void nds32_elf_ifc_insert_symbol (asection *sec, struct elf_link_hash_entry *h, Elf_Internal_Rela *irel, unsigned long insn) { struct elf_nds32_ifc_symbol_entry *ptr = ifc_symbol_head; /* Check there is target of existing entry the same as the new one. */ while (ptr != NULL) { if (((h == NULL && ptr->sec == sec && ELF32_R_SYM (ptr->irel_head->irel->r_info) == ELF32_R_SYM (irel->r_info) && ptr->irel_head->irel->r_addend == irel->r_addend) || h != NULL) && ptr->h == h && ptr->insn == insn) { /* The same target exist, so insert into list. */ struct elf_nds32_ifc_irel_list *irel_list = ptr->irel_head; while (irel_list->next != NULL) irel_list = irel_list->next; irel_list->next = bfd_malloc (sizeof (struct elf_nds32_ifc_irel_list)); irel_list = irel_list->next; irel_list->irel = irel; irel_list->keep = 1; if (h == NULL) irel_list->sec = NULL; else irel_list->sec = sec; irel_list->next = NULL; return; } if (ptr->next == NULL) break; ptr = ptr->next; } /* There is no same target entry, so build a new one. */ if (ifc_symbol_head == NULL) { ifc_symbol_head = bfd_malloc (sizeof (struct elf_nds32_ifc_symbol_entry)); ptr = ifc_symbol_head; } else { ptr->next = bfd_malloc (sizeof (struct elf_nds32_ifc_symbol_entry)); ptr = ptr->next; } ptr->h = h; ptr->irel_head = bfd_malloc (sizeof (struct elf_nds32_ifc_irel_list)); ptr->irel_head->irel = irel; ptr->insn = insn; ptr->irel_head->keep = 1; if (h == NULL) { /* Local symbols. */ ptr->sec = sec; ptr->irel_head->sec = NULL; } else { /* Global symbol. */ ptr->sec = NULL; ptr->irel_head->sec = sec; } ptr->irel_head->next = NULL; ptr->times = 0; ptr->enable = 0; ptr->ex9_enable = 0; ptr->next = NULL; } /* Gather all jal and j instructions. */ static bfd_boolean nds32_elf_ifc_calc (struct bfd_link_info *info, bfd *abfd, asection *sec) { Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irelend; Elf_Internal_Rela *irel; Elf_Internal_Shdr *symtab_hdr; bfd_byte *contents = NULL; uint32_t insn, insn_with_reg; unsigned long r_symndx; struct elf_link_hash_entry *h; struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd); struct elf_nds32_link_hash_table *table; bfd_boolean ifc_loop_aware; internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, TRUE /* keep_memory */); irelend = internal_relocs + sec->reloc_count; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* Check if the object enable ifc. */ irel = find_relocs_at_address (internal_relocs, internal_relocs, irelend, R_NDS32_RELAX_ENTRY); if (irel == NULL || irel >= irelend || ELF32_R_TYPE (irel->r_info) != R_NDS32_RELAX_ENTRY || (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_ENTRY && !(irel->r_addend & R_NDS32_RELAX_ENTRY_IFC_FLAG))) return TRUE; if (!nds32_get_section_contents (abfd, sec, &contents, TRUE)) return FALSE; table = nds32_elf_hash_table (info); ifc_loop_aware = table->ifc_loop_aware; while (irel != NULL && irel < irelend) { /* Traverse all relocation and gather all of them to build the list. */ if (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_REGION_BEGIN) { if (ifc_loop_aware == 1 && (irel->r_addend & R_NDS32_RELAX_REGION_INNERMOST_LOOP_FLAG) != 0) { /* Check the region if loop or not. If it is true and ifc-loop-aware is true, ignore the region till region end. */ while (irel != NULL && irel < irelend && (ELF32_R_TYPE (irel->r_info) != R_NDS32_RELAX_REGION_END || (irel->r_addend & R_NDS32_RELAX_REGION_INNERMOST_LOOP_FLAG) != 0)) irel++; } } if (ELF32_R_TYPE (irel->r_info) == R_NDS32_25_PCREL_RELA) { insn = bfd_getb32 (contents + irel->r_offset); nds32_elf_get_insn_with_reg (irel, insn, &insn_with_reg); r_symndx = ELF32_R_SYM (irel->r_info); if (r_symndx < symtab_hdr->sh_info) { /* Local symbol. */ nds32_elf_ifc_insert_symbol (sec, NULL, irel, insn_with_reg); } else { /* External symbol. */ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; nds32_elf_ifc_insert_symbol (sec, h, irel, insn_with_reg); } } irel++; } return TRUE; } /* Determine whether j and jal should be substituted. */ static void nds32_elf_ifc_filter (struct bfd_link_info *info) { struct elf_nds32_ifc_symbol_entry *ptr = ifc_symbol_head; struct elf_nds32_ifc_irel_list *irel_ptr = NULL; struct elf_nds32_ifc_irel_list *irel_keeper = NULL; struct elf_nds32_link_hash_table *table; int target_optimize; bfd_vma address; table = nds32_elf_hash_table (info); target_optimize = table->target_optimize; while (ptr) { irel_ptr = ptr->irel_head; if (ptr->h == NULL) { /* Local symbol. */ irel_keeper = irel_ptr; while (irel_ptr && irel_ptr->next) { /* Check there is jump target can be used. */ if ((irel_ptr->next->irel->r_offset - irel_keeper->irel->r_offset) > 1022) irel_keeper = irel_ptr->next; else { ptr->enable = 1; irel_ptr->keep = 0; } irel_ptr = irel_ptr->next; } } else { /* Global symbol. */ /* We have to get the absolute address and decide whether to keep it or not. */ while (irel_ptr) { address = (irel_ptr->irel->r_offset + irel_ptr->sec->output_section->vma + irel_ptr->sec->output_offset); irel_ptr->addr = address; irel_ptr = irel_ptr->next; } irel_ptr = ptr->irel_head; while (irel_ptr) { /* Sort by address. */ struct elf_nds32_ifc_irel_list *irel_dest = irel_ptr; struct elf_nds32_ifc_irel_list *irel_temp = irel_ptr; struct elf_nds32_ifc_irel_list *irel_ptr_prev = NULL; struct elf_nds32_ifc_irel_list *irel_dest_prev = NULL; /* Get the smallest one. */ while (irel_temp->next) { if (irel_temp->next->addr < irel_dest->addr) { irel_dest_prev = irel_temp; irel_dest = irel_temp->next; } irel_temp = irel_temp->next; } if (irel_dest != irel_ptr) { if (irel_ptr_prev) irel_ptr_prev->next = irel_dest; if (irel_dest_prev) irel_dest_prev->next = irel_ptr; irel_temp = irel_ptr->next; irel_ptr->next = irel_dest->next; irel_dest->next = irel_temp; } irel_ptr_prev = irel_ptr; irel_ptr = irel_ptr->next; } irel_ptr = ptr->irel_head; irel_keeper = irel_ptr; while (irel_ptr && irel_ptr->next) { if ((irel_ptr->next->addr - irel_keeper->addr) > 1022) irel_keeper = irel_ptr->next; else { ptr->enable = 1; irel_ptr->keep = 0; } irel_ptr = irel_ptr->next; } } /* Ex9 enable. Reserve it for ex9. */ if ((target_optimize & NDS32_RELAX_EX9_ON) && ptr->irel_head != irel_keeper) ptr->enable = 0; ptr = ptr->next; } } /* Determine whether j and jal should be substituted after ex9 done. */ static void nds32_elf_ifc_filter_after_ex9 (void) { struct elf_nds32_ifc_symbol_entry *ptr = ifc_symbol_head; struct elf_nds32_ifc_irel_list *irel_ptr = NULL; while (ptr) { if (ptr->enable == 0) { /* Check whether ifc is applied or not. */ irel_ptr = ptr->irel_head; ptr->ex9_enable = 1; while (irel_ptr) { if (ELF32_R_TYPE (irel_ptr->irel->r_info) == R_NDS32_TRAN) { /* Ex9 already. */ ptr->ex9_enable = 0; break; } irel_ptr = irel_ptr->next; } } ptr = ptr->next; } } /* Wrapper to do ifc relaxation. */ bfd_boolean nds32_elf_ifc_finish (struct bfd_link_info *info) { int relax_status; struct elf_nds32_link_hash_table *table; table = nds32_elf_hash_table (info); relax_status = table->relax_status; if (!(relax_status & NDS32_RELAX_JUMP_IFC_DONE)) nds32_elf_ifc_filter (info); else nds32_elf_ifc_filter_after_ex9 (); if (!nds32_elf_ifc_replace (info)) return FALSE; if (table) table->relax_status |= NDS32_RELAX_JUMP_IFC_DONE; return TRUE; } /* Traverse the result of ifc filter and replace it with ifcall9. */ static bfd_boolean nds32_elf_ifc_replace (struct bfd_link_info *info) { struct elf_nds32_ifc_symbol_entry *ptr = ifc_symbol_head; struct elf_nds32_ifc_irel_list *irel_ptr = NULL; nds32_elf_blank_t *relax_blank_list = NULL; bfd_byte *contents = NULL; Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irel; Elf_Internal_Rela *irelend; unsigned short insn16 = INSN_IFCALL9; struct elf_nds32_link_hash_table *table; int relax_status; table = nds32_elf_hash_table (info); relax_status = table->relax_status; while (ptr) { /* Traverse the ifc gather list, and replace the filter entries by ifcall9. */ if ((!