mirror of
https://github.com/autc04/Retro68.git
synced 2025-01-13 16:33:02 +00:00
1837 lines
46 KiB
C
1837 lines
46 KiB
C
/* Support routines for the various generation passes.
|
||
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
||
2010, Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "bconfig.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "obstack.h"
|
||
#include "errors.h"
|
||
#include "hashtab.h"
|
||
#include "read-md.h"
|
||
#include "gensupport.h"
|
||
|
||
|
||
/* In case some macros used by files we include need it, define this here. */
|
||
int target_flags;
|
||
|
||
int insn_elision = 1;
|
||
|
||
static struct obstack obstack;
|
||
struct obstack *rtl_obstack = &obstack;
|
||
|
||
static int sequence_num;
|
||
|
||
static int predicable_default;
|
||
static const char *predicable_true;
|
||
static const char *predicable_false;
|
||
|
||
static htab_t condition_table;
|
||
|
||
/* We initially queue all patterns, process the define_insn and
|
||
define_cond_exec patterns, then return them one at a time. */
|
||
|
||
struct queue_elem
|
||
{
|
||
rtx data;
|
||
const char *filename;
|
||
int lineno;
|
||
struct queue_elem *next;
|
||
/* In a DEFINE_INSN that came from a DEFINE_INSN_AND_SPLIT, SPLIT
|
||
points to the generated DEFINE_SPLIT. */
|
||
struct queue_elem *split;
|
||
};
|
||
|
||
#define MNEMONIC_ATTR_NAME "mnemonic"
|
||
#define MNEMONIC_HTAB_SIZE 1024
|
||
|
||
static struct queue_elem *define_attr_queue;
|
||
static struct queue_elem **define_attr_tail = &define_attr_queue;
|
||
static struct queue_elem *define_pred_queue;
|
||
static struct queue_elem **define_pred_tail = &define_pred_queue;
|
||
static struct queue_elem *define_insn_queue;
|
||
static struct queue_elem **define_insn_tail = &define_insn_queue;
|
||
static struct queue_elem *define_cond_exec_queue;
|
||
static struct queue_elem **define_cond_exec_tail = &define_cond_exec_queue;
|
||
static struct queue_elem *other_queue;
|
||
static struct queue_elem **other_tail = &other_queue;
|
||
|
||
static struct queue_elem *queue_pattern (rtx, struct queue_elem ***,
|
||
const char *, int);
|
||
|
||
static void remove_constraints (rtx);
|
||
static void process_rtx (rtx, int);
|
||
|
||
static int is_predicable (struct queue_elem *);
|
||
static void identify_predicable_attribute (void);
|
||
static int n_alternatives (const char *);
|
||
static void collect_insn_data (rtx, int *, int *);
|
||
static rtx alter_predicate_for_insn (rtx, int, int, int);
|
||
static const char *alter_test_for_insn (struct queue_elem *,
|
||
struct queue_elem *);
|
||
static char *shift_output_template (char *, const char *, int);
|
||
static const char *alter_output_for_insn (struct queue_elem *,
|
||
struct queue_elem *,
|
||
int, int);
|
||
static void process_one_cond_exec (struct queue_elem *);
|
||
static void process_define_cond_exec (void);
|
||
static void init_predicate_table (void);
|
||
static void record_insn_name (int, const char *);
|
||
|
||
/* Make a version of gen_rtx_CONST_INT so that GEN_INT can be used in
|
||
the gensupport programs. */
|
||
|
||
rtx
|
||
gen_rtx_CONST_INT (enum machine_mode ARG_UNUSED (mode),
|
||
HOST_WIDE_INT arg)
|
||
{
|
||
rtx rt = rtx_alloc (CONST_INT);
|
||
|
||
XWINT (rt, 0) = arg;
|
||
return rt;
|
||
}
|
||
|
||
/* Predicate handling.
|
||
|
||
We construct from the machine description a table mapping each
|
||
predicate to a list of the rtl codes it can possibly match. The
|
||
function 'maybe_both_true' uses it to deduce that there are no
|
||
expressions that can be matches by certain pairs of tree nodes.
|
||
Also, if a predicate can match only one code, we can hardwire that
|
||
code into the node testing the predicate.
|
||
|
||
Some predicates are flagged as special. validate_pattern will not
|
||
warn about modeless match_operand expressions if they have a
|
||
special predicate. Predicates that allow only constants are also
|
||
treated as special, for this purpose.
|
||
|
||
validate_pattern will warn about predicates that allow non-lvalues
|
||
when they appear in destination operands.
|
||
|
||
Calculating the set of rtx codes that can possibly be accepted by a
|
||
predicate expression EXP requires a three-state logic: any given
|
||
subexpression may definitively accept a code C (Y), definitively
|
||
reject a code C (N), or may have an indeterminate effect (I). N
|
||
and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
|
||
truth tables.
|
||
|
||
a b a&b a|b
|
||
Y Y Y Y
|
||
N Y N Y
|
||
N N N N
|
||
I Y I Y
|
||
I N N I
|
||
I I I I
|
||
|
||
We represent Y with 1, N with 0, I with 2. If any code is left in
|
||
an I state by the complete expression, we must assume that that
|
||
code can be accepted. */
|
||
|
||
#define N 0
|
||
#define Y 1
|
||
#define I 2
|
||
|
||
#define TRISTATE_AND(a,b) \
|
||
((a) == I ? ((b) == N ? N : I) : \
|
||
(b) == I ? ((a) == N ? N : I) : \
|
||
(a) && (b))
|
||
|
||
#define TRISTATE_OR(a,b) \
|
||
((a) == I ? ((b) == Y ? Y : I) : \
|
||
(b) == I ? ((a) == Y ? Y : I) : \
|
||
(a) || (b))
|
||
|
||
#define TRISTATE_NOT(a) \
|
||
((a) == I ? I : !(a))
|
||
|
||
/* 0 means no warning about that code yet, 1 means warned. */
|
||
static char did_you_mean_codes[NUM_RTX_CODE];
|
||
|
||
/* Recursively calculate the set of rtx codes accepted by the
|
||
predicate expression EXP, writing the result to CODES. LINENO is
|
||
the line number on which the directive containing EXP appeared. */
|
||
|
||
static void
|
||
compute_predicate_codes (rtx exp, int lineno, char codes[NUM_RTX_CODE])
|
||
{
|
||
char op0_codes[NUM_RTX_CODE];
|
||
char op1_codes[NUM_RTX_CODE];
|
||
char op2_codes[NUM_RTX_CODE];
|
||
int i;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case AND:
|
||
compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
|
||
compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes);
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
|
||
break;
|
||
|
||
case IOR:
|
||
compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
|
||
compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes);
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
|
||
break;
|
||
case NOT:
|
||
compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = TRISTATE_NOT (op0_codes[i]);
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
/* a ? b : c accepts the same codes as (a & b) | (!a & c). */
|
||
compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
|
||
compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes);
|
||
