/* Helper functions in C for IEEE modules Copyright (C) 2013-2022 Free Software Foundation, Inc. Contributed by Francois-Xavier Coudert This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" /* Check support for issignaling macro. If not, we include our own fallback implementation. */ #ifndef issignaling # include "issignaling_fallback.h" #endif /* Prototypes. */ extern int ieee_class_helper_4 (GFC_REAL_4 *); internal_proto(ieee_class_helper_4); extern int ieee_class_helper_8 (GFC_REAL_8 *); internal_proto(ieee_class_helper_8); #ifdef HAVE_GFC_REAL_10 extern int ieee_class_helper_10 (GFC_REAL_10 *); internal_proto(ieee_class_helper_10); #endif #ifdef HAVE_GFC_REAL_16 extern int ieee_class_helper_16 (GFC_REAL_16 *); internal_proto(ieee_class_helper_16); #endif /* Enumeration of the possible floating-point types. These values correspond to the hidden arguments of the IEEE_CLASS_TYPE derived-type of IEEE_ARITHMETIC. */ enum { IEEE_OTHER_VALUE = 0, IEEE_SIGNALING_NAN, IEEE_QUIET_NAN, IEEE_NEGATIVE_INF, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL, IEEE_NEGATIVE_SUBNORMAL = IEEE_NEGATIVE_DENORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL, IEEE_POSITIVE_SUBNORMAL = IEEE_POSITIVE_DENORMAL, IEEE_POSITIVE_NORMAL, IEEE_POSITIVE_INF }; #define CLASSMACRO(TYPE) \ int ieee_class_helper_ ## TYPE (GFC_REAL_ ## TYPE *value) \ { \ int res = __builtin_fpclassify (IEEE_QUIET_NAN, IEEE_POSITIVE_INF, \ IEEE_POSITIVE_NORMAL, \ IEEE_POSITIVE_DENORMAL, \ IEEE_POSITIVE_ZERO, *value); \ \ if (__builtin_signbit (*value)) \ { \ if (res == IEEE_POSITIVE_NORMAL) \ return IEEE_NEGATIVE_NORMAL; \ else if (res == IEEE_POSITIVE_DENORMAL) \ return IEEE_NEGATIVE_DENORMAL; \ else if (res == IEEE_POSITIVE_ZERO) \ return IEEE_NEGATIVE_ZERO; \ else if (res == IEEE_POSITIVE_INF) \ return IEEE_NEGATIVE_INF; \ } \ \ if (res == IEEE_QUIET_NAN) \ { \ if (issignaling (*value)) \ return IEEE_SIGNALING_NAN; \ else \ return IEEE_QUIET_NAN; \ } \ \ return res; \ } CLASSMACRO(4) CLASSMACRO(8) #ifdef HAVE_GFC_REAL_10 CLASSMACRO(10) #endif #ifdef HAVE_GFC_REAL_16 CLASSMACRO(16) #endif extern GFC_REAL_4 ieee_value_helper_4 (int); internal_proto(ieee_value_helper_4); extern GFC_REAL_8 ieee_value_helper_8 (int); internal_proto(ieee_value_helper_8); #ifdef HAVE_GFC_REAL_10 extern GFC_REAL_10 ieee_value_helper_10 (int); internal_proto(ieee_value_helper_10); #endif #ifdef HAVE_GFC_REAL_16 extern GFC_REAL_16 ieee_value_helper_16 (int); internal_proto(ieee_value_helper_16); #endif #define VALUEMACRO(TYPE, SUFFIX) \ GFC_REAL_ ## TYPE ieee_value_helper_ ## TYPE (int type) \ { \ switch (type) \ { \ case IEEE_SIGNALING_NAN: \ return __builtin_nans ## SUFFIX (""); \ \ case IEEE_QUIET_NAN: \ return __builtin_nan ## SUFFIX (""); \ \ case IEEE_NEGATIVE_INF: \ return - __builtin_inf ## SUFFIX (); \ \ case IEEE_NEGATIVE_NORMAL: \ return -42; \ \ case IEEE_NEGATIVE_DENORMAL: \ return -(GFC_REAL_ ## TYPE ## _TINY) / 2; \ \ case IEEE_NEGATIVE_ZERO: \ return -(GFC_REAL_ ## TYPE) 0; \ \ case IEEE_POSITIVE_ZERO: \ return 0; \ \ case IEEE_POSITIVE_DENORMAL: \ return (GFC_REAL_ ## TYPE ## _TINY) / 2; \ \ case IEEE_POSITIVE_NORMAL: \ return 42; \ \ case IEEE_POSITIVE_INF: \ return __builtin_inf ## SUFFIX (); \ \ default: \ return 0; \ } \ } VALUEMACRO(4, f) VALUEMACRO(8, ) #ifdef HAVE_GFC_REAL_10 VALUEMACRO(10, l) #endif #ifdef HAVE_GFC_REAL_16 # ifdef GFC_REAL_16_IS_FLOAT128 VALUEMACRO(16, f128) # else VALUEMACRO(16, l) # endif #endif #define GFC_FPE_ALL (GFC_FPE_INVALID | GFC_FPE_DENORMAL | \ GFC_FPE_ZERO | GFC_FPE_OVERFLOW | \ GFC_FPE_UNDERFLOW | GFC_FPE_INEXACT) /* Functions to save and restore floating-point state, clear and restore exceptions on procedure entry/exit. The rules we follow are set in Fortran 2008's 14.3 paragraph 3, note 14.4, 14.4 paragraph 4, 14.5 paragraph 2, and 14.6 paragraph 1. */ void ieee_procedure_entry (void *); export_proto(ieee_procedure_entry); void ieee_procedure_entry (void *state) { /* Save the floating-point state in the space provided by the caller. */ get_fpu_state (state); /* Clear the floating-point exceptions. */ set_fpu_except_flags (0, GFC_FPE_ALL); } void ieee_procedure_exit (void *); export_proto(ieee_procedure_exit); void ieee_procedure_exit (void *state) { /* Get the flags currently signaling. */ int flags = get_fpu_except_flags (); /* Restore the floating-point state we had on entry. */ set_fpu_state (state); /* And re-raised the flags that were raised since entry. */ set_fpu_except_flags (flags, 0); }