(relax_status & NDS32_RELAX_JUMP_IFC_DONE) && ptr->enable == 1) || ((relax_status & NDS32_RELAX_JUMP_IFC_DONE) && ptr->ex9_enable == 1)) { irel_ptr = ptr->irel_head; if (ptr->h == NULL) { /* Local symbol. */ internal_relocs = _bfd_elf_link_read_relocs (ptr->sec->owner, ptr->sec, NULL, NULL, TRUE /* keep_memory */); irelend = internal_relocs + ptr->sec->reloc_count; if (!nds32_get_section_contents (ptr->sec->owner, ptr->sec, &contents, TRUE)) return FALSE; while (irel_ptr) { if (irel_ptr->keep == 0 && irel_ptr->next) { /* The one can be replaced. We have to check whether there is any alignment point in the region. */ irel = irel_ptr->irel; while (((irel_ptr->next->keep == 0 && irel < irel_ptr->next->irel) || (irel_ptr->next->keep == 1 && irel < irelend)) && !(ELF32_R_TYPE (irel->r_info) == R_NDS32_LABEL && (irel->r_addend & 0x1f) == 2)) irel++; if (irel >= irelend || !(ELF32_R_TYPE (irel->r_info) == R_NDS32_LABEL && (irel->r_addend & 0x1f) == 2 && ((irel->r_offset - get_nds32_elf_blank_total (&relax_blank_list, irel->r_offset, 1)) & 0x02) == 0)) { /* Replace by ifcall9. */ bfd_putb16 (insn16, contents + irel_ptr->irel->r_offset); if (!insert_nds32_elf_blank_recalc_total (&relax_blank_list, irel_ptr->irel->r_offset + 2, 2)) return FALSE; irel_ptr->irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel_ptr->irel->r_info), R_NDS32_10IFCU_PCREL_RELA); } } irel_ptr = irel_ptr->next; } /* Delete the redundant code. */ if (relax_blank_list) { nds32_elf_relax_delete_blanks (ptr->sec->owner, ptr->sec, relax_blank_list); relax_blank_list = NULL; } } else { /* Global symbol. */ while (irel_ptr) { if (irel_ptr->keep == 0 && irel_ptr->next) { /* The one can be replaced, and we have to check whether there is any alignment point in the region. */ internal_relocs = _bfd_elf_link_read_relocs (irel_ptr->sec->owner, irel_ptr->sec, NULL, NULL, TRUE /* keep_memory */); irelend = internal_relocs + irel_ptr->sec->reloc_count; if (!nds32_get_section_contents (irel_ptr->sec->owner, irel_ptr->sec, &contents, TRUE)) return FALSE; irel = irel_ptr->irel; while (((irel_ptr->sec == irel_ptr->next->sec && irel_ptr->next->keep == 0 && irel < irel_ptr->next->irel) || ((irel_ptr->sec != irel_ptr->next->sec || irel_ptr->next->keep == 1) && irel < irelend)) && !(ELF32_R_TYPE (irel->r_info) == R_NDS32_LABEL && (irel->r_addend & 0x1f) == 2)) irel++; if (irel >= irelend || !(ELF32_R_TYPE (irel->r_info) == R_NDS32_LABEL && (irel->r_addend & 0x1f) == 2 && ((irel->r_offset - get_nds32_elf_blank_total (&relax_blank_list, irel->r_offset, 1)) & 0x02) == 0)) { /* Replace by ifcall9. */ bfd_putb16 (insn16, contents + irel_ptr->irel->r_offset); if (!insert_nds32_elf_blank_recalc_total (&relax_blank_list, irel_ptr->irel->r_offset + 2, 2)) return FALSE; /* Delete the redundant code, and clear the relocation. */ nds32_elf_relax_delete_blanks (irel_ptr->sec->owner, irel_ptr->sec, relax_blank_list); irel_ptr->irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel_ptr->irel->r_info), R_NDS32_10IFCU_PCREL_RELA); relax_blank_list = NULL; } } irel_ptr = irel_ptr->next; } } } ptr = ptr->next; } return TRUE; } /* Relocate ifcall. */ static bfd_boolean nds32_elf_ifc_reloc (void) { struct elf_nds32_ifc_symbol_entry *ptr = ifc_symbol_head; struct elf_nds32_ifc_irel_list *irel_ptr = NULL; struct elf_nds32_ifc_irel_list *irel_keeper = NULL; bfd_vma relocation, address; unsigned short insn16; bfd_byte *contents = NULL; static bfd_boolean done = FALSE; if (done) return TRUE; done = TRUE; while (ptr) { /* Check the entry is enable ifcall. */ if (ptr->enable == 1 || ptr->ex9_enable == 1) { /* Get the reserve jump. */ irel_ptr = ptr->irel_head; while (irel_ptr) { if (irel_ptr->keep == 1) { irel_keeper = irel_ptr; break; } irel_ptr = irel_ptr->next; } irel_ptr = ptr->irel_head; if (ptr->h == NULL) { /* Local symbol. */ if (!nds32_get_section_contents (ptr->sec->owner, ptr->sec, &contents, TRUE)) return FALSE; while (irel_ptr) { if (irel_ptr->keep == 0 && ELF32_R_TYPE (irel_ptr->irel->r_info) == R_NDS32_10IFCU_PCREL_RELA) { relocation = irel_keeper->irel->r_offset; relocation = relocation - irel_ptr->irel->r_offset; while (irel_keeper && relocation > 1022) { irel_keeper = irel_keeper->next; if (irel_keeper && irel_keeper->keep == 1) { relocation = irel_keeper->irel->r_offset; relocation = relocation - irel_ptr->irel->r_offset; } } if (relocation > 1022) { /* Double check. */ irel_keeper = ptr->irel_head; while (irel_keeper) { if (irel_keeper->keep == 1) { relocation = irel_keeper->irel->r_offset; relocation = relocation - irel_ptr->irel->r_offset; } if (relocation <= 1022) break; irel_keeper = irel_keeper->next; } if (!irel_keeper) return FALSE; } irel_ptr->irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel_ptr->irel->r_info), R_NDS32_NONE); insn16 = INSN_IFCALL9 | (relocation >> 1); bfd_putb16 (insn16, contents + irel_ptr->irel->r_offset); } irel_ptr = irel_ptr->next; } } else { /* Global symbol. */ while (irel_ptr) { if (irel_ptr->keep == 0 && ELF32_R_TYPE (irel_ptr->irel->r_info) == R_NDS32_10IFCU_PCREL_RELA) { /* Get the distance between ifcall and jump. */ relocation = (irel_keeper->irel->r_offset + irel_keeper->sec->output_section->vma + irel_keeper->sec->output_offset); address = (irel_ptr->irel->r_offset + irel_ptr->sec->output_section->vma + irel_ptr->sec->output_offset); relocation = relocation - address; /* The distance is over ragne, find callee again. */ while (irel_keeper && relocation > 1022) { irel_keeper = irel_keeper->next; if (irel_keeper && irel_keeper->keep ==1) { relocation = (irel_keeper->irel->r_offset + irel_keeper->sec->output_section->vma + irel_keeper->sec->output_offset); relocation = relocation - address; } } if (relocation > 1022) { /* Double check. */ irel_keeper = ptr->irel_head; while (irel_keeper) { if (irel_keeper->keep == 1) { relocation = (irel_keeper->irel->r_offset + irel_keeper->sec->output_section->vma + irel_keeper->sec->output_offset); relocation = relocation - address; } if (relocation <= 1022) break; irel_keeper = irel_keeper->next; } if (!irel_keeper) return FALSE; } if (!nds32_get_section_contents (irel_ptr->sec->owner, irel_ptr->sec, &contents, TRUE)) return FALSE; insn16 = INSN_IFCALL9 | (relocation >> 1); bfd_putb16 (insn16, contents + irel_ptr->irel->r_offset); irel_ptr->irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel_ptr->irel->r_info), R_NDS32_NONE); } irel_ptr =irel_ptr->next; } } } ptr = ptr->next; } return TRUE; } /* End of IFC relaxation. */ /* EX9 Instruction Table Relaxation. */ /* Global hash list. */ struct elf_link_hash_entry_list { struct elf_link_hash_entry *h; struct elf_link_hash_entry_list *next; }; /* Save different destination but same insn. */ struct elf_link_hash_entry_mul_list { /* Global symbol times. */ int times; /* Save relocation for each global symbol but useful?? */ Elf_Internal_Rela *irel; /* For sethi, two sethi may have the same high-part but different low-parts. */ Elf_Internal_Rela rel_backup; struct elf_link_hash_entry_list *h_list; struct elf_link_hash_entry_mul_list *next; }; /* Instruction hash table. */ struct elf_nds32_code_hash_entry { struct bfd_hash_entry root; int times; /* For insn that can use relocation or constant ex: sethi. */ int const_insn; asection *sec; struct elf_link_hash_entry_mul_list *m_list; /* Using r_addend. */ Elf_Internal_Rela *irel; /* Using r_info. */ Elf_Internal_Rela rel_backup; }; /* Instruction count list. */ struct elf_nds32_insn_times_entry { const char *string; int times; int order; asection *sec; struct elf_link_hash_entry_mul_list *m_list; Elf_Internal_Rela *irel; Elf_Internal_Rela rel_backup; struct elf_nds32_insn_times_entry *next; }; /* J and JAL symbol list. */ struct elf_nds32_symbol_entry { char *string; unsigned long insn; struct elf_nds32_symbol_entry *next; }; /* Relocation list. */ struct elf_nds32_irel_entry { Elf_Internal_Rela *irel; struct elf_nds32_irel_entry *next; }; /* ex9.it insn need to be fixed. */ struct elf_nds32_ex9_refix { Elf_Internal_Rela *irel; asection *sec; struct elf_link_hash_entry *h; int order; struct elf_nds32_ex9_refix *next; }; static struct bfd_hash_table ex9_code_table; static struct elf_nds32_insn_times_entry *ex9_insn_head = NULL; static struct elf_nds32_ex9_refix *ex9_refix_head = NULL; /* EX9 hash function. */ static struct