compute_predicate_codes (XEXP (exp, 2), lineno, op2_codes);
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
|
||
TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
|
||
op2_codes[i]));
|
||
break;
|
||
|
||
case MATCH_CODE:
|
||
/* MATCH_CODE allows a specified list of codes. However, if it
|
||
does not apply to the top level of the expression, it does not
|
||
constrain the set of codes for the top level. */
|
||
if (XSTR (exp, 1)[0] != '\0')
|
||
{
|
||
memset (codes, Y, NUM_RTX_CODE);
|
||
break;
|
||
}
|
||
|
||
memset (codes, N, NUM_RTX_CODE);
|
||
{
|
||
const char *next_code = XSTR (exp, 0);
|
||
const char *code;
|
||
|
||
if (*next_code == '\0')
|
||
{
|
||
error_with_line (lineno, "empty match_code expression");
|
||
break;
|
||
}
|
||
|
||
while ((code = scan_comma_elt (&next_code)) != 0)
|
||
{
|
||
size_t n = next_code - code;
|
||
int found_it = 0;
|
||
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
if (!strncmp (code, GET_RTX_NAME (i), n)
|
||
&& GET_RTX_NAME (i)[n] == '\0')
|
||
{
|
||
codes[i] = Y;
|
||
found_it = 1;
|
||
break;
|
||
}
|
||
if (!found_it)
|
||
{
|
||
error_with_line (lineno,
|
||
"match_code \"%.*s\" matches nothing",
|
||
(int) n, code);
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
if (!strncasecmp (code, GET_RTX_NAME (i), n)
|
||
&& GET_RTX_NAME (i)[n] == '\0'
|
||
&& !did_you_mean_codes[i])
|
||
{
|
||
did_you_mean_codes[i] = 1;
|
||
message_with_line (lineno, "(did you mean \"%s\"?)",
|
||
GET_RTX_NAME (i));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case MATCH_OPERAND:
|
||
/* MATCH_OPERAND disallows the set of codes that the named predicate
|
||
disallows, and is indeterminate for the codes that it does allow. */
|
||
{
|
||
struct pred_data *p = lookup_predicate (XSTR (exp, 1));
|
||
if (!p)
|
||
{
|
||
error_with_line (lineno, "reference to unknown predicate '%s'",
|
||
XSTR (exp, 1));
|
||
break;
|
||
}
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
codes[i] = p->codes[i] ? I : N;
|
||
}
|
||
break;
|
||
|
||
|
||
case MATCH_TEST:
|
||
/* (match_test WHATEVER) is completely indeterminate. */
|
||
memset (codes, I, NUM_RTX_CODE);
|
||
break;
|
||
|
||
default:
|
||
error_with_line (lineno,
|
||
"'%s' cannot be used in a define_predicate expression",
|
||
GET_RTX_NAME (GET_CODE (exp)));
|
||
memset (codes, I, NUM_RTX_CODE);
|
||
break;
|
||
}
|
||
}
|
||
|
||
#undef TRISTATE_OR
|
||
#undef TRISTATE_AND
|
||
#undef TRISTATE_NOT
|
||
|
||
/* Return true if NAME is a valid predicate name. */
|
||
|
||
static bool
|
||
valid_predicate_name_p (const char *name)
|
||
{
|
||
const char *p;
|
||
|
||
if (!ISALPHA (name[0]) && name[0] != '_')
|
||
return false;
|
||
for (p = name + 1; *p; p++)
|
||
if (!ISALNUM (*p) && *p != '_')
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Process define_predicate directive DESC, which appears on line number
|
||
LINENO. Compute the set of codes that can be matched, and record this
|
||
as a known predicate. */
|
||
|
||
static void
|
||
process_define_predicate (rtx desc, int lineno)
|
||
{
|
||
struct pred_data *pred;
|
||
char codes[NUM_RTX_CODE];
|
||
int i;
|
||
|
||
if (!valid_predicate_name_p (XSTR (desc, 0)))
|
||
{
|
||
error_with_line (lineno,
|
||
"%s: predicate name must be a valid C function name",
|
||
XSTR (desc, 0));
|
||
return;
|
||
}
|
||
|
||
pred = XCNEW (struct pred_data);
|
||
pred->name = XSTR (desc, 0);
|
||
pred->exp = XEXP (desc, 1);
|
||
pred->c_block = XSTR (desc, 2);
|
||
if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
|
||
pred->special = true;
|
||
|
||
compute_predicate_codes (XEXP (desc, 1), lineno, codes);
|
||
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
if (codes[i] != N)
|
||
add_predicate_code (pred, (enum rtx_code) i);
|
||
|
||
add_predicate (pred);
|
||
}
|
||
#undef I
|
||
#undef N
|
||
#undef Y
|
||
|
||
/* Queue PATTERN on LIST_TAIL. Return the address of the new queue
|
||
element. */
|
||
|
||
static struct queue_elem *
|
||
queue_pattern (rtx pattern, struct queue_elem ***list_tail,
|
||
const char *filename, int lineno)
|
||
{
|
||
struct queue_elem *e = XNEW(struct queue_elem);
|
||
e->data = pattern;
|
||
e->filename = filename;
|
||
e->lineno = lineno;
|
||
e->next = NULL;
|
||
e->split = NULL;
|
||
**list_tail = e;
|
||
*list_tail = &e->next;
|
||
return e;
|
||
}
|
||
|
||
/* Build a define_attr for an binary attribute with name NAME and
|
||
possible values "yes" and "no", and queue it. */
|
||
static void
|
||
add_define_attr (const char *name)
|
||
{
|
||
struct queue_elem *e = XNEW(struct queue_elem);
|
||
rtx t1 = rtx_alloc (DEFINE_ATTR);
|
||
XSTR (t1, 0) = name;
|
||
XSTR (t1, 1) = "no,yes";
|
||
XEXP (t1, 2) = rtx_alloc (CONST_STRING);
|
||
XSTR (XEXP (t1, 2), 0) = "yes";
|
||
e->data = t1;
|
||
e->filename = "built-in";
|
||
e->lineno = -1;
|
||
e->next = define_attr_queue;
|
||
define_attr_queue = e;
|
||
|
||
}
|
||
|
||
/* Recursively remove constraints from an rtx. */
|
||
|
||
static void
|
||
remove_constraints (rtx part)
|
||
{
|
||
int i, j;
|
||
const char *format_ptr;
|
||
|
||
if (part == 0)
|
||
return;
|
||
|
||
if (GET_CODE (part) == MATCH_OPERAND)
|
||
XSTR (part, 2) = "";
|
||
else if (GET_CODE (part) == MATCH_SCRATCH)
|
||
XSTR (part, 1) = "";
|
||
|
||
format_ptr = GET_RTX_FORMAT (GET_CODE (part));
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++)
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
case 'u':
|
||
remove_constraints (XEXP (part, i));
|
||
break;
|
||
case 'E':
|
||
if (XVEC (part, i) != NULL)
|
||
for (j = 0; j < XVECLEN (part, i); j++)
|
||
remove_constraints (XVECEXP (part, i, j));
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Process a top level rtx in some way, queuing as appropriate. */
|
||
|
||
static void
|
||
process_rtx (rtx desc, int lineno)
|
||
{
|
||
switch (GET_CODE (desc))
|
||
{
|
||
case DEFINE_INSN:
|
||
queue_pattern (desc, &define_insn_tail, read_md_filename, lineno);
|
||
break;
|
||
|
||
case DEFINE_COND_EXEC:
|
||
queue_pattern (desc, &define_cond_exec_tail, read_md_filename, lineno);
|
||
break;
|
||
|
||
case DEFINE_ATTR:
|
||
case DEFINE_ENUM_ATTR:
|
||
queue_pattern (desc, &define_attr_tail, read_md_filename, lineno);
|
||
break;
|
||
|
||
case DEFINE_PREDICATE:
|
||
case DEFINE_SPECIAL_PREDICATE:
|
||
process_define_predicate (desc, lineno);
|
||
/* Fall through. */
|
||
|
||
case DEFINE_CONSTRAINT:
|
||
case DEFINE_REGISTER_CONSTRAINT:
|
||
case DEFINE_MEMORY_CONSTRAINT:
|
||
case DEFINE_ADDRESS_CONSTRAINT:
|
||
