// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package regexp import ( "io" "regexp/syntax" ) // A queue is a 'sparse array' holding pending threads of execution. // See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html type queue struct { sparse []uint32 dense []entry } // A entry is an entry on a queue. // It holds both the instruction pc and the actual thread. // Some queue entries are just place holders so that the machine // knows it has considered that pc. Such entries have t == nil. type entry struct { pc uint32 t *thread } // A thread is the state of a single path through the machine: // an instruction and a corresponding capture array. // See http://swtch.com/~rsc/regexp/regexp2.html type thread struct { inst *syntax.Inst cap []int } // A machine holds all the state during an NFA simulation for p. type machine struct { re *Regexp // corresponding Regexp p *syntax.Prog // compiled program op *onePassProg // compiled onepass program, or notOnePass maxBitStateLen int // max length of string to search with bitstate b *bitState // state for backtracker, allocated lazily q0, q1 queue // two queues for runq, nextq pool []*thread // pool of available threads matched bool // whether a match was found matchcap []int // capture information for the match // cached inputs, to avoid allocation inputBytes inputBytes inputString inputString inputReader inputReader } func (m *machine) newInputBytes(b []byte) input { m.inputBytes.str = b return &m.inputBytes } func (m *machine) newInputString(s string) input { m.inputString.str = s return &m.inputString } func (m *machine) newInputReader(r io.RuneReader) input { m.inputReader.r = r m.inputReader.atEOT = false m.inputReader.pos = 0 return &m.inputReader } // progMachine returns a new machine running the prog p. func progMachine(p *syntax.Prog, op *onePassProg) *machine { m := &machine{p: p, op: op} n := len(m.p.Inst) m.q0 = queue{make([]uint32, n), make([]entry, 0, n)} m.q1 = queue{make([]uint32, n), make([]entry, 0, n)} ncap := p.NumCap if ncap < 2 { ncap = 2 } if op == notOnePass { m.maxBitStateLen = maxBitStateLen(p) } m.matchcap = make([]int, ncap) return m } func (m *machine) init(ncap int) { for _, t := range m.pool { t.cap = t.cap[:ncap] } m.matchcap = m.matchcap[:ncap] } // alloc allocates a new thread with the given instruction. // It uses the free pool if possible. func (m *machine) alloc(i *syntax.Inst) *thread { var t *thread if n := len(m.pool); n > 0 { t = m.pool[n-1] m.pool = m.pool[:n-1] } else { t = new(thread) t.cap = make([]int, len(m.matchcap), cap(m.matchcap)) } t.inst = i return t } // free returns t to the free pool. func (m *machine) free(t *thread) { m.inputBytes.str = nil m.inputString.str = "" m.inputReader.r = nil m.pool = append(m.pool, t) } // match runs the machine over the input starting at pos. // It reports whether a match was found. // If so, m.matchcap holds the submatch information. func (m *machine) match(i input, pos int) bool { startCond := m.re.cond if startCond == ^syntax.EmptyOp(0) { // impossible return false } m.matched = false for i := range m.matchcap { m.matchcap[i] = -1 } runq, nextq := &m.q0, &m.q1 r, r1 := endOfText, endOfText width, width1 := 0, 0 r, width = i.step(pos) if r != endOfText { r1, width1 = i.step(pos + width) } var flag syntax.EmptyOp if pos == 0 { flag = syntax.EmptyOpContext(-1, r) } else { flag = i.context(pos) } for { if len(runq.dense) == 0 { if startCond&syntax.EmptyBeginText != 0 && pos != 0 { // Anchored match, past beginning of text. break } if m.matched { // Have match; finished exploring alternatives. break } if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() { // Match requires literal prefix; fast search for it. advance := i.index(m.re, pos) if advance < 0 { break } pos += advance r, width = i.step(pos) r1, width1 = i.step(pos + width) } } if !m.matched { if len(m.matchcap) > 0 { m.matchcap[0] = pos } m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil) } flag = syntax.EmptyOpContext(r, r1) m.step(runq, nextq, pos, pos+width, r, flag) if width == 0 { break } if len(m.matchcap) == 0 && m.matched { // Found a match and not paying attention // to where it is, so any match will do. break } pos += width r, width = r1, width1 if r != endOfText { r1, width1 = i.step(pos + width) } runq, nextq = nextq, runq } m.clear(nextq) return m.matched } // clear frees all threads on the thread queue. func (m *machine) clear(q *queue) { for _, d := range q.dense { if d.t != nil { // m.free(d.t) m.pool = append(m.pool, d.t) } } q.dense = q.dense[:0] } // step executes one step of the machine, running each of the threads // on runq and appending new threads to nextq. // The step processes the rune c (which may be endOfText), // which starts at position pos and ends at nextPos. // nextCond gives the setting for the empty-width flags after c. func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) { longest := m.re.longest for j := 0; j < len(runq.dense); j++ { d := &runq.dense[j] t := d.t if t == nil { continue } if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] { // m.free(t) m.pool = append(m.pool, t) continue } i := t.inst add := false switch i.Op { default: panic("bad inst") case syntax.InstMatch: if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) { t.cap[1] = pos copy(m.matchcap, t.cap) } if !longest { // First-match mode: cut off all lower-priority threads. for _, d := range runq.dense[j+1:] { if d.t != nil { // m.free(d.t) m.pool = append(m.pool, d.t) } } runq.dense = runq.dense[:0] } m.matched = true case syntax.InstRune: add = i.MatchRune(c) case syntax.InstRune1: add = c == i.Rune[0] case syntax.InstRuneAny: add = true case syntax.InstRuneAnyNotNL: add = c != '\n' } if add { t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t) } if t != nil { // m.free(t) m.pool = append(m.pool, t) } } runq.dense = runq.dense[:0] } // add adds an entry to q for pc, unless the q already has such an entry. // It also recursively adds an entry for all instructions reachable from pc by following // empty-width conditions satisfied by cond. pos gives the current position // in the input. func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread { if pc == 0 { return t } if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc { return t } j := len(q.dense) q.dense = q.dense[:j+1] d := &q.dense[j] d.t = nil d.pc = pc q.sparse[pc] = uint32(j) i := &m.p.Inst[pc] switch i.Op { default: panic("unhandled") case syntax.InstFail: // nothing case syntax.InstAlt, syntax.InstAltMatch: t = m.add(q, i.Out, pos, cap, cond, t) t = m.add(q, i.Arg, pos, cap, cond, t) case syntax.InstEmptyWidth: if syntax.EmptyOp(i.Arg)&^cond == 0 { t = m.add(q, i.Out, pos, cap, cond, t) } case syntax.InstNop: t = m.add(q, i.Out, pos, cap, cond, t) case syntax.InstCapture: if int(i.Arg) < len(cap) { opos := cap[i.Arg] cap[i.Arg] = pos m.add(q, i.Out, pos, cap, cond, nil) cap[i.Arg] = opos } else { t = m.add(q, i.Out, pos, cap, cond, t) } case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL: if t == nil { t = m.alloc(i) } else { t.inst = i } if len(cap) > 0 && &t.cap[0] != &cap[0] { copy(t.cap, cap) } d.t = t t = nil } return t } // onepass runs the machine over the input starting at pos. // It reports whether a match was found. // If so, m.matchcap holds the submatch information. func (m *machine) onepass(i input, pos int) bool { startCond := m.re.cond if startCond == ^syntax.EmptyOp(0) { // impossible return false } m.matched = false for i := range m.matchcap { m.matchcap[i] = -1 } r, r1 := endOfText, endOfText width, width1 := 0, 0 r, width = i.step(pos) if r != endOfText { r1, width1 = i.step(pos + width) } var flag syntax.EmptyOp if pos == 0 { flag = syntax.EmptyOpContext(-1, r) } else { flag = i.context(pos) } pc := m.op.Start inst := m.op.Inst[pc] // If there is a simple literal prefix, skip over it. if pos == 0 && syntax.EmptyOp(inst.Arg)&^flag == 0 && len(m.re.prefix) > 0 && i.canCheckPrefix() { // Match requires literal prefix; fast search for it. if i.hasPrefix(m.re) { pos += len(m.re.prefix) r, width = i.step(pos) r1, width1 = i.step(pos + width) flag = i.context(pos) pc = int(m.re.prefixEnd) } else { return m.matched } } for { inst = m.op.Inst[pc] pc = int(inst.Out) switch inst.Op { default: panic("bad inst") case syntax.InstMatch: m.matched = true if len(m.matchcap) > 0 { m.matchcap[0] = 0 m.matchcap[1] = pos } return m.matched case syntax.InstRune: if !inst.MatchRune(r) { return m.matched } case syntax.InstRune1: if r != inst.Rune[0] { return m.matched } case syntax.InstRuneAny: // Nothing case syntax.InstRuneAnyNotNL: if r == '\n' { return m.matched } // peek at the input rune to see which branch of the Alt to take case syntax.InstAlt, syntax.InstAltMatch: pc = int(onePassNext(&inst, r)) continue case syntax.InstFail: return m.matched case syntax.InstNop: continue case syntax.InstEmptyWidth: if syntax.EmptyOp(inst.Arg)&^flag != 0 { return m.matched } continue case syntax.InstCapture: if int(inst.Arg) < len(m.matchcap) { m.matchcap[inst.Arg] = pos } continue } if width == 0 { break } flag = syntax.EmptyOpContext(r, r1) pos += width r, width = r1, width1 if r != endOfText { r1, width1 = i.step(pos + width) } } return m.matched } // empty is a non-nil 0-element slice, // so doExecute can avoid an allocation // when 0 captures are requested from a successful match. var empty = make([]int, 0) // doExecute finds the leftmost match in the input and returns // the position of its subexpressions. func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int) []int { m := re.get() var i input var size int if r != nil { i = m.newInputReader(r) } else if b != nil { i = m.newInputBytes(b) size = len(b) } else { i = m.newInputString(s) size = len(s) } if m.op != notOnePass { if !m.onepass(i, pos) { re.put(m) return nil } } else if size < m.maxBitStateLen && r == nil { if m.b == nil { m.b = newBitState(m.p) } if !m.backtrack(i, pos, size, ncap) { re.put(m) return nil } } else { m.init(ncap) if !m.match(i, pos) { re.put(m) return nil } } if ncap == 0 { re.put(m) return empty // empty but not nil } cap := make([]int, len(m.matchcap)) copy(cap, m.matchcap) re.put(m) return cap }