bfd_hash_entry * nds32_elf_code_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct elf_nds32_code_hash_entry *ret; /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = (struct bfd_hash_entry *) bfd_hash_allocate (table, sizeof (*ret)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = bfd_hash_newfunc (entry, table, string); if (entry == NULL) return entry; ret = (struct elf_nds32_code_hash_entry*) entry; ret->times = 0; ret->const_insn = 0; ret->m_list = NULL; ret->sec = NULL; ret->irel = NULL; return &ret->root; } /* Insert ex9 entry this insert must be stable sorted by times. */ static void nds32_elf_ex9_insert_entry (struct elf_nds32_insn_times_entry *ptr) { struct elf_nds32_insn_times_entry *temp; struct elf_nds32_insn_times_entry *temp2; if (ex9_insn_head == NULL) { ex9_insn_head = ptr; ptr->next = NULL; } else { temp = ex9_insn_head; temp2 = ex9_insn_head; while (temp->next && (temp->next->times >= ptr->times || temp->times == -1)) { if (temp->times == -1) temp2 = temp; temp = temp->next; } if (ptr->times > temp->times && temp->times != -1) { ptr->next = temp; if (temp2->times == -1) temp2->next = ptr; else ex9_insn_head = ptr; } else if (temp->next == NULL) { temp->next = ptr; ptr->next = NULL; } else { ptr->next = temp->next; temp->next = ptr; } } } /* Examine each insn times in hash table. Handle multi-link hash entry. TODO: This function doesn't assign so much info since it is fake. */ static int nds32_elf_examine_insn_times (struct elf_nds32_code_hash_entry *h) { struct elf_nds32_insn_times_entry *ptr; int times; if (h->m_list == NULL) { /* Local symbol insn or insn without relocation. */ if (h->times < 3) return TRUE; ptr = (struct elf_nds32_insn_times_entry *) bfd_malloc (sizeof (struct elf_nds32_insn_times_entry)); ptr->times = h->times; ptr->string = h->root.string; ptr->m_list = NULL; ptr->sec = h->sec; ptr->irel = h->irel; ptr->rel_backup = h->rel_backup; nds32_elf_ex9_insert_entry (ptr); } else { /* Global symbol insn. */ /* Only sethi insn has multiple m_list. */ struct elf_link_hash_entry_mul_list *m_list = h->m_list; times = 0; while (m_list) { times += m_list->times; m_list = m_list->next; } if (times >= 3) { m_list = h->m_list; ptr = (struct elf_nds32_insn_times_entry *) bfd_malloc (sizeof (struct elf_nds32_insn_times_entry)); ptr->times = times; /* Use the total times. */ ptr->string = h->root.string; ptr->m_list = m_list; ptr->sec = h->sec; ptr->irel = m_list->irel; ptr->rel_backup = m_list->rel_backup; nds32_elf_ex9_insert_entry (ptr); } if (h->const_insn == 1) { /* sethi with constant value. */ if (h->times < 3) return TRUE; ptr = (struct elf_nds32_insn_times_entry *) bfd_malloc (sizeof (struct elf_nds32_insn_times_entry)); ptr->times = h->times; ptr->string = h->root.string; ptr->m_list = NULL; ptr->sec = NULL; ptr->irel = NULL; ptr->rel_backup = h->rel_backup; nds32_elf_ex9_insert_entry (ptr); } } return TRUE; } /* Count each insn times in hash table. Handle multi-link hash entry. */ static int nds32_elf_count_insn_times (struct elf_nds32_code_hash_entry *h) { int reservation, times; unsigned long relocation, min_relocation; struct elf_nds32_insn_times_entry *ptr; if (h->m_list == NULL) { /* Local symbol insn or insn without relocation. */ if (h->times < 3) return TRUE; ptr = (struct elf_nds32_insn_times_entry *) bfd_malloc (sizeof (struct elf_nds32_insn_times_entry)); ptr->times = h->times; ptr->string = h->root.string; ptr->m_list = NULL; ptr->sec = h->sec; ptr->irel = h->irel; ptr->rel_backup = h->rel_backup; nds32_elf_ex9_insert_entry (ptr); } else { /* Global symbol insn. */ /* Only sethi insn has multiple m_list. */ struct elf_link_hash_entry_mul_list *m_list = h->m_list; if (ELF32_R_TYPE (m_list->rel_backup.r_info) == R_NDS32_HI20_RELA && m_list->next != NULL) { /* Sethi insn has different symbol or addend but has same hi20. */ times = 0; reservation = 1; relocation = 0; min_relocation = 0xffffffff; while (m_list) { /* Get the minimum sethi address and calculate how many entry the sethi-list have to use. */ if ((m_list->h_list->h->root.type == bfd_link_hash_defined || m_list->h_list->h->root.type == bfd_link_hash_defweak) && (m_list->h_list->h->root.u.def.section != NULL && m_list->h_list->h->root.u.def.section->output_section != NULL)) { relocation = (m_list->h_list->h->root.u.def.value + m_list->h_list->h->root.u.def.section->output_section->vma + m_list->h_list->h->root.u.def.section->output_offset); relocation += m_list->irel->r_addend; } else relocation = 0; if (relocation < min_relocation) min_relocation = relocation; times += m_list->times; m_list = m_list->next; } if (min_relocation < ex9_relax_size) reservation = (min_relocation >> 12) + 1; else reservation = (min_relocation >> 12) - ((min_relocation - ex9_relax_size) >> 12) + 1; if (reservation < (times / 3)) { /* Efficient enough to use ex9. */ int i; for (i = reservation ; i > 0; i--) { /* Allocate number of reservation ex9 entry. */ ptr = (struct elf_nds32_insn_times_entry *) bfd_malloc (sizeof (struct elf_nds32_insn_times_entry)); ptr->times = h->m_list->times / reservation; ptr->string = h->root.string; ptr->m_list = h->m_list; ptr->sec = h->sec; ptr->irel = h->m_list->irel; ptr->rel_backup = h->m_list->rel_backup; nds32_elf_ex9_insert_entry (ptr); } } } else { /* Normal global symbol that means no different address symbol using same ex9 entry. */ if (m_list->times >= 3) { ptr = (struct elf_nds32_insn_times_entry *) bfd_malloc (sizeof (struct elf_nds32_insn_times_entry)); ptr->times = m_list->times; ptr->string = h->root.string; ptr->m_list = h->m_list; ptr->sec = h->sec; ptr->irel = h->m_list->irel; ptr->rel_backup = h->m_list->rel_backup; nds32_elf_ex9_insert_entry (ptr); } } if (h->const_insn == 1) { /* sethi with constant value. */ if (h->times < 3) return TRUE; ptr = (struct elf_nds32_insn_times_entry *) bfd_malloc (sizeof (struct elf_nds32_insn_times_entry)); ptr->times = h->times; ptr->string = h->root.string; ptr->m_list = NULL; ptr->sec = NULL; ptr->irel = NULL; ptr->rel_backup = h->rel_backup; nds32_elf_ex9_insert_entry (ptr); } } return TRUE; } /* Hash table traverse function. */ static void nds32_elf_code_hash_traverse (int (*func) (struct elf_nds32_code_hash_entry*)) { unsigned int i; ex9_code_table.frozen = 1; for (i = 0; i < ex9_code_table.size; i++) { struct bfd_hash_entry *p; for (p = ex9_code_table.table[i]; p != NULL; p = p->next) if (!func ((struct elf_nds32_code_hash_entry *) p)) goto out; } out: ex9_code_table.frozen = 0; } /* Give order number to insn list. */ static void nds32_elf_order_insn_times (struct bfd_link_info *info) { struct elf_nds32_insn_times_entry *ex9_insn; struct elf_nds32_insn_times_entry *temp = NULL; struct elf_nds32_link_hash_table *table; int ex9_limit; int number = 0; if (ex9_insn_head == NULL) return; /* The max number of entries is 512. */ ex9_insn = ex9_insn_head; table = nds32_elf_hash_table (info); ex9_limit = table->ex9_limit; ex9_insn = ex9_insn_head; while (ex9_insn != NULL && number < ex9_limit) { ex9_insn->order = number; number++; temp = ex9_insn; ex9_insn = ex9_insn->next; } if (ex9_insn && temp) temp->next = NULL; while (ex9_insn != NULL) { /* Free useless entry. */ temp = ex9_insn; ex9_insn = ex9_insn->next; free (temp); } } /* Build .ex9.itable section. */ static void nds32_elf_ex9_build_itable (struct bfd_link_info *link_info) { asection *table_sec; struct elf_nds32_insn_times_entry *ptr; bfd *it_abfd; int number = 0; bfd_byte *contents = NULL; for (it_abfd = link_info->input_bfds; it_abfd != NULL; it_abfd = it_abfd->link.next) { /* Find the section .ex9.itable, and put all entries into it. */ table_sec = bfd_get_section_by_name (it_abfd, ".ex9.itable"); if (table_sec != NULL) { if (!nds32_get_section_contents (it_abfd, table_sec, &contents, TRUE)) return; for (ptr = ex9_insn_head; ptr !=NULL ; ptr = ptr->next) number++; table_sec->size = number * 4; if (number == 0) return; elf_elfheader (link_info->output_bfd)->e_flags |= E_NDS32_HAS_EX9_INST; number = 0; for (ptr = ex9_insn_head; ptr !