queue_pattern (desc, &define_pred_tail, read_md_filename, lineno);
|
||
break;
|
||
|
||
case DEFINE_INSN_AND_SPLIT:
|
||
{
|
||
const char *split_cond;
|
||
rtx split;
|
||
rtvec attr;
|
||
int i;
|
||
struct queue_elem *insn_elem;
|
||
struct queue_elem *split_elem;
|
||
|
||
/* Create a split with values from the insn_and_split. */
|
||
split = rtx_alloc (DEFINE_SPLIT);
|
||
|
||
i = XVECLEN (desc, 1);
|
||
XVEC (split, 0) = rtvec_alloc (i);
|
||
while (--i >= 0)
|
||
{
|
||
XVECEXP (split, 0, i) = copy_rtx (XVECEXP (desc, 1, i));
|
||
remove_constraints (XVECEXP (split, 0, i));
|
||
}
|
||
|
||
/* If the split condition starts with "&&", append it to the
|
||
insn condition to create the new split condition. */
|
||
split_cond = XSTR (desc, 4);
|
||
if (split_cond[0] == '&' && split_cond[1] == '&')
|
||
{
|
||
copy_md_ptr_loc (split_cond + 2, split_cond);
|
||
split_cond = join_c_conditions (XSTR (desc, 2), split_cond + 2);
|
||
}
|
||
XSTR (split, 1) = split_cond;
|
||
XVEC (split, 2) = XVEC (desc, 5);
|
||
XSTR (split, 3) = XSTR (desc, 6);
|
||
|
||
/* Fix up the DEFINE_INSN. */
|
||
attr = XVEC (desc, 7);
|
||
PUT_CODE (desc, DEFINE_INSN);
|
||
XVEC (desc, 4) = attr;
|
||
|
||
/* Queue them. */
|
||
insn_elem
|
||
= queue_pattern (desc, &define_insn_tail, read_md_filename,
|
||
lineno);
|
||
split_elem
|
||
= queue_pattern (split, &other_tail, read_md_filename, lineno);
|
||
insn_elem->split = split_elem;
|
||
break;
|
||
}
|
||
|
||
default:
|
||
queue_pattern (desc, &other_tail, read_md_filename, lineno);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Return true if attribute PREDICABLE is true for ELEM, which holds
|
||
a DEFINE_INSN. */
|
||
|
||
static int
|
||
is_predicable (struct queue_elem *elem)
|
||
{
|
||
rtvec vec = XVEC (elem->data, 4);
|
||
const char *value;
|
||
int i;
|
||
|
||
if (! vec)
|
||
return predicable_default;
|
||
|
||
for (i = GET_NUM_ELEM (vec) - 1; i >= 0; --i)
|
||
{
|
||
rtx sub = RTVEC_ELT (vec, i);
|
||
switch (GET_CODE (sub))
|
||
{
|
||
case SET_ATTR:
|
||
if (strcmp (XSTR (sub, 0), "predicable") == 0)
|
||
{
|
||
value = XSTR (sub, 1);
|
||
goto found;
|
||
}
|
||
break;
|
||
|
||
case SET_ATTR_ALTERNATIVE:
|
||
if (strcmp (XSTR (sub, 0), "predicable") == 0)
|
||
{
|
||
error_with_line (elem->lineno,
|
||
"multiple alternatives for `predicable'");
|
||
return 0;
|
||
}
|
||
break;
|
||
|
||
case SET:
|
||
if (GET_CODE (SET_DEST (sub)) != ATTR
|
||
|| strcmp (XSTR (SET_DEST (sub), 0), "predicable") != 0)
|
||
break;
|
||
sub = SET_SRC (sub);
|
||
if (GET_CODE (sub) == CONST_STRING)
|
||
{
|
||
value = XSTR (sub, 0);
|
||
goto found;
|
||
}
|
||
|
||
/* ??? It would be possible to handle this if we really tried.
|
||
It's not easy though, and I'm not going to bother until it
|
||
really proves necessary. */
|
||
error_with_line (elem->lineno,
|
||
"non-constant value for `predicable'");
|
||
return 0;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
return predicable_default;
|
||
|
||
found:
|
||
/* Find out which value we're looking at. Multiple alternatives means at
|
||
least one is predicable. */
|
||
if (strchr (value, ',') != NULL)
|
||
return 1;
|
||
if (strcmp (value, predicable_true) == 0)
|
||
return 1;
|
||
if (strcmp (value, predicable_false) == 0)
|
||
return 0;
|
||
|
||
error_with_line (elem->lineno,
|
||
"unknown value `%s' for `predicable' attribute", value);
|
||
return 0;
|
||
}
|
||
|
||
/* Examine the attribute "predicable"; discover its boolean values
|
||
and its default. */
|
||
|
||
static void
|
||
identify_predicable_attribute (void)
|
||
{
|
||
struct queue_elem *elem;
|
||
char *p_true, *p_false;
|
||
const char *value;
|
||
|
||
/* Look for the DEFINE_ATTR for `predicable', which must exist. */
|
||
for (elem = define_attr_queue; elem ; elem = elem->next)
|
||
if (strcmp (XSTR (elem->data, 0), "predicable") == 0)
|
||
goto found;
|
||
|
||
error_with_line (define_cond_exec_queue->lineno,
|
||
"attribute `predicable' not defined");
|
||
return;
|
||
|
||
found:
|
||
value = XSTR (elem->data, 1);
|
||
p_false = xstrdup (value);
|
||
p_true = strchr (p_false, ',');
|
||
if (p_true == NULL || strchr (++p_true, ',') != NULL)
|
||
{
|
||
error_with_line (elem->lineno, "attribute `predicable' is not a boolean");
|
||
free (p_false);
|
||
return;
|
||
}
|
||
p_true[-1] = '\0';
|
||
|
||
predicable_true = p_true;
|
||
predicable_false = p_false;
|
||
|
||
switch (GET_CODE (XEXP (elem->data, 2)))
|
||
{
|
||
case CONST_STRING:
|
||
value = XSTR (XEXP (elem->data, 2), 0);
|
||
break;
|
||
|
||
case CONST:
|
||
error_with_line (elem->lineno, "attribute `predicable' cannot be const");
|
||
free (p_false);
|
||
return;
|
||
|
||
default:
|
||
error_with_line (elem->lineno,
|
||
"attribute `predicable' must have a constant default");
|
||
free (p_false);
|
||
return;
|
||
}
|
||
|
||
if (strcmp (value, p_true) == 0)
|
||
predicable_default = 1;
|
||
else if (strcmp (value, p_false) == 0)
|
||
predicable_default = 0;
|
||
else
|
||
{
|
||
error_with_line (elem->lineno,
|
||
"unknown value `%s' for `predicable' attribute", value);
|
||
free (p_false);
|
||
}
|
||
}
|
||
|
||
/* Return the number of alternatives in constraint S. */
|
||
|
||
static int
|
||
n_alternatives (const char *s)
|
||
{
|
||
int n = 1;
|
||
|
||
if (s)
|
||
while (*s)
|
||
n += (*s++ == ',');
|
||
|
||
return n;
|
||
}
|
||
|
||
/* Determine how many alternatives there are in INSN, and how many
|
||
operands. */
|
||
|
||
static void
|
||
collect_insn_data (rtx pattern, int *palt, int *pmax)
|
||
{
|
||
const char *fmt;
|
||
enum rtx_code code;
|
||
int i, j, len;
|
||
|
||
code = GET_CODE (pattern);
|
||
switch (code)
|
||
{
|
||
case MATCH_OPERAND:
|
||
i = n_alternatives (XSTR (pattern, 2));
|
||
*palt = (i > *palt ? i : *palt);
|
||
/* Fall through. */
|
||
|
||
case MATCH_OPERATOR:
|
||
case MATCH_SCRATCH:
|
||
case MATCH_PARALLEL:
|
||
i = XINT (pattern, 0);
|
||
if (i > *pmax)
|
||
*pmax = i;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
len = GET_RTX_LENGTH (code);
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'e': case 'u':
|
||
collect_insn_data (XEXP (pattern, i), palt, pmax);
|
||
break;
|
||
|
||
case 'V':
|
||
if (XVEC (pattern, i) == NULL)
|
||
break;
|
||
/* Fall through. */
|
||
case 'E':
|
||
for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
|
||
collect_insn_data (XVECEXP (pattern, i, j), palt, pmax);
|
||
break;
|
||
|
||
case 'i': case 'w': case '0': case 's': case 'S': case 'T':
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
|
||
