// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package net import ( "internal/syscall/windows" "os" "syscall" "unsafe" ) // supportsVistaIP reports whether the platform implements new IP // stack and ABIs supported on Windows Vista and above. var supportsVistaIP bool func init() { supportsVistaIP = probeWindowsIPStack() } func probeWindowsIPStack() (supportsVistaIP bool) { v, err := syscall.GetVersion() if err != nil { return true // Windows 10 and above will deprecate this API } if byte(v) < 6 { // major version of Windows Vista is 6 return false } return true } // adapterAddresses returns a list of IP adapter and address // structures. The structure contains an IP adapter and flattened // multiple IP addresses including unicast, anycast and multicast // addresses. func adapterAddresses() ([]*windows.IpAdapterAddresses, error) { var b []byte l := uint32(15000) // recommended initial size for { b = make([]byte, l) err := windows.GetAdaptersAddresses(syscall.AF_UNSPEC, windows.GAA_FLAG_INCLUDE_PREFIX, 0, (*windows.IpAdapterAddresses)(unsafe.Pointer(&b[0])), &l) if err == nil { if l == 0 { return nil, nil } break } if err.(syscall.Errno) != syscall.ERROR_BUFFER_OVERFLOW { return nil, os.NewSyscallError("getadaptersaddresses", err) } if l <= uint32(len(b)) { return nil, os.NewSyscallError("getadaptersaddresses", err) } } var aas []*windows.IpAdapterAddresses for aa := (*windows.IpAdapterAddresses)(unsafe.Pointer(&b[0])); aa != nil; aa = aa.Next { aas = append(aas, aa) } return aas, nil } // If the ifindex is zero, interfaceTable returns mappings of all // network interfaces. Otherwise it returns a mapping of a specific // interface. func interfaceTable(ifindex int) ([]Interface, error) { aas, err := adapterAddresses() if err != nil { return nil, err } var ift []Interface for _, aa := range aas { index := aa.IfIndex if index == 0 { // ipv6IfIndex is a substitute for ifIndex index = aa.Ipv6IfIndex } if ifindex == 0 || ifindex == int(index) { ifi := Interface{ Index: int(index), Name: syscall.UTF16ToString((*(*[10000]uint16)(unsafe.Pointer(aa.FriendlyName)))[:]), } if aa.OperStatus == windows.IfOperStatusUp { ifi.Flags |= FlagUp } // For now we need to infer link-layer service // capabilities from media types. // We will be able to use // MIB_IF_ROW2.AccessType once we drop support // for Windows XP. switch aa.IfType { case windows.IF_TYPE_ETHERNET_CSMACD, windows.IF_TYPE_ISO88025_TOKENRING, windows.IF_TYPE_IEEE80211, windows.IF_TYPE_IEEE1394: ifi.Flags |= FlagBroadcast | FlagMulticast case windows.IF_TYPE_PPP, windows.IF_TYPE_TUNNEL: ifi.Flags |= FlagPointToPoint | FlagMulticast case windows.IF_TYPE_SOFTWARE_LOOPBACK: ifi.Flags |= FlagLoopback | FlagMulticast case windows.IF_TYPE_ATM: ifi.Flags |= FlagBroadcast | FlagPointToPoint | FlagMulticast // assume all services available; LANE, point-to-point and point-to-multipoint } if aa.Mtu == 0xffffffff { ifi.MTU = -1 } else { ifi.MTU = int(aa.Mtu) } if aa.PhysicalAddressLength > 0 { ifi.HardwareAddr = make(HardwareAddr, aa.PhysicalAddressLength) copy(ifi.HardwareAddr, aa.PhysicalAddress[:]) } ift = append(ift, ifi) if ifindex == ifi.Index { break } } } return ift, nil } // If the ifi is nil, interfaceAddrTable returns addresses for all // network interfaces. Otherwise it returns addresses for a specific // interface. func interfaceAddrTable(ifi *Interface) ([]Addr, error) { aas, err := adapterAddresses() if err != nil { return nil, err } var ifat []Addr for _, aa := range aas { index := aa.IfIndex if index == 0 { // ipv6IfIndex is a substitute for ifIndex index = aa.Ipv6IfIndex } var pfx4, pfx6 []IPNet if !supportsVistaIP { pfx4, pfx6, err = addrPrefixTable(aa) if err != nil { return nil, err } } if ifi == nil || ifi.Index == int(index) { for puni := aa.FirstUnicastAddress; puni != nil; puni = puni.Next { sa, err := puni.Address.Sockaddr.Sockaddr() if err != nil { return nil, os.NewSyscallError("sockaddr", err) } var l int switch sa := sa.