=NULL ; ptr = ptr->next) { long val; val = strtol (ptr->string, NULL, 16); bfd_putb32 ((bfd_vma) val, (char *) contents + (number * 4)); number++; } break; } } } /* Get insn with regs according to relocation type. */ static void nds32_elf_get_insn_with_reg (Elf_Internal_Rela *irel, uint32_t insn, uint32_t *insn_with_reg) { reloc_howto_type *howto = NULL; if (irel == NULL || (ELF32_R_TYPE (irel->r_info) >= (int) ARRAY_SIZE (nds32_elf_howto_table) && (ELF32_R_TYPE (irel->r_info) - R_NDS32_RELAX_ENTRY) >= (int) ARRAY_SIZE (nds32_elf_relax_howto_table))) { *insn_with_reg = insn; return; } howto = bfd_elf32_bfd_reloc_type_table_lookup (ELF32_R_TYPE (irel->r_info)); *insn_with_reg = insn & (0xffffffff ^ howto->dst_mask); } /* Mask number of address bits according to relocation. */ static unsigned long nds32_elf_irel_mask (Elf_Internal_Rela *irel) { reloc_howto_type *howto = NULL; if (irel == NULL || (ELF32_R_TYPE (irel->r_info) >= (int) ARRAY_SIZE (nds32_elf_howto_table) && (ELF32_R_TYPE (irel->r_info) - R_NDS32_RELAX_ENTRY) >= (int) ARRAY_SIZE (nds32_elf_relax_howto_table))) return 0; howto = bfd_elf32_bfd_reloc_type_table_lookup (ELF32_R_TYPE (irel->r_info)); return howto->dst_mask; } static void nds32_elf_insert_irel_entry (struct elf_nds32_irel_entry **irel_list, struct elf_nds32_irel_entry *irel_ptr) { if (*irel_list == NULL) { *irel_list = irel_ptr; irel_ptr->next = NULL; } else { irel_ptr->next = *irel_list; *irel_list = irel_ptr; } } static void nds32_elf_ex9_insert_fix (asection * sec, Elf_Internal_Rela * irel, struct elf_link_hash_entry *h, int order) { struct elf_nds32_ex9_refix *ptr; ptr = bfd_malloc (sizeof (struct elf_nds32_ex9_refix)); ptr->sec = sec; ptr->irel = irel; ptr->h = h; ptr->order = order; ptr->next = NULL; if (ex9_refix_head == NULL) ex9_refix_head = ptr; else { struct elf_nds32_ex9_refix *temp = ex9_refix_head; while (temp->next != NULL) temp = temp->next; temp->next = ptr; } } enum { DATA_EXIST = 1, CLEAN_PRE = 1 << 1, PUSH_PRE = 1 << 2 }; /* Check relocation type if supporting for ex9. */ static int nds32_elf_ex9_relocation_check (struct bfd_link_info *info, Elf_Internal_Rela **irel, Elf_Internal_Rela *irelend, nds32_elf_blank_t *relax_blank_list, asection *sec,bfd_vma *off, bfd_byte *contents) { /* Suppress ex9 if `.no_relax ex9' or inner loop. */ bfd_boolean nested_ex9, nested_loop; bfd_boolean ex9_loop_aware; /* We use the highest 1 byte of result to record how many bytes location counter has to move. */ int result = 0; Elf_Internal_Rela *irel_save = NULL; struct elf_nds32_link_hash_table *table; table = nds32_elf_hash_table (info); ex9_loop_aware = table->ex9_loop_aware; while ((*irel) != NULL && (*irel) < irelend && *off == (*irel)->r_offset) { switch (ELF32_R_TYPE ((*irel)->r_info)) { case R_NDS32_RELAX_REGION_BEGIN: /* Ignore code block. */ nested_ex9 = FALSE; nested_loop = FALSE; if (((*irel)->r_addend & R_NDS32_RELAX_REGION_NO_EX9_FLAG) || (ex9_loop_aware && ((*irel)->r_addend & R_NDS32_RELAX_REGION_INNERMOST_LOOP_FLAG))) { /* Check the region if loop or not. If it is true and ex9-loop-aware is true, ignore the region till region end. */ /* To save the status for in .no_relax ex9 region and loop region to conform the block can do ex9 relaxation. */ nested_ex9 = ((*irel)->r_addend & R_NDS32_RELAX_REGION_NO_EX9_FLAG); nested_loop = (ex9_loop_aware && ((*irel)->r_addend & R_NDS32_RELAX_REGION_INNERMOST_LOOP_FLAG)); while ((*irel) && (*irel) < irelend && (nested_ex9 || nested_loop)) { (*irel)++; if (ELF32_R_TYPE ((*irel)->r_info) == R_NDS32_RELAX_REGION_BEGIN) { /* There may be nested region. */ if (((*irel)->r_addend & R_NDS32_RELAX_REGION_NO_EX9_FLAG) != 0) nested_ex9 = TRUE; else if (ex9_loop_aware && ((*irel)->r_addend & R_NDS32_RELAX_REGION_INNERMOST_LOOP_FLAG)) nested_loop = TRUE; } else if (ELF32_R_TYPE ((*irel)->r_info) == R_NDS32_RELAX_REGION_END) { /* The end of region. */ if (((*irel)->r_addend & R_NDS32_RELAX_REGION_NO_EX9_FLAG) != 0) nested_ex9 = FALSE; else if (ex9_loop_aware && ((*irel)->r_addend & R_NDS32_RELAX_REGION_INNERMOST_LOOP_FLAG)) nested_loop = FALSE; } else if (ELF32_R_TYPE ((*irel)->r_info) == R_NDS32_LABEL && ((*irel)->r_addend & 0x1f) == 2) { /* Alignment exist in the region. */ result |= CLEAN_PRE; if (((*irel)->r_offset - get_nds32_elf_blank_total (&relax_blank_list, (*irel)->r_offset, 0)) & 0x02) result |= PUSH_PRE; } } if ((*irel) >= irelend) *off = sec->size; else *off = (*irel)->r_offset; /* The final instruction in the region, regard this one as data to ignore it. */ result |= DATA_EXIST; return result; } break; case R_NDS32_LABEL: if (((*irel)->r_addend & 0x1f) == 2) { /* Check this point is align and decide to do ex9 or not. */ result |= CLEAN_PRE; if (((*irel)->r_offset - get_nds32_elf_blank_total (&relax_blank_list, (*irel)->r_offset, 0)) & 0x02) result |= PUSH_PRE; } break; case R_NDS32_32_RELA: /* Data. */ result |= (4 << 24); result |= DATA_EXIST; break; case R_NDS32_16_RELA: /* Data. */ result |= (2 << 24); result |= DATA_EXIST; break; case R_NDS32_DATA: /* Data. */ /* The least code alignment is 2. If the data is only one byte, we have to shift one more byte. */ if ((*irel)->r_addend == 1) result |= ((*irel)->r_addend << 25) ; else result |= ((*irel)->r_addend << 24) ; result |= DATA_EXIST; break; case R_NDS32_25_PCREL_RELA: case R_NDS32_SDA16S3_RELA: case R_NDS32_SDA15S3_RELA: case R_NDS32_SDA15S3: case R_NDS32_SDA17S2_RELA: case R_NDS32_SDA15S2_RELA: case R_NDS32_SDA12S2_SP_RELA: case R_NDS32_SDA12S2_DP_RELA: case R_NDS32_SDA15S2: case R_NDS32_SDA18S1_RELA: case R_NDS32_SDA15S1_RELA: case R_NDS32_SDA15S1: case R_NDS32_SDA19S0_RELA: case R_NDS32_SDA15S0_RELA: case R_NDS32_SDA15S0: case R_NDS32_HI20_RELA: case R_NDS32_LO12S0_ORI_RELA: case R_NDS32_LO12S0_RELA: case R_NDS32_LO12S1_RELA: case R_NDS32_LO12S2_RELA: /* These relocation is supported ex9 relaxation currently. */ /* We have to save the relocation for using later, since we have to check there is any alignment in the same address. */ irel_save = *irel; break; default: /* Not support relocations. */ if (ELF32_R_TYPE ((*irel)->r_info) < ARRAY_SIZE (nds32_elf_howto_table) && ELF32_R_TYPE ((*irel)->r_info) != R_NDS32_NONE && ELF32_R_TYPE ((*irel)->r_info) != R_NDS32_INSN16) { /* Note: To optimize aggressively, it maybe can ignore R_NDS32_INSN16 here. But we have to consider if there is any side-effect. */ if (!(result & DATA_EXIST)) { /* We have to confirm there is no data relocation in the same address. In general case, this won't happen. */ /* We have to do ex9 conservative, for those relocation not considerd we ignore instruction. */ result |= DATA_EXIST; if (*(contents + *off) & 0x80) result |= (2 << 24); else result |= (4 << 24); break; } } } if ((*irel) < irelend && ((*irel) + 1) < irelend && (*irel)->r_offset == ((*irel) + 1)->r_offset) /* There are relocations pointing to the same address, we have to check all of them. */ (*irel)++; else { if (irel_save) *irel = irel_save; return result; } } return result; } /* Replace with ex9 instruction. */ static bfd_boolean nds32_elf_ex9_push_insn (uint16_t insn16, bfd_byte *contents, bfd_vma pre_off, nds32_elf_blank_t **relax_blank_list, struct elf_nds32_irel_entry *pre_irel_ptr, struct elf_nds32_irel_entry **irel_list) { if (insn16 != 0) { /* Implement the ex9 relaxation. */ bfd_putb16 (insn16, contents + pre_off); if (!insert_nds32_elf_blank_recalc_total (relax_blank_list, pre_off + 2, 2)) return FALSE; if (pre_irel_ptr != NULL) nds32_elf_insert_irel_entry (irel_list, pre_irel_ptr); } return TRUE; } /* Replace input file instruction which is in ex9 itable. */ static bfd_boolean nds32_elf_ex9_replace_instruction (struct bfd_link_info *info, bfd *abfd, asection *sec) { struct elf_nds32_insn_times_entry *ex9_insn = ex9_insn_head; bfd_byte *contents = NULL; bfd_vma off; uint16_t insn16, insn_ex9; /* `pre_*' are used to track previous instruction that can use ex9.it. */ bfd_vma pre_off = -1; uint16_t pre_insn16 = 0; struct elf_nds32_irel_entry *pre_irel_ptr = NULL; Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irel; Elf_Internal_Rela *irelend; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Sym *isym = NULL; nds32_elf_blank_t *relax_blank_list = NULL; uint32_t insn = 0; uint32_t insn_with_reg = 0; uint32_t it_insn; uint32_t it_insn_with_reg; unsigned long r_symndx; asection *isec; struct elf_nds32_irel_entry *irel_list = NULL; struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd); int data_flag, do_replace, save_irel; struct elf_link_hash_entry_list *h_list; /* Load section instructions, relocations, and symbol table. */ if (!nds32_get_section_contents (abfd, sec, &contents, TRUE) || !nds32_get_local_syms (abfd, sec, &isym)) return FALSE; internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, TRUE /* keep_memory */); irelend = internal_relocs + sec->reloc_count; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; off = 0; /* Check if the object enable ex9. */ irel = find_relocs_at_address (internal_relocs, internal_relocs, irelend, R_NDS32_RELAX_ENTRY); /* Check this section trigger ex9 relaxation. */ if (irel == NULL || irel >= irelend || ELF32_R_TYPE (irel->r_info) != R_NDS32_RELAX_ENTRY || (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_ENTRY && !