static rtx
|
||
alter_predicate_for_insn (rtx pattern, int alt, int max_op, int lineno)
|
||
{
|
||
const char *fmt;
|
||
enum rtx_code code;
|
||
int i, j, len;
|
||
|
||
code = GET_CODE (pattern);
|
||
switch (code)
|
||
{
|
||
case MATCH_OPERAND:
|
||
{
|
||
const char *c = XSTR (pattern, 2);
|
||
|
||
if (n_alternatives (c) != 1)
|
||
{
|
||
error_with_line (lineno, "too many alternatives for operand %d",
|
||
XINT (pattern, 0));
|
||
return NULL;
|
||
}
|
||
|
||
/* Replicate C as needed to fill out ALT alternatives. */
|
||
if (c && *c && alt > 1)
|
||
{
|
||
size_t c_len = strlen (c);
|
||
size_t len = alt * (c_len + 1);
|
||
char *new_c = XNEWVEC(char, len);
|
||
|
||
memcpy (new_c, c, c_len);
|
||
for (i = 1; i < alt; ++i)
|
||
{
|
||
new_c[i * (c_len + 1) - 1] = ',';
|
||
memcpy (&new_c[i * (c_len + 1)], c, c_len);
|
||
}
|
||
new_c[len - 1] = '\0';
|
||
XSTR (pattern, 2) = new_c;
|
||
}
|
||
}
|
||
/* Fall through. */
|
||
|
||
case MATCH_OPERATOR:
|
||
case MATCH_SCRATCH:
|
||
case MATCH_PARALLEL:
|
||
XINT (pattern, 0) += max_op;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
len = GET_RTX_LENGTH (code);
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
rtx r;
|
||
|
||
switch (fmt[i])
|
||
{
|
||
case 'e': case 'u':
|
||
r = alter_predicate_for_insn (XEXP (pattern, i), alt,
|
||
max_op, lineno);
|
||
if (r == NULL)
|
||
return r;
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
|
||
{
|
||
r = alter_predicate_for_insn (XVECEXP (pattern, i, j),
|
||
alt, max_op, lineno);
|
||
if (r == NULL)
|
||
return r;
|
||
}
|
||
break;
|
||
|
||
case 'i': case 'w': case '0': case 's':
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
return pattern;
|
||
}
|
||
|
||
static const char *
|
||
alter_test_for_insn (struct queue_elem *ce_elem,
|
||
struct queue_elem *insn_elem)
|
||
{
|
||
return join_c_conditions (XSTR (ce_elem->data, 1),
|
||
XSTR (insn_elem->data, 2));
|
||
}
|
||
|
||
/* Modify VAL, which is an attribute expression for the "enabled" attribute,
|
||
to take "ce_enabled" into account. Return the new expression. */
|
||
static rtx
|
||
modify_attr_enabled_ce (rtx val)
|
||
{
|
||
rtx eq_attr, str;
|
||
rtx ite;
|
||
eq_attr = rtx_alloc (EQ_ATTR);
|
||
ite = rtx_alloc (IF_THEN_ELSE);
|
||
str = rtx_alloc (CONST_STRING);
|
||
|
||
XSTR (eq_attr, 0) = "ce_enabled";
|
||
XSTR (eq_attr, 1) = "yes";
|
||
XSTR (str, 0) = "no";
|
||
XEXP (ite, 0) = eq_attr;
|
||
XEXP (ite, 1) = val;
|
||
XEXP (ite, 2) = str;
|
||
|
||
return ite;
|
||
}
|
||
|
||
/* Alter the attribute vector of INSN, which is a COND_EXEC variant created
|
||
from a define_insn pattern. We must modify the "predicable" attribute
|
||
to be named "ce_enabled", and also change any "enabled" attribute that's
|
||
present so that it takes ce_enabled into account.
|
||
We rely on the fact that INSN was created with copy_rtx, and modify data
|
||
in-place. */
|
||
|
||
static void
|
||
alter_attrs_for_insn (rtx insn)
|
||
{
|
||
static bool global_changes_made = false;
|
||
rtvec vec = XVEC (insn, 4);
|
||
rtvec new_vec;
|
||
rtx val, set;
|
||
int num_elem;
|
||
int predicable_idx = -1;
|
||
int enabled_idx = -1;
|
||
int i;
|
||
|
||
if (! vec)
|
||
return;
|
||
|
||
num_elem = GET_NUM_ELEM (vec);
|
||
for (i = num_elem - 1; i >= 0; --i)
|
||
{
|
||
rtx sub = RTVEC_ELT (vec, i);
|
||
switch (GET_CODE (sub))
|
||
{
|
||
case SET_ATTR:
|
||
if (strcmp (XSTR (sub, 0), "predicable") == 0)
|
||
{
|
||
predicable_idx = i;
|
||
XSTR (sub, 0) = "ce_enabled";
|
||
}
|
||
else if (strcmp (XSTR (sub, 0), "enabled") == 0)
|
||
{
|
||
enabled_idx = i;
|
||
XSTR (sub, 0) = "nonce_enabled";
|
||
}
|
||
break;
|
||
|
||
case SET_ATTR_ALTERNATIVE:
|
||
if (strcmp (XSTR (sub, 0), "predicable") == 0)
|
||
/* We already give an error elsewhere. */
|
||
return;
|
||
else if (strcmp (XSTR (sub, 0), "enabled") == 0)
|
||
{
|
||
enabled_idx = i;
|
||
XSTR (sub, 0) = "nonce_enabled";
|
||
}
|
||
break;
|
||
|
||
case SET:
|
||
if (GET_CODE (SET_DEST (sub)) != ATTR)
|
||
break;
|
||
if (strcmp (XSTR (SET_DEST (sub), 0), "predicable") == 0)
|
||
{
|
||
sub = SET_SRC (sub);
|
||
if (GET_CODE (sub) == CONST_STRING)
|
||
{
|
||
predicable_idx = i;
|
||
XSTR (sub, 0) = "ce_enabled";
|
||
}
|
||
else
|
||
/* We already give an error elsewhere. */
|
||
return;
|
||
break;
|
||
}
|
||
if (strcmp (XSTR (SET_DEST (sub), 0), "enabled") == 0)
|
||
{
|
||
enabled_idx = i;
|
||
XSTR (SET_DEST (sub), 0) = "nonce_enabled";
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
if (predicable_idx == -1)
|
||
return;
|
||
|
||
if (!global_changes_made)
|
||
{
|
||
struct queue_elem *elem;
|
||
|
||
global_changes_made = true;
|
||
add_define_attr ("ce_enabled");
|
||
add_define_attr ("nonce_enabled");
|
||
|
||
for (elem = define_attr_queue; elem ; elem = elem->next)
|
||
if (strcmp (XSTR (elem->data, 0), "enabled") == 0)
|
||
{
|
||
XEXP (elem->data, 2)
|
||
= modify_attr_enabled_ce (XEXP (elem->data, 2));
|
||
}
|
||
}
|
||
if (enabled_idx == -1)
|
||
return;
|
||
|
||
new_vec = rtvec_alloc (num_elem + 1);
|
||
for (i = 0; i < num_elem; i++)
|
||
RTVEC_ELT (new_vec, i) = RTVEC_ELT (vec, i);
|
||
val = rtx_alloc (IF_THEN_ELSE);
|
||
XEXP (val, 0) = rtx_alloc (EQ_ATTR);
|
||
XEXP (val, 1) = rtx_alloc (CONST_STRING);
|
||
XEXP (val, 2) = rtx_alloc (CONST_STRING);
|
||
XSTR (XEXP (val, 0), 0) = "nonce_enabled";
|
||
XSTR (XEXP (val, 0), 1) = "yes";
|
||
XSTR (XEXP (val, 1), 0) = "yes";
|
||
XSTR (XEXP (val, 2), 0) = "no";
|
||
set = rtx_alloc (SET);
|
||
SET_DEST (set) = rtx_alloc (ATTR);
|
||
XSTR (SET_DEST (set), 0) = "enabled";
|
||
SET_SRC (set) = modify_attr_enabled_ce (val);
|
||
RTVEC_ELT (new_vec, i) = set;
|
||
XVEC (insn, 4) = new_vec;
|
||
}
|
||
|
||
/* Adjust all of the operand numbers in SRC to match the shift they'll
|
||
get from an operand displacement of DISP. Return a pointer after the
|
||
adjusted string. */
|
||
|
||
static char *
|
||
shift_output_template (char *dest, const char *src, int disp)
|
||
{
|
||
while (*src)
|
||
{
|
||
char c = *src++;
|
||
*dest++ = c;
|
||
if (c == '%')
|
||
{
|
||
c = *src++;
|
||
if (ISDIGIT ((unsigned char) c))
|
||
c += disp;
|
||
else if (ISALPHA (c))
|
||
{
|
||
*dest++ = c;
|
||
c = *src++ + disp;
|
||
}
|
||
*dest++ = c;
|
||
}
|
||
}
|
||
|
||
return dest;
|
||
}
|
||
|
||
static const char *
|
||
alter_output_for_insn (struct queue_elem *ce_elem,
|
||
struct queue_elem *insn_elem,
|
||
int alt, int max_op)
|
||
{
|
||
const char *ce_out, *insn_out;
|
||
char *result, *p;
|
||
size_t len, ce_len, insn_len;
