// Map implementation -*- C++ -*-
// Copyright (C) 2001-2019 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file bits/stl_map.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{map}
*/
#ifndef _STL_MAP_H
#define _STL_MAP_H 1
#include
#include
#if __cplusplus >= 201103L
#include
#include
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
template
class multimap;
/**
* @brief A standard container made up of (key,value) pairs, which can be
* retrieved based on a key, in logarithmic time.
*
* @ingroup associative_containers
*
* @tparam _Key Type of key objects.
* @tparam _Tp Type of mapped objects.
* @tparam _Compare Comparison function object type, defaults to less<_Key>.
* @tparam _Alloc Allocator type, defaults to
* allocator.
*
* Meets the requirements of a container, a
* reversible container, and an
* associative container (using unique keys).
* For a @c map the key_type is Key, the mapped_type is T, and the
* value_type is std::pair.
*
* Maps support bidirectional iterators.
*
* The private tree data is declared exactly the same way for map and
* multimap; the distinction is made entirely in how the tree functions are
* called (*_unique versus *_equal, same as the standard).
*/
template ,
typename _Alloc = std::allocator > >
class map
{
public:
typedef _Key key_type;
typedef _Tp mapped_type;
typedef std::pair value_type;
typedef _Compare key_compare;
typedef _Alloc allocator_type;
private:
#ifdef _GLIBCXX_CONCEPT_CHECKS
// concept requirements
typedef typename _Alloc::value_type _Alloc_value_type;
# if __cplusplus < 201103L
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
# endif
__glibcxx_class_requires4(_Compare, bool, _Key, _Key,
_BinaryFunctionConcept)
__glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
#endif
#if __cplusplus >= 201103L && defined(__STRICT_ANSI__)
static_assert(is_same::value,
"std::map must have the same value_type as its allocator");
#endif
public:
class value_compare
: public std::binary_function
{
friend class map<_Key, _Tp, _Compare, _Alloc>;
protected:
_Compare comp;
value_compare(_Compare __c)
: comp(__c) { }
public:
bool operator()(const value_type& __x, const value_type& __y) const
{ return comp(__x.first, __y.first); }
};
private:
/// This turns a red-black tree into a [multi]map.
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
rebind::other _Pair_alloc_type;
typedef _Rb_tree,
key_compare, _Pair_alloc_type> _Rep_type;
/// The actual tree structure.
_Rep_type _M_t;
typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
public:
// many of these are specified differently in ISO, but the following are
// "functionally equivalent"
typedef typename _Alloc_traits::pointer pointer;
typedef typename _Alloc_traits::const_pointer const_pointer;
typedef typename _Alloc_traits::reference reference;
typedef typename _Alloc_traits::const_reference const_reference;
typedef typename _Rep_type::iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
#if __cplusplus > 201402L
using node_type = typename _Rep_type::node_type;
using insert_return_type = typename _Rep_type::insert_return_type;
#endif
// [23.3.1.1] construct/copy/destroy
// (get_allocator() is also listed in this section)
/**
* @brief Default constructor creates no elements.
*/
#if __cplusplus < 201103L
map() : _M_t() { }
#else
map() = default;
#endif
/**
* @brief Creates a %map with no elements.
* @param __comp A comparison object.
* @param __a An allocator object.
*/
explicit
map(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, _Pair_alloc_type(__a)) { }
/**
* @brief %Map copy constructor.
*
* Whether the allocator is copied depends on the allocator traits.
*/
#if __cplusplus < 201103L
map(const map& __x)
: _M_t(__x._M_t) { }
#else
map(const map&) = default;
/**
* @brief %Map move constructor.
*
* The newly-created %map contains the exact contents of the moved
* instance. The moved instance is a valid, but unspecified, %map.
*/
map(map&&) = default;
/**
* @brief Builds a %map from an initializer_list.
* @param __l An initializer_list.
* @param __comp A comparison object.
* @param __a An allocator object.
*
* Create a %map consisting of copies of the elements in the
* initializer_list @a __l.
* This is linear in N if the range is already sorted, and NlogN
* otherwise (where N is @a __l.size()).
*/
map(initializer_list __l,
const _Compare& __comp = _Compare(),
const allocator_type& __a = allocator_type())
: _M_t(__comp, _Pair_alloc_type(__a))
{ _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
/// Allocator-extended default constructor.
explicit
map(const allocator_type& __a)
: _M_t(_Pair_alloc_type(__a)) { }
/// Allocator-extended copy constructor.
map(const map& __m, const allocator_type& __a)
: _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
/// Allocator-extended move constructor.
map(map&& __m, const allocator_type& __a)
noexcept(is_nothrow_copy_constructible<_Compare>::value
&& _Alloc_traits::_S_always_equal())
: _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
/// Allocator-extended initialier-list constructor.
map(initializer_list __l, const allocator_type& __a)
: _M_t(_Pair_alloc_type(__a))
{ _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
/// Allocator-extended range constructor.
template
map(_InputIterator __first, _InputIterator __last,
const allocator_type& __a)
: _M_t(_Pair_alloc_type(__a))
{ _M_t._M_insert_range_unique(__first, __last); }
#endif
/**
* @brief Builds a %map from a range.