(irel->r_addend & R_NDS32_RELAX_ENTRY_EX9_FLAG))) return TRUE; irel = internal_relocs; /* Check alignment and fetch proper relocation. */ while (off < sec->size) { struct elf_link_hash_entry *h = NULL; struct elf_nds32_irel_entry *irel_ptr = NULL; /* Syn the instruction and the relocation. */ while (irel != NULL && irel < irelend && irel->r_offset < off) irel++; data_flag = nds32_elf_ex9_relocation_check (info, &irel, irelend, relax_blank_list, sec, &off, contents); if (data_flag & PUSH_PRE) if (!nds32_elf_ex9_push_insn (pre_insn16, contents, pre_off, &relax_blank_list, pre_irel_ptr, &irel_list)) return FALSE; if (data_flag & CLEAN_PRE) { pre_off = 0; pre_insn16 = 0; pre_irel_ptr = NULL; } if (data_flag & DATA_EXIST) { /* We save the move offset in the highest byte. */ off += (data_flag >> 24); continue; } if (*(contents + off) & 0x80) { /* 2-byte instruction. */ off += 2; continue; } /* Load the instruction and its opcode with register for comparing. */ ex9_insn = ex9_insn_head; insn = bfd_getb32 (contents + off); insn_with_reg = 0; while (ex9_insn) { it_insn = strtol (ex9_insn->string, NULL, 16); it_insn_with_reg = 0; do_replace = 0; save_irel = 0; if (irel != NULL && irel < irelend && irel->r_offset == off) { /* Insn with relocation. */ nds32_elf_get_insn_with_reg (irel, insn, &insn_with_reg); if (ex9_insn->irel != NULL) nds32_elf_get_insn_with_reg (ex9_insn->irel, it_insn, &it_insn_with_reg); if (ex9_insn->irel != NULL && (ELF32_R_TYPE (irel->r_info) == ELF32_R_TYPE (ex9_insn->irel->r_info)) && (insn_with_reg == it_insn_with_reg)) { /* Insn relocation and format is the same as table entry. */ if (ELF32_R_TYPE (irel->r_info) == R_NDS32_25_PCREL_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S0_ORI_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S0_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S1_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S2_RELA || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA15S3 && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA15S0) || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA15S3_RELA && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA15S0_RELA) || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA12S2_DP_RELA && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA12S2_SP_RELA) || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA16S3_RELA && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA19S0_RELA)) { r_symndx = ELF32_R_SYM (irel->r_info); if (r_symndx < symtab_hdr->sh_info) { /* Local symbol. */ int shndx = isym[r_symndx].st_shndx; isec = elf_elfsections (abfd)[shndx]->bfd_section; if (ex9_insn->sec == isec && ex9_insn->irel->r_addend == irel->r_addend && ex9_insn->irel->r_info == irel->r_info) { do_replace = 1; save_irel = 1; } } else { /* External symbol. */ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if (ex9_insn->m_list) { h_list = ex9_insn->m_list->h_list; while (h_list) { if (h == h_list->h && (ex9_insn->m_list->irel->r_addend == irel->r_addend)) { do_replace = 1; save_irel = 1; break; } h_list = h_list->next; } } } } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_HI20_RELA) { r_symndx = ELF32_R_SYM (irel->r_info); if (r_symndx < symtab_hdr->sh_info) { /* Local symbols. Compare its base symbol and offset. */ int shndx = isym[r_symndx].st_shndx; isec = elf_elfsections (abfd)[shndx]->bfd_section; if (ex9_insn->sec == isec && ex9_insn->irel->r_addend == irel->r_addend && ex9_insn->irel->r_info == irel->r_info) { do_replace = 1; save_irel = 1; } } else { /* External symbol. */ struct elf_link_hash_entry_mul_list *m_list; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; m_list = ex9_insn->m_list; while (m_list) { h_list = m_list->h_list; while (h_list) { if (h == h_list->h && (m_list->irel->r_addend == irel->r_addend)) { do_replace = 1; save_irel = 1; if (ex9_insn->next && ex9_insn->m_list && ex9_insn->m_list == ex9_insn->next->m_list) { /* sethi multiple entry must be fixed */ nds32_elf_ex9_insert_fix (sec, irel, h, ex9_insn->order); } break; } h_list = h_list->next; } m_list = m_list->next; } } } } /* Import table: Check the symbol hash table and the jump target. Only R_NDS32_25_PCREL_RELA now. */ else if (ex9_insn->times == -1 && ELF32_R_TYPE (irel->r_info) == R_NDS32_25_PCREL_RELA) { nds32_elf_get_insn_with_reg (irel, it_insn, &it_insn_with_reg); if (insn_with_reg == it_insn_with_reg) { char code[10]; bfd_vma relocation; r_symndx = ELF32_R_SYM (irel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if ((h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && h->root.u.def.section != NULL && h->root.u.def.section->output_section != NULL && h->root.u.def.section->gc_mark == 1 && bfd_is_abs_section (h->root.u.def.section) && h->root.u.def.value > sec->size) { relocation = h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset; relocation += irel->r_addend; insn = insn_with_reg | ((relocation >> 1) & 0xffffff); snprintf (code, sizeof (code), "%08x", insn); if (strcmp (code, ex9_insn->string) == 0) { do_replace = 1; save_irel = 1; } } } } } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_REGION_BEGIN || ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_REGION_END || ELF32_R_TYPE (irel->r_info) == R_NDS32_NONE) { /* These relocations do not have to relocate contens, so it can be regard as instruction without relocation. */ if (insn == it_insn && ex9_insn->irel == NULL) do_replace = 1; } } else { /* Instruction without relocation, we only have to compare their byte code. */ if (insn == it_insn && ex9_insn->irel == NULL) do_replace = 1; } /* Insntruction match so replacing the code here. */ if (do_replace == 1) { /* There are two formats of ex9 instruction. */ if (ex9_insn->order < 32) insn_ex9 = INSN_EX9_IT_2; else insn_ex9 = INSN_EX9_IT_1; insn16 = insn_ex9 | ex9_insn->order; /* Insert ex9 instruction. */ nds32_elf_ex9_push_insn (pre_insn16, contents, pre_off, &relax_blank_list, pre_irel_ptr, &irel_list); pre_off = off; pre_insn16 = insn16; if (save_irel) { /* For instuction with relocation do relax. */ irel_ptr = (struct elf_nds32_irel_entry *) bfd_malloc (sizeof (struct elf_nds32_irel_entry)); irel_ptr->irel = irel; irel_ptr->next = NULL; pre_irel_ptr = irel_ptr; } else pre_irel_ptr = NULL; break; } ex9_insn = ex9_insn->next; } off += 4; } /* Insert ex9 instruction. */ nds32_elf_ex9_push_insn (pre_insn16, contents, pre_off, &relax_blank_list, pre_irel_ptr, &irel_list); /* Delete the redundant code. */ if (relax_blank_list) { nds32_elf_relax_delete_blanks (abfd, sec, relax_blank_list); relax_blank_list = NULL; } /* Clear the relocation that is replaced by ex9. */ while (irel_list) { struct elf_nds32_irel_entry *irel_ptr; irel_ptr = irel_list; irel_list = irel_ptr->next; irel_ptr->irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel_ptr->irel->r_info), R_NDS32_TRAN); free (irel_ptr); } return TRUE; } /* Initialize ex9 hash table. */ int nds32_elf_ex9_init (void) { if (!bfd_hash_table_init_n (&ex9_code_table, nds32_elf_code_hash_newfunc, sizeof (struct