|
||
|
||
/* ??? Could coordinate with genoutput to not duplicate code here. */
|
||
|
||
ce_out = XSTR (ce_elem->data, 2);
|
||
insn_out = XTMPL (insn_elem->data, 3);
|
||
if (!ce_out || *ce_out == '\0')
|
||
return insn_out;
|
||
|
||
ce_len = strlen (ce_out);
|
||
insn_len = strlen (insn_out);
|
||
|
||
if (*insn_out == '*')
|
||
/* You must take care of the predicate yourself. */
|
||
return insn_out;
|
||
|
||
if (*insn_out == '@')
|
||
{
|
||
len = (ce_len + 1) * alt + insn_len + 1;
|
||
p = result = XNEWVEC(char, len);
|
||
|
||
do
|
||
{
|
||
do
|
||
*p++ = *insn_out++;
|
||
while (ISSPACE ((unsigned char) *insn_out));
|
||
|
||
if (*insn_out != '#')
|
||
{
|
||
p = shift_output_template (p, ce_out, max_op);
|
||
*p++ = ' ';
|
||
}
|
||
|
||
do
|
||
*p++ = *insn_out++;
|
||
while (*insn_out && *insn_out != '\n');
|
||
}
|
||
while (*insn_out);
|
||
*p = '\0';
|
||
}
|
||
else
|
||
{
|
||
len = ce_len + 1 + insn_len + 1;
|
||
result = XNEWVEC (char, len);
|
||
|
||
p = shift_output_template (result, ce_out, max_op);
|
||
*p++ = ' ';
|
||
memcpy (p, insn_out, insn_len + 1);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Replicate insns as appropriate for the given DEFINE_COND_EXEC. */
|
||
|
||
static void
|
||
process_one_cond_exec (struct queue_elem *ce_elem)
|
||
{
|
||
struct queue_elem *insn_elem;
|
||
for (insn_elem = define_insn_queue; insn_elem ; insn_elem = insn_elem->next)
|
||
{
|
||
int alternatives, max_operand;
|
||
rtx pred, insn, pattern, split;
|
||
char *new_name;
|
||
int i;
|
||
|
||
if (! is_predicable (insn_elem))
|
||
continue;
|
||
|
||
alternatives = 1;
|
||
max_operand = -1;
|
||
collect_insn_data (insn_elem->data, &alternatives, &max_operand);
|
||
max_operand += 1;
|
||
|
||
if (XVECLEN (ce_elem->data, 0) != 1)
|
||
{
|
||
error_with_line (ce_elem->lineno, "too many patterns in predicate");
|
||
return;
|
||
}
|
||
|
||
pred = copy_rtx (XVECEXP (ce_elem->data, 0, 0));
|
||
pred = alter_predicate_for_insn (pred, alternatives, max_operand,
|
||
ce_elem->lineno);
|
||
if (pred == NULL)
|
||
return;
|
||
|
||
/* Construct a new pattern for the new insn. */
|
||
insn = copy_rtx (insn_elem->data);
|
||
new_name = XNEWVAR (char, strlen XSTR (insn_elem->data, 0) + 4);
|
||
sprintf (new_name, "*p %s", XSTR (insn_elem->data, 0));
|
||
XSTR (insn, 0) = new_name;
|
||
pattern = rtx_alloc (COND_EXEC);
|
||
XEXP (pattern, 0) = pred;
|
||
if (XVECLEN (insn, 1) == 1)
|
||
{
|
||
XEXP (pattern, 1) = XVECEXP (insn, 1, 0);
|
||
XVECEXP (insn, 1, 0) = pattern;
|
||
PUT_NUM_ELEM (XVEC (insn, 1), 1);
|
||
}
|
||
else
|
||
{
|
||
XEXP (pattern, 1) = rtx_alloc (PARALLEL);
|
||
XVEC (XEXP (pattern, 1), 0) = XVEC (insn, 1);
|
||
XVEC (insn, 1) = rtvec_alloc (1);
|
||
XVECEXP (insn, 1, 0) = pattern;
|
||
}
|
||
|
||
XSTR (insn, 2) = alter_test_for_insn (ce_elem, insn_elem);
|
||
XTMPL (insn, 3) = alter_output_for_insn (ce_elem, insn_elem,
|
||
alternatives, max_operand);
|
||
alter_attrs_for_insn (insn);
|
||
|
||
/* Put the new pattern on the `other' list so that it
|
||
(a) is not reprocessed by other define_cond_exec patterns
|
||
(b) appears after all normal define_insn patterns.
|
||
|
||
??? B is debatable. If one has normal insns that match
|
||
cond_exec patterns, they will be preferred over these
|
||
generated patterns. Whether this matters in practice, or if
|
||
it's a good thing, or whether we should thread these new
|
||
patterns into the define_insn chain just after their generator
|
||
is something we'll have to experiment with. */
|
||
|
||
queue_pattern (insn, &other_tail, insn_elem->filename,
|
||
insn_elem->lineno);
|
||
|
||
if (!insn_elem->split)
|
||
continue;
|
||
|
||
/* If the original insn came from a define_insn_and_split,
|
||
generate a new split to handle the predicated insn. */
|
||
split = copy_rtx (insn_elem->split->data);
|
||
/* Predicate the pattern matched by the split. */
|
||
pattern = rtx_alloc (COND_EXEC);
|
||
XEXP (pattern, 0) = pred;
|
||
if (XVECLEN (split, 0) == 1)
|
||
{
|
||
XEXP (pattern, 1) = XVECEXP (split, 0, 0);
|
||
XVECEXP (split, 0, 0) = pattern;
|
||
PUT_NUM_ELEM (XVEC (split, 0), 1);
|
||
}
|
||
else
|
||
{
|
||
XEXP (pattern, 1) = rtx_alloc (PARALLEL);
|
||
XVEC (XEXP (pattern, 1), 0) = XVEC (split, 0);
|
||
XVEC (split, 0) = rtvec_alloc (1);
|
||
XVECEXP (split, 0, 0) = pattern;
|
||
}
|
||
/* Predicate all of the insns generated by the split. */
|
||
for (i = 0; i < XVECLEN (split, 2); i++)
|
||
{
|
||
pattern = rtx_alloc (COND_EXEC);
|
||
XEXP (pattern, 0) = pred;
|
||
XEXP (pattern, 1) = XVECEXP (split, 2, i);
|
||
XVECEXP (split, 2, i) = pattern;
|
||
}
|
||
/* Add the new split to the queue. */
|
||
queue_pattern (split, &other_tail, read_md_filename,
|
||
insn_elem->split->lineno);
|
||
}
|
||
}
|
||
|
||
/* If we have any DEFINE_COND_EXEC patterns, expand the DEFINE_INSN
|
||
patterns appropriately. */
|
||
|
||
static void
|
||
process_define_cond_exec (void)
|
||
{
|
||
struct queue_elem *elem;
|
||
|
||
identify_predicable_attribute ();
|
||
if (have_error)
|
||
return;
|
||
|
||
for (elem = define_cond_exec_queue; elem ; elem = elem->next)
|
||
process_one_cond_exec (elem);
|
||
}
|
||
|
||
/* A read_md_files callback for reading an rtx. */
|
||
|
||
static void
|
||
rtx_handle_directive (int lineno, const char *rtx_name)
|
||
{
|
||
rtx queue, x;
|
||
|
||
if (read_rtx (rtx_name, &queue))
|
||
for (x = queue; x; x = XEXP (x, 1))
|
||
process_rtx (XEXP (x, 0), lineno);
|
||
}
|
||
|
||
/* Comparison function for the mnemonic hash table. */
|
||
|
||
static int
|
||
htab_eq_string (const void *s1, const void *s2)
|
||
{
|
||
return strcmp ((const char*)s1, (const char*)s2) == 0;
|
||
}
|
||
|
||
/* Add mnemonic STR with length LEN to the mnemonic hash table
|
||
MNEMONIC_HTAB. A trailing zero end character is appendend to STR
|
||
and a permanent heap copy of STR is created. */
|
||
|
||
static void
|
||
add_mnemonic_string (htab_t mnemonic_htab, const char *str, int len)
|
||
{
|
||
char *new_str;
|
||
void **slot;
|
||
char *str_zero = (char*)alloca (len + 1);
|
||
|
||
memcpy (str_zero, str, len);
|
||
str_zero[len] = '\0';
|
||
|
||
slot = htab_find_slot (mnemonic_htab, str_zero, INSERT);
|
||
|
||
if (*slot)
|
||
return;
|
||
|
||
/* Not found; create a permanent copy and add it to the hash table. */
|
||
new_str = XNEWVAR (char, len + 1);
|
||
memcpy (new_str, str_zero, len + 1);
|
||
*slot = new_str;
|
||
}
|
||
|
||
/* Scan INSN for mnemonic strings and add them to the mnemonic hash
|
||
table in MNEMONIC_HTAB.