* @param __first An input iterator.
* @param __last An input iterator.
*
* Create a %map consisting of copies of the elements from
* [__first,__last). This is linear in N if the range is
* already sorted, and NlogN otherwise (where N is
* distance(__first,__last)).
*/
template
map(_InputIterator __first, _InputIterator __last)
: _M_t()
{ _M_t._M_insert_range_unique(__first, __last); }
/**
* @brief Builds a %map from a range.
* @param __first An input iterator.
* @param __last An input iterator.
* @param __comp A comparison functor.
* @param __a An allocator object.
*
* Create a %map consisting of copies of the elements from
* [__first,__last). This is linear in N if the range is
* already sorted, and NlogN otherwise (where N is
* distance(__first,__last)).
*/
template
map(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, _Pair_alloc_type(__a))
{ _M_t._M_insert_range_unique(__first, __last); }
#if __cplusplus >= 201103L
/**
* The dtor only erases the elements, and note that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibility.
*/
~map() = default;
#endif
/**
* @brief %Map assignment operator.
*
* Whether the allocator is copied depends on the allocator traits.
*/
#if __cplusplus < 201103L
map&
operator=(const map& __x)
{
_M_t = __x._M_t;
return *this;
}
#else
map&
operator=(const map&) = default;
/// Move assignment operator.
map&
operator=(map&&) = default;
/**
* @brief %Map list assignment operator.
* @param __l An initializer_list.
*
* This function fills a %map with copies of the elements in the
* initializer list @a __l.
*
* Note that the assignment completely changes the %map and
* that the resulting %map's size is the same as the number
* of elements assigned.
*/
map&
operator=(initializer_list __l)
{
_M_t._M_assign_unique(__l.begin(), __l.end());
return *this;
}
#endif
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const _GLIBCXX_NOEXCEPT
{ return allocator_type(_M_t.get_allocator()); }
// iterators
/**
* Returns a read/write iterator that points to the first pair in the
* %map.
* Iteration is done in ascending order according to the keys.
*/
iterator
begin() _GLIBCXX_NOEXCEPT
{ return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points to the first pair
* in the %map. Iteration is done in ascending order according to the
* keys.
*/
const_iterator
begin() const _GLIBCXX_NOEXCEPT
{ return _M_t.begin(); }
/**
* Returns a read/write iterator that points one past the last
* pair in the %map. Iteration is done in ascending order
* according to the keys.
*/
iterator
end() _GLIBCXX_NOEXCEPT
{ return _M_t.end(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* pair in the %map. Iteration is done in ascending order according to
* the keys.
*/
const_iterator
end() const _GLIBCXX_NOEXCEPT
{ return _M_t.end(); }
/**
* Returns a read/write reverse iterator that points to the last pair in
* the %map. Iteration is done in descending order according to the
* keys.
*/
reverse_iterator
rbegin() _GLIBCXX_NOEXCEPT
{ return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to the
* last pair in the %map. Iteration is done in descending order
* according to the keys.
*/
const_reverse_iterator
rbegin() const _GLIBCXX_NOEXCEPT
{ return _M_t.rbegin(); }
/**
* Returns a read/write reverse iterator that points to one before the
* first pair in the %map. Iteration is done in descending order
* according to the keys.
*/
reverse_iterator
rend() _GLIBCXX_NOEXCEPT
{ return _M_t.rend(); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first pair in the %map. Iteration is done in descending
* order according to the keys.
*/
const_reverse_iterator
rend() const _GLIBCXX_NOEXCEPT
{ return _M_t.rend(); }
#if __cplusplus >= 201103L
/**
* Returns a read-only (constant) iterator that points to the first pair
* in the %map. Iteration is done in ascending order according to the
* keys.
*/
const_iterator
cbegin() const noexcept
{ return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* pair in the %map. Iteration is done in ascending order according to
* the keys.
*/
const_iterator
cend() const noexcept
{ return _M_t.end(); }
/**
* Returns a read-only (constant) reverse iterator that points to the
* last pair in the %map. Iteration is done in descending order
* according to the keys.
*/
const_reverse_iterator
crbegin() const noexcept
{ return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first pair in the %map. Iteration is done in descending
* order according to the keys.
*/
const_reverse_iterator
crend() const noexcept
{ return _M_t.rend(); }
#endif
// capacity
/** Returns true if the %map is empty. (Thus begin() would equal
* end().)