elf_nds32_code_hash_entry), 1023)) { _bfd_error_handler (_("Linker: cannot init ex9 hash table error \n")); return FALSE; } return TRUE; } /* Predict how many bytes will be relaxed with ex9 and ifc. */ static void nds32_elf_ex9_total_relax (struct bfd_link_info *info) { struct elf_nds32_insn_times_entry *ex9_insn; struct elf_nds32_insn_times_entry *temp; int target_optimize; struct elf_nds32_link_hash_table *table; if (ex9_insn_head == NULL) return; table = nds32_elf_hash_table (info); target_optimize = table->target_optimize; ex9_insn = ex9_insn_head; while (ex9_insn) { ex9_relax_size = ex9_insn->times * 2 + ex9_relax_size; temp = ex9_insn; ex9_insn = ex9_insn->next; free (temp); } ex9_insn_head = NULL; if ((target_optimize & NDS32_RELAX_JUMP_IFC_ON)) { /* Examine ifc reduce size. */ struct elf_nds32_ifc_symbol_entry *ifc_ent = ifc_symbol_head; struct elf_nds32_ifc_irel_list *irel_ptr = NULL; int size = 0; while (ifc_ent) { if (ifc_ent->enable == 0) { /* Not ifc yet. */ irel_ptr = ifc_ent->irel_head; while (irel_ptr) { size += 2; irel_ptr = irel_ptr->next; } } size -= 2; ifc_ent = ifc_ent->next; } ex9_relax_size += size; } } /* Finish ex9 table. */ void nds32_elf_ex9_finish (struct bfd_link_info *link_info) { nds32_elf_code_hash_traverse (nds32_elf_examine_insn_times); nds32_elf_order_insn_times (link_info); nds32_elf_ex9_total_relax (link_info); /* Traverse the hash table and count its times. */ nds32_elf_code_hash_traverse (nds32_elf_count_insn_times); nds32_elf_order_insn_times (link_info); nds32_elf_ex9_build_itable (link_info); } /* Relocate the entries in ex9 table. */ static bfd_vma nds32_elf_ex9_reloc_insn (struct elf_nds32_insn_times_entry *ptr, struct bfd_link_info *link_info) { Elf_Internal_Sym *isym = NULL; bfd_vma relocation = -1; struct elf_link_hash_entry *h; if (ptr->m_list != NULL) { /* Global symbol. */ h = ptr->m_list->h_list->h; if ((h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && h->root.u.def.section != NULL && h->root.u.def.section->output_section != NULL) { relocation = h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset; relocation += ptr->m_list->irel->r_addend; } else relocation = 0; } else if (ptr->sec !=NULL) { /* Local symbol. */ Elf_Internal_Sym sym; asection *sec = NULL; asection isec; asection *isec_ptr = &isec; Elf_Internal_Rela irel_backup = *(ptr->irel); asection *sec_backup = ptr->sec; bfd *abfd = ptr->sec->owner; if (!nds32_get_local_syms (abfd, sec, &isym)) return FALSE; isym = isym + ELF32_R_SYM (ptr->irel->r_info); sec = bfd_section_from_elf_index (abfd, isym->st_shndx); if (sec != NULL) *isec_ptr = *sec; sym = *isym; /* The purpose is same as elf_link_input_bfd. */ if (isec_ptr != NULL && isec_ptr->sec_info_type == SEC_INFO_TYPE_MERGE && ELF_ST_TYPE (isym->st_info) != STT_SECTION) { sym.st_value = _bfd_merged_section_offset (ptr->sec->output_section->owner, &isec_ptr, elf_section_data (isec_ptr)->sec_info, isym->st_value); } relocation = _bfd_elf_rela_local_sym (link_info->output_bfd, &sym, &ptr->sec, ptr->irel); if (ptr->irel != NULL) relocation += ptr->irel->r_addend; /* Restore origin value since there may be some insntructions that could not be replaced with ex9.it. */ *(ptr->irel) = irel_backup; ptr->sec = sec_backup; } return relocation; } /* Import ex9 table and build list. */ void nds32_elf_ex9_import_table (struct bfd_link_info *info) { int num = 0; bfd_byte *contents; FILE *ex9_import_file; int update_ex9_table; struct elf_nds32_link_hash_table *table; table = nds32_elf_hash_table (info); ex9_import_file = table->ex9_import_file; rewind (table->ex9_import_file); contents = bfd_malloc (sizeof (bfd_byte) * 4); /* Read instructions from the input file and build the list. */ while (!feof (ex9_import_file)) { unsigned long insn; char *code; struct elf_nds32_insn_times_entry *ptr; size_t nread; nread = fread (contents, sizeof (bfd_byte) * 4, 1, ex9_import_file); /* Ignore the final byte 0x0a. */ if (nread < 1) break; insn = bfd_getb32 (contents); code = bfd_malloc (sizeof (char) * 9); snprintf (code, 9, "%08lx", (insn & 0xffffffff)); ptr = bfd_malloc (sizeof (struct elf_nds32_insn_times_entry)); ptr->string = code; ptr->order = num; ptr->times = -1; ptr->sec = NULL; ptr->m_list = NULL; ptr->rel_backup.r_offset = 0; ptr->rel_backup.r_info = 0; ptr->rel_backup.r_addend = 0; ptr->irel = NULL; ptr->next = NULL; nds32_elf_ex9_insert_entry (ptr); num++; } update_ex9_table = table->update_ex9_table; if (update_ex9_table == 1) { /* It has to consider of sethi need to use multiple page but it not be done yet. */ nds32_elf_code_hash_traverse (nds32_elf_examine_insn_times); nds32_elf_order_insn_times (info); } } /* Export ex9 table. */ static void nds32_elf_ex9_export (struct bfd_link_info *info, bfd_byte *contents, int size) { FILE *ex9_export_file; struct elf_nds32_link_hash_table *table; table = nds32_elf_hash_table (info); ex9_export_file = table->ex9_export_file; fwrite (contents, sizeof (bfd_byte), size, ex9_export_file); fclose (ex9_export_file); } /* Adjust relocations of J and JAL in ex9.itable. Export ex9 table. */ static void nds32_elf_ex9_reloc_jmp (struct bfd_link_info *link_info) { asection *table_sec = NULL; struct elf_nds32_insn_times_entry *ex9_insn = ex9_insn_head; struct elf_nds32_insn_times_entry *temp_ptr, *temp_ptr2; bfd *it_abfd; uint32_t insn, insn_with_reg, source_insn; bfd_byte *contents = NULL, *source_contents = NULL; int size = 0; bfd_vma gp; int shift, update_ex9_table, offset = 0; reloc_howto_type *howto = NULL; Elf_Internal_Rela rel_backup; unsigned short insn_ex9; struct elf_nds32_link_hash_table *table; FILE *ex9_export_file; static bfd_boolean done = FALSE; if (done) return; done = TRUE; table = nds32_elf_hash_table (link_info); if (table) table->relax_status |= NDS32_RELAX_EX9_DONE; update_ex9_table = table->update_ex9_table; /* Generated ex9.itable exactly. */ if (update_ex9_table == 0) { for (it_abfd = link_info->input_bfds; it_abfd != NULL; it_abfd = it_abfd->link.next) { table_sec = bfd_get_section_by_name (it_abfd, ".ex9.itable"); if (table_sec != NULL) break; } if (table_sec != NULL) { bfd *output_bfd; output_bfd = table_sec->output_section->owner; nds32_elf_final_sda_base (output_bfd, link_info, &gp, FALSE); if (table_sec->size == 0) return; if (!nds32_get_section_contents (it_abfd, table_sec, &contents, TRUE)) return; } } else { /* Set gp. */ bfd *output_bfd; output_bfd = link_info->input_bfds->sections->output_section->owner; nds32_elf_final_sda_base (output_bfd, link_info, &gp, FALSE); contents = bfd_malloc (sizeof (bfd_byte) * 2048); } /* Relocate instruction. */ while (ex9_insn) { bfd_vma relocation, min_relocation = 0xffffffff; insn = strtol (ex9_insn->string, NULL, 16); insn_with_reg = 0; if (ex9_insn->m_list != NULL || ex9_insn->sec != NULL) { if (ex9_insn->m_list) rel_backup = ex9_insn->m_list->rel_backup; else rel_backup = ex9_insn->rel_backup; nds32_elf_get_insn_with_reg (&rel_backup, insn, &insn_with_reg); howto = bfd_elf32_bfd_reloc_type_table_lookup (ELF32_R_TYPE (rel_backup.r_info)); shift = howto->rightshift; if (ELF32_R_TYPE (rel_backup.r_info) == R_NDS32_25_PCREL_RELA || ELF32_R_TYPE (rel_backup.r_info) == R_NDS32_LO12S0_ORI_RELA || ELF32_R_TYPE (rel_backup.r_info) == R_NDS32_LO12S0_RELA || ELF32_R_TYPE (rel_backup.r_info) == R_NDS32_LO12S1_RELA || ELF32_R_TYPE (rel_backup.r_info) == R_NDS32_LO12S2_RELA) { relocation = nds32_elf_ex9_reloc_insn (ex9_insn, link_info); insn = insn_with_reg | ((relocation >> shift) & nds32_elf_irel_mask (&rel_backup)); bfd_putb32 (insn, contents + (ex9_insn->order) * 4); } else if ((ELF32_R_TYPE (rel_backup.r_info) >= R_NDS32_SDA15S3 && ELF32_R_TYPE (rel_backup.r_info) <= R_NDS32_SDA15S0) || (ELF32_R_TYPE (rel_backup.r_info) >= R_NDS32_SDA15S3_RELA && ELF32_R_TYPE (rel_backup.r_info) <= R_NDS32_SDA15S0_RELA) || (ELF32_R_TYPE (rel_backup.r_info) >= R_NDS32_SDA12S2_DP_RELA && ELF32_R_TYPE (rel_backup.r_info) <= R_NDS32_SDA12S2_SP_RELA) || (ELF32_R_TYPE (rel_backup.r_info) >= R_NDS32_SDA16S3_RELA && ELF32_R_TYPE (rel_backup.r_info) <= R_NDS32_SDA19S0_RELA)) { relocation = nds32_elf_ex9_reloc_insn (ex9_insn, link_info); insn = insn_with_reg | (((relocation - gp) >> shift) & nds32_elf_irel_mask (&rel_backup)); bfd_putb32 (insn, contents + (ex9_insn->order) * 4); } else if (ELF32_R_TYPE (rel_backup.r_info) == R_NDS32_HI20_RELA) { /* Sethi may be multiple entry for one insn. */ if (ex9_insn->next && ex9_insn->m_list && ex9_insn->m_list == ex9_insn->next->m_list) { struct elf_link_hash_entry_mul_list *m_list; struct elf_nds32_ex9_refix *fix_ptr; struct elf_link_hash_entry *h; temp_ptr = ex9_insn; temp_ptr2 = ex9_insn; m_list = ex9_insn->m_list; while (m_list) { h = m_list->h_list->h; relocation = h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset; relocation += m_list->irel->r_addend; if (relocation < min_relocation) min_relocation = relocation; m_list = m_list->next; } relocation = min_relocation; /* Put insntruction into ex9 table. */ insn = insn_with_reg | ((relocation >> shift) & nds32_elf_irel_mask (&rel_backup)); bfd_putb32 (insn, contents + (ex9_insn->order) * 4); relocation = relocation + 0x1000; /* hi20 */ while (ex9_insn->next && ex9_insn->m_list && ex9_insn->m_list == ex9_insn->next->m_list) { /* Multiple sethi. */ ex9_insn = ex9_insn->next; size += 4; insn = insn_with_reg | ((relocation >> shift) & nds32_elf_irel_mask (&rel_backup)); bfd_putb32 (insn, contents + (ex9_insn->order) * 4); relocation = relocation + 0x1000; /* hi20 */ } fix_ptr = ex9_refix_head; while (fix_ptr) { /* Fix ex9 insn. */ /* temp_ptr2 points to the head of multiple sethi. */ temp_ptr = temp_ptr2; while (fix_ptr->order != temp_ptr->order && fix_ptr->next) { fix_ptr = fix_ptr->next; } if (fix_ptr->order != temp_ptr->order) break; /* Set source insn. */ relocation = fix_ptr->h->root.u.def.value + fix_ptr->h->root.u.def.section->output_section->vma + fix_ptr->h->root.u.def.section->output_offset; relocation += fix_ptr->irel->r_addend; /* sethi imm is imm20s. */ source_insn = insn_with_reg | ((relocation >> shift) & 0xfffff); while (temp_ptr) { /* Match entry and source code. */ insn = bfd_getb32 (contents + (temp_ptr->order) * 4 + offset); if (insn == source_insn) { /* Fix the ex9 insn. */ if (temp_ptr->order != fix_ptr->order) { if (!nds32_get_section_contents (fix_ptr->sec->owner, fix_ptr->sec, &source_contents, TRUE)) _bfd_error_handler (_("Linker: error cannot fixed ex9 relocation \n")); if (temp_ptr->order < 32) insn_ex9 = INSN_EX9_IT_2; else insn_ex9 = INSN_EX9_IT_1; insn_ex9 = insn_ex9 | temp_ptr->order; bfd_putb16 (insn_ex9, source_contents + fix_ptr->irel->r_offset); } break; } else { if (!temp_ptr->next || temp_ptr->m_list != temp_ptr->next->m_list) _bfd_error_handler (_("Linker: error cannot fixed ex9 relocation \n")); else temp_ptr = temp_ptr->next; } } fix_ptr = fix_ptr->next; } } else { relocation = nds32_elf_ex9_reloc_insn (ex9_insn, link_info); insn = insn_with_reg | ((relocation >> shift) & nds32_elf_irel_mask (&rel_backup)); bfd_putb32 (insn, contents + (ex9_insn->order) * 4); } } } else { /* Insn without relocation does not have to be fixed if need to update export table. */ if (update_ex9_table == 1) bfd_putb32 (insn, contents + (ex9_insn->order) * 4); } ex9_insn = ex9_insn->next; size += 4; } ex9_export_file = table->ex9_export_file; if (ex9_export_file != NULL) nds32_elf_ex9_export (link_info, contents, table_sec->size); else if (update_ex9_table == 1) { table->ex9_export_file = table->ex9_import_file; rewind (table->ex9_export_file); nds32_elf_ex9_export (link_info, contents, size); } } /* Generate ex9 hash table. */ static bfd_boolean nds32_elf_ex9_build_hash_table (bfd *abfd, asection *sec, struct bfd_link_info *link_info) { Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irelend; Elf_Internal_Rela *irel; Elf_Internal_Rela *jrel; Elf_Internal_Rela rel_backup; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Sym *isym = NULL; asection *isec; struct elf_link_hash_entry **sym_hashes; bfd_byte *contents = NULL; bfd_vma off = 0; unsigned long r_symndx; uint32_t insn, insn_with_reg; struct elf_link_hash_entry *h; int data_flag, shift, align; bfd_vma relocation; /* Suppress ex9 if `.no_relax ex9' or inner loop. */ reloc_howto_type *howto = NULL; sym_hashes = elf_sym_hashes (abfd); /* Load section instructions, relocations, and symbol table. */ if (!nds32_get_section_contents (abfd, sec, &contents, TRUE)) return FALSE; internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, TRUE /* keep_memory */); irelend = internal_relocs + sec->reloc_count; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; if (!nds32_get_local_syms (abfd, sec, &isym)) return FALSE; /* Check the object if enable ex9. */ irel = find_relocs_at_address (internal_relocs, internal_relocs, irelend, R_NDS32_RELAX_ENTRY); /* Check this section trigger ex9 relaxation. */ if (irel == NULL || irel >= irelend || ELF32_R_TYPE (irel->r_info) != R_NDS32_RELAX_ENTRY || (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_ENTRY && !(irel->r_addend & R_NDS32_RELAX_ENTRY_EX9_FLAG))) return TRUE; irel = internal_relocs; /* Push each insn into hash table. */ while (off < sec->size) { char code[10]; struct elf_nds32_code_hash_entry *entry; while (irel != NULL && irel < irelend && irel->r_offset < off) irel++; data_flag = nds32_elf_ex9_relocation_check (link_info, &irel, irelend, NULL, sec, &off, contents); if (data_flag & DATA_EXIST) { /* We save the move offset in the highest byte. */ off += (data_flag >> 24); continue; } if (*(contents + off) & 0x80) { off += 2; } else { h = NULL; isec = NULL; jrel = NULL; rel_backup.r_info = 0; rel_backup.r_offset = 0; rel_backup.r_addend = 0; /* Load the instruction and its opcode with register for comparing. */ insn = bfd_getb32 (contents + off); insn_with_reg = 0; if (irel != NULL && irel < irelend && irel->r_offset == off) { nds32_elf_get_insn_with_reg (irel, insn, &insn_with_reg); howto = bfd_elf32_bfd_reloc_type_table_lookup (ELF32_R_TYPE (irel->r_info)); shift = howto->rightshift; align = (1 << shift) - 1; if (ELF32_R_TYPE (irel->r_info) == R_NDS32_25_PCREL_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_HI20_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S0_ORI_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S0_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S1_RELA || ELF32_R_TYPE (irel->r_info) == R_NDS32_LO12S2_RELA ||(ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA15S3 && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA15S0) || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA15S3_RELA && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA15S0_RELA) || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA12S2_DP_RELA && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA12S2_SP_RELA) || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA16S3_RELA && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA19S0_RELA)) { r_symndx = ELF32_R_SYM (irel->r_info); jrel = irel; rel_backup = *irel; if (r_symndx < symtab_hdr->sh_info) { /* Local symbol. */ int shndx = isym[r_symndx].st_shndx; bfd_vma st_value = (isym + r_symndx)->st_value; isec = elf_elfsections (abfd)[shndx]->bfd_section; relocation = (isec->output_section->vma + isec->output_offset + st_value + irel->r_addend); } else { /* External symbol. */ bfd_boolean warned ATTRIBUTE_UNUSED; bfd_boolean ignored ATTRIBUTE_UNUSED; bfd_boolean unresolved_reloc ATTRIBUTE_UNUSED; asection *sym_sec; /* Maybe there is a better way to get h and relocation */ RELOC_FOR_GLOBAL_SYMBOL (link_info, abfd, sec, irel, r_symndx, symtab_hdr, sym_hashes, h, sym_sec, relocation, unresolved_reloc, warned, ignored); relocation += irel->r_addend; if ((h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) || strcmp (h->root.root.string, "_FP_BASE_") == 0) { off += 4; continue; } } /* Check for gp relative instruction alignment. */ if ((ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA15S3 && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA15S0) || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA15S3_RELA && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA15S0_RELA) || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA12S2_DP_RELA && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA12S2_SP_RELA) || (ELF32_R_TYPE (irel->r_info) >= R_NDS32_SDA16S3_RELA && ELF32_R_TYPE (irel->r_info) <= R_NDS32_SDA19S0_RELA)) { bfd_vma gp; bfd *output_bfd = sec->output_section->owner; bfd_reloc_status_type r; /* If the symbol is in the abs section, the out_bfd will be null. This happens when the relocation has a symbol@GOTOFF. */ r = nds32_elf_final_sda_base (output_bfd, link_info, &gp, FALSE); if (r != bfd_reloc_ok) { off += 4; continue; } relocation -= gp; /* Make sure alignment is correct. */ if (relocation & align) { /* Incorrect alignment. */ _bfd_error_handler /* xgettext:c-format */ (_("%B: warning: unaligned small data access. " "For entry: {%d, %d, %d}, addr = 0x%x, align = 0x%x."), abfd, irel->r_offset, irel->r_info, irel->r_addend, relocation, align); off += 4; continue; } } insn = insn_with_reg | ((relocation >> shift) & nds32_elf_irel_mask (irel)); } else if (ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_REGION_BEGIN || ELF32_R_TYPE (irel->r_info) == R_NDS32_RELAX_REGION_END || ELF32_R_TYPE (irel->r_info) == R_NDS32_NONE) { /* These relocations do not have to relocate contens, so it can be regard as instruction without relocation. */ } else { off += 4; continue; } } snprintf (code, sizeof (code), "%08x", insn); /* Copy "code". */ entry = (struct elf_nds32_code_hash_entry*) bfd_hash_lookup (&ex9_code_table, code, TRUE, TRUE); if (entry == NULL) { _bfd_error_handler (_("%P%F: failed creating ex9.it %s hash table: %E\n"), code); return FALSE; } if (h) { if (h->root.type == bfd_link_hash_undefined) return TRUE; /* Global symbol. */ /* In order to do sethi with different symbol but same value. */ if (entry->m_list == NULL) { struct elf_link_hash_entry_mul_list *m_list_new; struct elf_link_hash_entry_list *h_list_new; m_list_new = (struct elf_link_hash_entry_mul_list *) bfd_malloc (sizeof (struct elf_link_hash_entry_mul_list)); h_list_new = (struct elf_link_hash_entry_list *) bfd_malloc (sizeof (struct elf_link_hash_entry_list)); entry->m_list = m_list_new; m_list_new->h_list = h_list_new; m_list_new->rel_backup = rel_backup; m_list_new->times = 1; m_list_new->irel = jrel; m_list_new->next = NULL; h_list_new->h = h; h_list_new->next = NULL; } else { struct elf_link_hash_entry_mul_list *m_list = entry->m_list; struct elf_link_hash_entry_list *h_list; while (m_list) { /* Build the different symbols that point to the same address. */ h_list = m_list->h_list; if (h_list->h->root.u.def.value == h->root.u.def.value && h_list->h->root.u.def.section->output_section->vma == h->root.u.def.section->output_section->vma && h_list->h->root.u.def.section->output_offset == h->root.u.def.section->output_offset && m_list->rel_backup.r_addend == rel_backup.r_addend) { m_list->times++; m_list->irel = jrel; while (h_list->h != h && h_list->next) h_list = h_list->next; if (h_list->h != h) { struct elf_link_hash_entry_list *h_list_new; h_list_new = (struct elf_link_hash_entry_list *) bfd_malloc (sizeof (struct elf_link_hash_entry_list)); h_list->next = h_list_new; h_list_new->h = h; h_list_new->next = NULL; } break; } /* The sethi case may have different address but the hi20 is the same. */ else if (ELF32_R_TYPE (jrel->r_info) == R_NDS32_HI20_RELA && m_list->next == NULL) { struct elf_link_hash_entry_mul_list *m_list_new; struct elf_link_hash_entry_list *h_list_new; m_list_new = (struct elf_link_hash_entry_mul_list *) bfd_malloc (sizeof (struct elf_link_hash_entry_mul_list)); h_list_new = (struct elf_link_hash_entry_list *) bfd_malloc (sizeof (struct elf_link_hash_entry_list)); m_list->next = m_list_new; m_list_new->h_list = h_list_new; m_list_new->rel_backup = rel_backup; m_list_new->times = 1; m_list_new->irel = jrel; m_list_new->next = NULL; h_list_new->h = h; h_list_new->next = NULL; break; } m_list = m_list->next; } if (!m_list) { off += 4; continue; } } } else { /* Local symbol and insn without relocation*/ entry->times++; entry->rel_backup = rel_backup; } /* Use in sethi insn with constant and global symbol in same format. */ if (!jrel) entry->const_insn = 1; else entry->irel = jrel; entry->sec = isec; off += 4; } } return TRUE; } /* Set the _ITB_BASE, and point it to ex9 table. */ bfd_boolean nds32_elf_ex9_itb_base (struct bfd_link_info *link_info) { bfd *abfd; asection *sec; bfd *output_bfd = NULL; struct bfd_link_hash_entry *bh = NULL; if (is_ITB_BASE_set == 1) return TRUE; is_ITB_BASE_set = 1; bh = bfd_link_hash_lookup (link_info->hash, "_ITB_BASE_", FALSE, FALSE, TRUE); if (bh && (bh->type == bfd_link_hash_defined || bh->type == bfd_link_hash_defweak)) return TRUE; for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) { sec = bfd_get_section_by_name (abfd, ".ex9.itable"); if (sec != NULL) { output_bfd = sec->output_section->owner; break; } } if (output_bfd == NULL) { output_bfd = link_info->output_bfd; if (output_bfd->sections == NULL) return TRUE; else sec = bfd_abs_section_ptr; } bh = bfd_link_hash_lookup (link_info->hash, "_ITB_BASE_", FALSE, FALSE, TRUE); return (_bfd_generic_link_add_one_symbol (link_info, output_bfd, "_ITB_BASE_", BSF_GLOBAL | BSF_WEAK, sec, 0, (const char *) NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)); } /* End EX9.IT */ #define ELF_ARCH bfd_arch_nds32 #define ELF_MACHINE_CODE EM_NDS32 #define ELF_MAXPAGESIZE 0x1000 #define ELF_TARGET_ID NDS32_ELF_DATA #define TARGET_BIG_SYM nds32_elf32_be_vec #define TARGET_BIG_NAME "elf32-nds32be" #define TARGET_LITTLE_SYM nds32_elf32_le_vec #define TARGET_LITTLE_NAME "elf32-nds32le" #define elf_info_to_howto nds32_info_to_howto #define elf_info_to_howto_rel nds32_info_to_howto_rel #define bfd_elf32_bfd_link_hash_table_create nds32_elf_link_hash_table_create #define bfd_elf32_bfd_merge_private_bfd_data nds32_elf_merge_private_bfd_data #define bfd_elf32_bfd_print_private_bfd_data nds32_elf_print_private_bfd_data #define bfd_elf32_bfd_relax_section nds32_elf_relax_section #define bfd_elf32_bfd_set_private_flags nds32_elf_set_private_flags #define bfd_elf32_mkobject nds32_elf_mkobject #define elf_backend_action_discarded nds32_elf_action_discarded #define elf_backend_add_symbol_hook nds32_elf_add_symbol_hook #define elf_backend_check_relocs nds32_elf_check_relocs #define elf_backend_adjust_dynamic_symbol nds32_elf_adjust_dynamic_symbol #define elf_backend_create_dynamic_sections nds32_elf_create_dynamic_sections #define elf_backend_finish_dynamic_sections nds32_elf_finish_dynamic_sections #define elf_backend_finish_dynamic_symbol nds32_elf_finish_dynamic_symbol #define elf_backend_size_dynamic_sections nds32_elf_size_dynamic_sections #define elf_backend_relocate_section nds32_elf_relocate_section #define elf_backend_gc_mark_hook nds32_elf_gc_mark_hook #define elf_backend_gc_sweep_hook nds32_elf_gc_sweep_hook #define elf_backend_grok_prstatus nds32_elf_grok_prstatus #define elf_backend_grok_psinfo nds32_elf_grok_psinfo #define elf_backend_reloc_type_class nds32_elf_reloc_type_class #define elf_backend_copy_indirect_symbol nds32_elf_copy_indirect_symbol #define elf_backend_link_output_symbol_hook nds32_elf_output_symbol_hook #define elf_backend_output_arch_syms nds32_elf_output_arch_syms #define elf_backend_object_p nds32_elf_object_p #define elf_backend_final_write_processing nds32_elf_final_write_processing #define elf_backend_special_sections nds32_elf_special_sections #define bfd_elf32_bfd_get_relocated_section_contents \ nds32_elf_get_relocated_section_contents #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 12 #define elf_backend_may_use_rel_p 1 #define elf_backend_default_use_rela_p 1 #define elf_backend_may_use_rela_p 1 #define elf_backend_dtrel_excludes_plt 1 #include "elf32-target.h" #undef ELF_MAXPAGESIZE #define ELF_MAXPAGESIZE 0x2000 #undef TARGET_BIG_SYM #define TARGET_BIG_SYM nds32_elf32_linux_be_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-nds32be-linux" #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM nds32_elf32_linux_le_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-nds32le-linux" #undef elf32_bed #define elf32_bed elf32_nds32_lin_bed #include "elf32-target.h"