|
||
|
||
The mnemonics cannot be found if they are emitted using C code.
|
||
|
||
If a mnemonic string contains ';' or a newline the string assumed
|
||
to consist of more than a single instruction. The attribute value
|
||
will then be set to the user defined default value. */
|
||
|
||
static void
|
||
gen_mnemonic_setattr (htab_t mnemonic_htab, rtx insn)
|
||
{
|
||
const char *template_code, *cp;
|
||
int i;
|
||
int vec_len;
|
||
rtx set_attr;
|
||
char *attr_name;
|
||
rtvec new_vec;
|
||
|
||
template_code = XTMPL (insn, 3);
|
||
|
||
/* Skip patterns which use C code to emit the template. */
|
||
if (template_code[0] == '*')
|
||
return;
|
||
|
||
if (template_code[0] == '@')
|
||
cp = &template_code[1];
|
||
else
|
||
cp = &template_code[0];
|
||
|
||
for (i = 0; *cp; )
|
||
{
|
||
const char *ep, *sp;
|
||
int size = 0;
|
||
|
||
while (ISSPACE (*cp))
|
||
cp++;
|
||
|
||
for (ep = sp = cp; !IS_VSPACE (*ep) && *ep != '\0'; ++ep)
|
||
if (!ISSPACE (*ep))
|
||
sp = ep + 1;
|
||
|
||
if (i > 0)
|
||
obstack_1grow (&string_obstack, ',');
|
||
|
||
while (cp < sp && ((*cp >= '0' && *cp <= '9')
|
||
|| (*cp >= 'a' && *cp <= 'z')))
|
||
|
||
{
|
||
obstack_1grow (&string_obstack, *cp);
|
||
cp++;
|
||
size++;
|
||
}
|
||
|
||
while (cp < sp)
|
||
{
|
||
if (*cp == ';' || (*cp == '\\' && cp[1] == 'n'))
|
||
{
|
||
/* Don't set a value if there are more than one
|
||
instruction in the string. */
|
||
obstack_next_free (&string_obstack) =
|
||
obstack_next_free (&string_obstack) - size;
|
||
size = 0;
|
||
|
||
cp = sp;
|
||
break;
|
||
}
|
||
cp++;
|
||
}
|
||
if (size == 0)
|
||
obstack_1grow (&string_obstack, '*');
|
||
else
|
||
add_mnemonic_string (mnemonic_htab,
|
||
obstack_next_free (&string_obstack) - size,
|
||
size);
|
||
i++;
|
||
}
|
||
|
||
/* An insn definition might emit an empty string. */
|
||
if (obstack_object_size (&string_obstack) == 0)
|
||
return;
|
||
|
||
obstack_1grow (&string_obstack, '\0');
|
||
|
||
set_attr = rtx_alloc (SET_ATTR);
|
||
XSTR (set_attr, 1) = XOBFINISH (&string_obstack, char *);
|
||
attr_name = XNEWVAR (char, strlen (MNEMONIC_ATTR_NAME) + 1);
|
||
strcpy (attr_name, MNEMONIC_ATTR_NAME);
|
||
XSTR (set_attr, 0) = attr_name;
|
||
|
||
if (!XVEC (insn, 4))
|
||
vec_len = 0;
|
||
else
|
||
vec_len = XVECLEN (insn, 4);
|
||
|
||
new_vec = rtvec_alloc (vec_len + 1);
|
||
for (i = 0; i < vec_len; i++)
|
||
RTVEC_ELT (new_vec, i) = XVECEXP (insn, 4, i);
|
||
RTVEC_ELT (new_vec, vec_len) = set_attr;
|
||
XVEC (insn, 4) = new_vec;
|
||
}
|
||
|
||
/* This function is called for the elements in the mnemonic hashtable
|
||
and generates a comma separated list of the mnemonics. */
|
||
|
||
static int
|
||
mnemonic_htab_callback (void **slot, void *info ATTRIBUTE_UNUSED)
|
||
{
|
||
obstack_grow (&string_obstack, (char*)*slot, strlen ((char*)*slot));
|
||
obstack_1grow (&string_obstack, ',');
|
||
return 1;
|
||
}
|
||
|
||
/* Generate (set_attr "mnemonic" "..") RTXs and append them to every
|
||
insn definition in case the back end requests it by defining the
|
||
mnemonic attribute. The values for the attribute will be extracted
|
||
from the output patterns of the insn definitions as far as
|
||
possible. */
|
||
|
||
static void
|
||
gen_mnemonic_attr (void)
|
||
{
|
||
struct queue_elem *elem;
|
||
rtx mnemonic_attr = NULL;
|
||
htab_t mnemonic_htab;
|
||
const char *str, *p;
|
||
int i;
|
||
|
||
if (have_error)
|
||
return;
|
||
|
||
/* Look for the DEFINE_ATTR for `mnemonic'. */
|
||
for (elem = define_attr_queue; elem != *define_attr_tail; elem = elem->next)
|
||
if (GET_CODE (elem->data) == DEFINE_ATTR
|
||
&& strcmp (XSTR (elem->data, 0), MNEMONIC_ATTR_NAME) == 0)
|
||
{
|
||
mnemonic_attr = elem->data;
|
||
break;
|
||
}
|
||
|
||
/* A (define_attr "mnemonic" "...") indicates that the back-end
|
||
wants a mnemonic attribute to be generated. */
|
||
if (!mnemonic_attr)
|
||
return;
|
||
|
||
mnemonic_htab = htab_create_alloc (MNEMONIC_HTAB_SIZE, htab_hash_string,
|
||
htab_eq_string, 0, xcalloc, free);
|
||
|
||
for (elem = define_insn_queue; elem; elem = elem->next)
|
||
{
|
||
rtx insn = elem->data;
|
||
bool found = false;
|
||
|
||
/* Check if the insn definition already has
|
||
(set_attr "mnemonic" ...). */
|
||
if (XVEC (insn, 4))
|
||
for (i = 0; i < XVECLEN (insn, 4); i++)
|
||
if (strcmp (XSTR (XVECEXP (insn, 4, i), 0), MNEMONIC_ATTR_NAME) == 0)
|
||
{
|
||
found = true;
|
||
break;
|
||
}
|
||
|
||
if (!found)
|
||
gen_mnemonic_setattr (mnemonic_htab, insn);
|
||
}
|
||
|
||
/* Add the user defined values to the hash table. */
|
||
str = XSTR (mnemonic_attr, 1);
|
||
while ((p = scan_comma_elt (&str)) != NULL)
|
||
add_mnemonic_string (mnemonic_htab, p, str - p);
|
||
|
||
htab_traverse (mnemonic_htab, mnemonic_htab_callback, NULL);
|
||
|
||
/* Replace the last ',' with the zero end character. */
|
||
*((char *)obstack_next_free (&string_obstack) - 1) = '\0';
|
||
XSTR (mnemonic_attr, 1) = XOBFINISH (&string_obstack, char *);
|
||
}
|
||
|
||
/* The entry point for initializing the reader. */
|
||
|
||
bool
|
||
init_rtx_reader_args_cb (int argc, char **argv,
|
||
bool (*parse_opt) (const char *))
|
||
{
|
||
/* Prepare to read input. */
|
||
condition_table = htab_create (500, hash_c_test, cmp_c_test, NULL);
|
||
init_predicate_table ();
|
||
obstack_init (rtl_obstack);
|
||
sequence_num = 0;
|
||
|
||
read_md_files (argc, argv, parse_opt, rtx_handle_directive);
|
||
|
||
/* Process define_cond_exec patterns. */
|
||
if (define_cond_exec_queue != NULL)
|
||
process_define_cond_exec ();
|
||
|
||
if (define_attr_queue != NULL)
|
||
gen_mnemonic_attr ();
|
||
|
||
return !have_error;
|
||
}
|
||
|
||
/* Programs that don't have their own options can use this entry point
|
||
instead. */
|
||
bool
|
||