*/
_GLIBCXX_NODISCARD bool
empty() const _GLIBCXX_NOEXCEPT
{ return _M_t.empty(); }
/** Returns the size of the %map. */
size_type
size() const _GLIBCXX_NOEXCEPT
{ return _M_t.size(); }
/** Returns the maximum size of the %map. */
size_type
max_size() const _GLIBCXX_NOEXCEPT
{ return _M_t.max_size(); }
// [23.3.1.2] element access
/**
* @brief Subscript ( @c [] ) access to %map data.
* @param __k The key for which data should be retrieved.
* @return A reference to the data of the (key,data) %pair.
*
* Allows for easy lookup with the subscript ( @c [] )
* operator. Returns data associated with the key specified in
* subscript. If the key does not exist, a pair with that key
* is created using default values, which is then returned.
*
* Lookup requires logarithmic time.
*/
mapped_type&
operator[](const key_type& __k)
{
// concept requirements
__glibcxx_function_requires(_DefaultConstructibleConcept)
iterator __i = lower_bound(__k);
// __i->first is greater than or equivalent to __k.
if (__i == end() || key_comp()(__k, (*__i).first))
#if __cplusplus >= 201103L
__i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
std::tuple(__k),
std::tuple<>());
#else
__i = insert(__i, value_type(__k, mapped_type()));
#endif
return (*__i).second;
}
#if __cplusplus >= 201103L
mapped_type&
operator[](key_type&& __k)
{
// concept requirements
__glibcxx_function_requires(_DefaultConstructibleConcept)
iterator __i = lower_bound(__k);
// __i->first is greater than or equivalent to __k.
if (__i == end() || key_comp()(__k, (*__i).first))
__i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
std::forward_as_tuple(std::move(__k)),
std::tuple<>());
return (*__i).second;
}
#endif
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 464. Suggestion for new member functions in standard containers.
/**
* @brief Access to %map data.
* @param __k The key for which data should be retrieved.
* @return A reference to the data whose key is equivalent to @a __k, if
* such a data is present in the %map.
* @throw std::out_of_range If no such data is present.
*/
mapped_type&
at(const key_type& __k)
{
iterator __i = lower_bound(__k);
if (__i == end() || key_comp()(__k, (*__i).first))
__throw_out_of_range(__N("map::at"));
return (*__i).second;
}
const mapped_type&
at(const key_type& __k) const
{
const_iterator __i = lower_bound(__k);
if (__i == end() || key_comp()(__k, (*__i).first))
__throw_out_of_range(__N("map::at"));
return (*__i).second;
}
// modifiers
#if __cplusplus >= 201103L
/**
* @brief Attempts to build and insert a std::pair into the %map.
*
* @param __args Arguments used to generate a new pair instance (see
* std::piecewise_contruct for passing arguments to each
* part of the pair constructor).
*
* @return A pair, of which the first element is an iterator that points
* to the possibly inserted pair, and the second is a bool that
* is true if the pair was actually inserted.
*
* This function attempts to build and insert a (key, value) %pair into
* the %map.
* A %map relies on unique keys and thus a %pair is only inserted if its
* first element (the key) is not already present in the %map.
*
* Insertion requires logarithmic time.
*/
template
std::pair
emplace(_Args&&... __args)
{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
/**
* @brief Attempts to build and insert a std::pair into the %map.
*
* @param __pos An iterator that serves as a hint as to where the pair
* should be inserted.
* @param __args Arguments used to generate a new pair instance (see
* std::piecewise_contruct for passing arguments to each
* part of the pair constructor).
* @return An iterator that points to the element with key of the
* std::pair built from @a __args (may or may not be that
* std::pair).
*
* This function is not concerned about whether the insertion took place,
* and thus does not return a boolean like the single-argument emplace()
* does.
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* See
* https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
* for more on @a hinting.
*
* Insertion requires logarithmic time (if the hint is not taken).
*/
template
iterator
emplace_hint(const_iterator __pos, _Args&&... __args)
{
return _M_t._M_emplace_hint_unique(__pos,
std::forward<_Args>(__args)...);
}
#endif
#if __cplusplus > 201402L
/// Extract a node.
node_type
extract(const_iterator __pos)
{
__glibcxx_assert(__pos != end());
return _M_t.extract(__pos);
}
/// Extract a node.
node_type
extract(const key_type& __x)
{ return _M_t.extract(__x); }
/// Re-insert an extracted node.
insert_return_type
insert(node_type&& __nh)
{ return _M_t._M_reinsert_node_unique(std::move(__nh)); }
/// Re-insert an extracted node.
iterator
insert(const_iterator __hint, node_type&& __nh)
{ return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }
template
friend class std::_Rb_tree_merge_helper;
template
void
merge(map<_Key, _Tp, _C2, _Alloc>& __source)
{
using _Merge_helper = _Rb_tree_merge_helper