(type) { case *syscall.SockaddrInet4: if supportsVistaIP { l = int(puni.OnLinkPrefixLength) } else { l = addrPrefixLen(pfx4, IP(sa.Addr[:])) } ifat = append(ifat, &IPNet{IP: IPv4(sa.Addr[0], sa.Addr[1], sa.Addr[2], sa.Addr[3]), Mask: CIDRMask(l, 8*IPv4len)}) case *syscall.SockaddrInet6: if supportsVistaIP { l = int(puni.OnLinkPrefixLength) } else { l = addrPrefixLen(pfx6, IP(sa.Addr[:])) } ifa := &IPNet{IP: make(IP, IPv6len), Mask: CIDRMask(l, 8*IPv6len)} copy(ifa.IP, sa.Addr[:]) ifat = append(ifat, ifa) } } for pany := aa.FirstAnycastAddress; pany != nil; pany = pany.Next { sa, err := pany.Address.Sockaddr.Sockaddr() if err != nil { return nil, os.NewSyscallError("sockaddr", err) } switch sa := sa.(type) { case *syscall.SockaddrInet4: ifat = append(ifat, &IPAddr{IP: IPv4(sa.Addr[0], sa.Addr[1], sa.Addr[2], sa.Addr[3])}) case *syscall.SockaddrInet6: ifa := &IPAddr{IP: make(IP, IPv6len)} copy(ifa.IP, sa.Addr[:]) ifat = append(ifat, ifa) } } } } return ifat, nil } func addrPrefixTable(aa *windows.IpAdapterAddresses) (pfx4, pfx6 []IPNet, err error) { for p := aa.FirstPrefix; p != nil; p = p.Next { sa, err := p.Address.Sockaddr.Sockaddr() if err != nil { return nil, nil, os.NewSyscallError("sockaddr", err) } switch sa := sa.(type) { case *syscall.SockaddrInet4: pfx := IPNet{IP: IP(sa.Addr[:]), Mask: CIDRMask(int(p.PrefixLength), 8*IPv4len)} pfx4 = append(pfx4, pfx) case *syscall.SockaddrInet6: pfx := IPNet{IP: IP(sa.Addr[:]), Mask: CIDRMask(int(p.PrefixLength), 8*IPv6len)} pfx6 = append(pfx6, pfx) } } return } // addrPrefixLen returns an appropriate prefix length in bits for ip // from pfxs. It returns 32 or 128 when no appropriate on-link address // prefix found. // // NOTE: This is pretty naive implementation that contains many // allocations and non-effective linear search, and should not be used // freely. func addrPrefixLen(pfxs []IPNet, ip IP) int { var l int var cand *IPNet for i := range pfxs { if !pfxs[i].Contains(ip) { continue } if cand == nil { l, _ = pfxs[i].Mask.Size() cand = &pfxs[i] continue } m, _ := pfxs[i].Mask.Size() if m > l { l = m cand = &pfxs[i] continue } } if l > 0 { return l } if ip.To4() != nil { return 8 * IPv4len } return 8 * IPv6len } // interfaceMulticastAddrTable returns addresses for a specific // interface. func interfaceMulticastAddrTable(ifi *Interface) ([]Addr, error) { aas, err := adapterAddresses() if err != nil { return nil, err } var ifat []Addr for _, aa := range aas { index := aa.IfIndex if index == 0 { // ipv6IfIndex is a substitute for ifIndex index = aa.Ipv6IfIndex } if ifi == nil || ifi.Index == int(index) { for pmul := aa.FirstMulticastAddress; pmul != nil; pmul = pmul.Next { sa, err := pmul.Address.Sockaddr.Sockaddr() if err != nil { return nil, os.NewSyscallError("sockaddr", err) } switch sa := sa.(type) { case *syscall.SockaddrInet4: ifat = append(ifat, &IPAddr{IP: IPv4(sa.Addr[0], sa.Addr[1], sa.Addr[2], sa.Addr[3])}) case *syscall.SockaddrInet6: ifa := &IPAddr{IP: make(IP, IPv6len)} copy(ifa.IP, sa.Addr[:]) ifat = append(ifat, ifa) } } } } return ifat, nil }