init_rtx_reader_args (int argc, char **argv)
|
||
{
|
||
return init_rtx_reader_args_cb (argc, argv, 0);
|
||
}
|
||
|
||
/* The entry point for reading a single rtx from an md file. */
|
||
|
||
rtx
|
||
read_md_rtx (int *lineno, int *seqnr)
|
||
{
|
||
struct queue_elem **queue, *elem;
|
||
rtx desc;
|
||
|
||
discard:
|
||
|
||
/* Read all patterns from a given queue before moving on to the next. */
|
||
if (define_attr_queue != NULL)
|
||
queue = &define_attr_queue;
|
||
else if (define_pred_queue != NULL)
|
||
queue = &define_pred_queue;
|
||
else if (define_insn_queue != NULL)
|
||
queue = &define_insn_queue;
|
||
else if (other_queue != NULL)
|
||
queue = &other_queue;
|
||
else
|
||
return NULL_RTX;
|
||
|
||
elem = *queue;
|
||
*queue = elem->next;
|
||
desc = elem->data;
|
||
read_md_filename = elem->filename;
|
||
*lineno = elem->lineno;
|
||
*seqnr = sequence_num;
|
||
|
||
free (elem);
|
||
|
||
/* Discard insn patterns which we know can never match (because
|
||
their C test is provably always false). If insn_elision is
|
||
false, our caller needs to see all the patterns. Note that the
|
||
elided patterns are never counted by the sequence numbering; it
|
||
is the caller's responsibility, when insn_elision is false, not
|
||
to use elided pattern numbers for anything. */
|
||
switch (GET_CODE (desc))
|
||
{
|
||
case DEFINE_INSN:
|
||
case DEFINE_EXPAND:
|
||
if (maybe_eval_c_test (XSTR (desc, 2)) != 0)
|
||
sequence_num++;
|
||
else if (insn_elision)
|
||
goto discard;
|
||
|
||
/* *seqnr is used here so the name table will match caller's
|
||
idea of insn numbering, whether or not elision is active. */
|
||
record_insn_name (*seqnr, XSTR (desc, 0));
|
||
break;
|
||
|
||
case DEFINE_SPLIT:
|
||
case DEFINE_PEEPHOLE:
|
||
case DEFINE_PEEPHOLE2:
|
||
if (maybe_eval_c_test (XSTR (desc, 1)) != 0)
|
||
sequence_num++;
|
||
else if (insn_elision)
|
||
goto discard;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return desc;
|
||
}
|
||
|
||
/* Helper functions for insn elision. */
|
||
|
||
/* Compute a hash function of a c_test structure, which is keyed
|
||
by its ->expr field. */
|
||
hashval_t
|
||
hash_c_test (const void *x)
|
||
{
|
||
const struct c_test *a = (const struct c_test *) x;
|
||
const unsigned char *base, *s = (const unsigned char *) a->expr;
|
||
hashval_t hash;
|
||
unsigned char c;
|
||
unsigned int len;
|
||
|
||
base = s;
|
||
hash = 0;
|
||
|
||
while ((c = *s++) != '\0')
|
||
{
|
||
hash += c + (c << 17);
|
||
hash ^= hash >> 2;
|
||
}
|
||
|
||
len = s - base;
|
||
hash += len + (len << 17);
|
||
hash ^= hash >> 2;
|
||
|
||
return hash;
|
||
}
|
||
|
||
/* Compare two c_test expression structures. */
|
||
int
|
||
cmp_c_test (const void *x, const void *y)
|
||
{
|
||
const struct c_test *a = (const struct c_test *) x;
|
||
const struct c_test *b = (const struct c_test *) y;
|
||
|
||
return !strcmp (a->expr, b->expr);
|
||
}
|
||
|
||
/* Given a string representing a C test expression, look it up in the
|
||
condition_table and report whether or not its value is known
|
||
at compile time. Returns a tristate: 1 for known true, 0 for
|
||
known false, -1 for unknown. */
|
||
int
|
||
maybe_eval_c_test (const char *expr)
|
||
{
|
||
const struct c_test *test;
|
||
struct c_test dummy;
|
||
|
||
if (expr[0] == 0)
|
||
return 1;
|
||
|
||
dummy.expr = expr;
|
||
test = (const struct c_test *)htab_find (condition_table, &dummy);
|
||
if (!test)
|
||
return -1;
|
||
return test->value;
|
||
}
|
||
|
||
/* Record the C test expression EXPR in the condition_table, with
|
||
value VAL. Duplicates clobber previous entries. */
|
||
|
||
void
|
||
add_c_test (const char *expr, int value)
|
||
{
|
||
struct c_test *test;
|
||
|
||
if (expr[0] == 0)
|
||
return;
|
||
|
||
test = XNEW (struct c_test);
|
||
test->expr = expr;
|
||
test->value = value;
|
||
|
||
*(htab_find_slot (condition_table, test, INSERT)) = test;
|
||
}
|
||
|
||
/* For every C test, call CALLBACK with two arguments: a pointer to
|
||
the condition structure and INFO. Stops when CALLBACK returns zero. */
|
||
void
|
||
traverse_c_tests (htab_trav callback, void *info)
|
||
{
|
||
if (condition_table)
|
||
htab_traverse (condition_table, callback, info);
|
||
}
|
||
|
||
/* Helper functions for define_predicate and define_special_predicate
|
||
processing. Shared between genrecog.c and genpreds.c. */
|
||
|
||
static htab_t predicate_table;
|
||
struct pred_data *first_predicate;
|
||
static struct pred_data **last_predicate = &first_predicate;
|
||
|
||
static hashval_t
|
||
hash_struct_pred_data (const void *ptr)
|
||
{
|
||
return htab_hash_string (((const struct pred_data *)ptr)->name);
|
||
}
|
||
|
||
static int
|
||
eq_struct_pred_data (const void *a, const void *b)
|
||
{
|
||
return !strcmp (((const struct pred_data *)a)->name,
|
||
((const struct pred_data *)b)->name);
|
||
}
|
||
|
||
struct pred_data *
|
||
lookup_predicate (const char *name)
|
||
{
|
||
struct pred_data key;
|
||
key.name = name;
|
||
return (struct pred_data *) htab_find (predicate_table, &key);
|
||
}
|
||
|
||
/* Record that predicate PRED can accept CODE. */
|
||
|
||
void
|
||
add_predicate_code (struct pred_data *pred, enum rtx_code code)
|
||
{
|
||
if (!pred->codes[code])
|
||
{
|
||
pred->num_codes++;
|
||
pred->codes[code] = true;
|
||
|
||
if (GET_RTX_CLASS (code) != RTX_CONST_OBJ)
|
||
pred->allows_non_const = true;
|
||
|
||
if (code != REG
|
||
&& code != SUBREG
|
||
&& code != MEM
|
||
&& code != CONCAT
|
||
&& code != PARALLEL
|
||
&& code != STRICT_LOW_PART)
|
||
pred->allows_non_lvalue = true;
|
||
|
||
if (pred->num_codes == 1)
|
||
pred->singleton = code;
|
||
else if (pred->num_codes == 2)
|
||
pred->singleton = UNKNOWN;
|
||
}
|
||
}
|
||
|
||
void
|
||
add_predicate (struct pred_data *pred)
|
||
{
|
||
void **slot = htab_find_slot (predicate_table, pred, INSERT);
|
||
if (*slot)
|
||
{
|
||
error ("duplicate predicate definition for '%s'", pred->name);
|
||
return;
|
||
}
|
||
*slot = pred;
|
||
*last_predicate = pred;
|
||
last_predicate = &pred->next;
|
||
}
|
||
|
||
/* This array gives the initial content of the predicate table. It
|
||
has entries for all predicates defined in recog.c. */
|
||
|
||
struct std_pred_table
|
||
{
|
||
const char *name;
|
||
bool special;
|
||
bool allows_const_p;
|
||
RTX_CODE codes[NUM_RTX_CODE];
|
||
};
|
||
|
||
static const struct std_pred_table std_preds[] = {
|
||
{"general_operand", false, true, {SUBREG, REG, MEM}},
|
||
{"address_operand", true, true, {SUBREG, REG, MEM, PLUS, MINUS, MULT}},
|
||
{"register_operand", false, false, {SUBREG, REG}},
|
||
{"pmode_register_operand", true, false, {SUBREG, REG}},
|
||
{"scratch_operand", false, false, {SCRATCH, REG}},
|
||
{"immediate_operand", false, true, {UNKNOWN}},
|
||
{"const_int_operand", false, false, {CONST_INT}},
|
||
{"const_double_operand", false, false, {CONST_INT, CONST_DOUBLE}},
|
||
{"nonimmediate_operand", false, false, {SUBREG, REG, MEM}},
|
||
{"nonmemory_operand", false, true, {SUBREG, REG}},
|
||
{"push_operand", false, false, {MEM}},
|
||
{"pop_operand", false, false, {MEM}},
|
||
{"memory_operand", false, false, {SUBREG, MEM}},
|
||
{"indirect_operand", false, false, {SUBREG, MEM}},
|
||
{"ordered_comparison_operator", false, false, {EQ, NE,
|
||
LE, LT, GE, GT,
|
||
LEU, LTU, GEU, GTU}},
|
||
{"comparison_operator", false, false, {EQ, NE,
|
||
LE, LT, GE, GT,
|
||
LEU, LTU, GEU, GTU,
|
||
UNORDERED, ORDERED,
|
||
UNEQ, UNGE, UNGT,
|
||
UNLE, UNLT, LTGT}}
|
||
};
|
||
#define NUM_KNOWN_STD_PREDS ARRAY_SIZE (std_preds)
|
||
|
||
/* Initialize the table of predicate definitions, starting with
|
||
the information we have on generic predicates. */
|
||
|
||
static void
|
||
init_predicate_table (void)
|
||
{
|
||
size_t i, j;
|
||
struct pred_data *pred;
|
||
|
||
predicate_table = htab_create_alloc (37, hash_struct_pred_data,
|
||
eq_struct_pred_data, 0,
|
||
xcalloc, free);
|
||
|
||
for (i = 0; i < NUM_KNOWN_STD_PREDS; i++)
|
||
{
|
||
pred = XCNEW (struct pred_data);
|
||
pred->name = std_preds[i].name;
|
||
pred->special = std_preds[i].special;
|
||
|
||
for (j = 0; std_preds[i].codes[j] != 0; j++)
|
||
add_predicate_code (pred, std_preds[i].codes[j]);
|
||
|
||
if (std_preds[i].allows_const_p)
|
||
for (j = 0; j < NUM_RTX_CODE; j++)
|
||
if (GET_RTX_CLASS (j) == RTX_CONST_OBJ)
|
||
add_predicate_code (pred, (enum rtx_code) j);
|
||
|
||
add_predicate (pred);
|
||
}
|
||
}
|
||
|
||
/* These functions allow linkage with print-rtl.c. Also, some generators
|
||
like to annotate their output with insn names. */
|
||
|
||
/* Holds an array of names indexed by insn_code_number. */
|
||
static char **insn_name_ptr = 0;
|
||
static int insn_name_ptr_size = 0;
|
||
|
||
const char *
|
||
get_insn_name (int code)
|
||
{
|
||
if (code < insn_name_ptr_size)
|
||
return insn_name_ptr[code];
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
static void
|
||
record_insn_name (int code, const char *name)
|
||
{
|
||
static const char *last_real_name = "insn";
|
||
static int last_real_code = 0;
|
||
char *new_name;
|
||
|
||
if (insn_name_ptr_size <= code)
|
||
{
|
||
int new_size;
|
||
new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
|
||
insn_name_ptr = XRESIZEVEC (char *, insn_name_ptr, new_size);
|
||
memset (insn_name_ptr + insn_name_ptr_size, 0,
|
||
sizeof(char *) * (new_size - insn_name_ptr_size));
|
||
insn_name_ptr_size = new_size;
|
||
}
|
||
|
||
if (!name || name[0] == '\0')
|
||
{
|
||
new_name = XNEWVAR (char, strlen (last_real_name) + 10);
|
||
sprintf (new_name, "%s+%d", last_real_name, code - last_real_code);
|
||
}
|
||
else
|
||
{
|
||
last_real_name = new_name = xstrdup (name);
|
||
last_real_code = code;
|
||
}
|
||
|
||
insn_name_ptr[code] = new_name;
|
||
}
|
||
|
||
/* Make STATS describe the operands that appear in rtx X. */
|
||
|
||
static void
|
||
get_pattern_stats_1 (struct pattern_stats *stats, rtx x)
|
||
{
|
||
RTX_CODE code;
|
||
int i;
|
||
int len;
|
||
const char *fmt;
|
||
|
||
if (x == NULL_RTX)
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case MATCH_OPERAND:
|
||
case MATCH_OPERATOR:
|
||
case MATCH_PARALLEL:
|
||
stats->max_opno = MAX (stats->max_opno, XINT (x, 0));
|
||
break;
|
||
|
||
case MATCH_DUP:
|
||
case MATCH_OP_DUP:
|
||
case MATCH_PAR_DUP:
|
||
stats->num_dups++;
|
||
stats->max_dup_opno = MAX (stats->max_dup_opno, XINT (x, 0));
|
||
break;
|
||
|
||
case MATCH_SCRATCH:
|
||
stats->max_scratch_opno = MAX (stats->max_scratch_opno, XINT (x, 0));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
len = GET_RTX_LENGTH (code);
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (fmt[i] == 'e' || fmt[i] == 'u')
|
||
get_pattern_stats_1 (stats, XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
get_pattern_stats_1 (stats, XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Make STATS describe the operands that appear in instruction pattern
|
||
PATTERN. */
|
||
|
||
void
|
||
get_pattern_stats (struct pattern_stats *stats, rtvec pattern)
|
||
{
|
||
int i, len;
|
||
|
||
stats->max_opno = -1;
|
||
stats->max_dup_opno = -1;
|
||
stats->max_scratch_opno = -1;
|
||
stats->num_dups = 0;
|
||
|
||
len = GET_NUM_ELEM (pattern);
|
||
for (i = 0; i < len; i++)
|
||
get_pattern_stats_1 (stats, RTVEC_ELT (pattern, i));
|
||
|
||
stats->num_generator_args = stats->max_opno + 1;
|
||
stats->num_insn_operands = MAX (stats->max_opno,
|
||
stats->max_scratch_opno) + 1;
|
||
stats->num_operand_vars = MAX (stats->max_opno,
|
||
MAX (stats->max_dup_opno,
|
||
stats->max_scratch_opno)) + 1;
|
||
}
|